
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1177-1203 (2006)

1177

Efficiency and Reliability in Cluster Based
Peer-to-Peer Systems

CHING-WEI HUANG AND WUU YANG

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: rollaned@gmail.com

E-mail: wuuyang@cs.nctu.edu.tw

Peer-to-peer systems have become one of the most popular Internet applications.

Some unstructured systems such Gnutella perform file searching by flooding requests
among nodes. It has been proven that such unstructured systems are not scalable, and
searching consumes tremendous bandwidth. We propose three mechanisms to recon-
struct the system topology and improve message flooding. Our research addresses four
aspects: system topology control, message routing, message locality, and system con-
nectedness. The simulation shows that significant redundancy in flooding of messages
can be eliminated and message locality achieves a high ratio.

Keywords: peer-to-peer system, cluster, Gnutella, message routing, distributed system

1. INTRODUCTION

Since the music sharing software Napster appeared in 1999, peer-to-peer file sharing
services have become very popular. The P2P model brings new solutions to solve the
bottleneck in the traditional client-server model. Besides the file sharing service, other
traditional network services such as web browsing, instant messaging, or media stream-
ing now may use the P2P model to improve their performance and efficiency.

However, the P2P model is not perfect; some inherent weaknesses of the P2P model
should be addressed before it is applied. HOPs servers, the communication in P2P sys-
tems, depend on message delivery between nodes or message flooding among nodes. The
later consumes bandwidth extremely. On the other hand, a P2P system is maintained by
each node in a distributed way. In other words, the system must be self-organized. Each
node in the system cooperates with each other to make communication efficient and re-
cover the system if failures occur. A poorly designed P2P system may result in huge
maintenance costs.

In the following paragraphs, we introduce three issues that our research addresses.

System Topology Control The network topology significantly affects the performance
of a P2P system. One obvious example is the Gnutella network, one of the most famous
P2P systems. Recent research [1] shows that the message routing protocol of Gnutella
generates a huge number of redundant message. The number of messages originating

from one request in the Gnutella network is estimated to be
0

2 (1) ,
TTL i
i

C C=∗ ∗ −∑ where

Received June 3, 2004; revised September 10, 2004; accepted October 26, 2004.
Communicated by Ten-Hwang Lai.

CHING-WEI HUANG AND WUU YANG

1178

C is the average number of neighbors per node and TTL is the average number of HOPs
of each message. We assign the value of TTL to be 7, which is the average number of
HOPs for requests according to [5]. If the average number of neighbors per node is 4,
the estimated number of messages originating from one request is 26,240. If the aver-
age number of neighbors per node is 8, the estimated number of messages rises to
15,372,800.

On the other hand, the Internet is a collection of autonomous systems connected by
routers. An autonomous system (AS) [5, 13] is a set of routers under a single technical
administration that uses an interior gateway protocol and common metrics to route pack-
ets within the AS and an exterior gateway protocol to route packets to other AS’s. If the
messages travel across different AS’s frequently, the communication will be prohibitively
expensive. The research shows that only 2 to 5 percent of connections in Gnutella are
within a single AS.

A plausible cause of these problems is that Gnutella does not control system topol-
ogy. Arbitrary connections will result in massive redundant messages. An appropriate
system topology, such as a tree, may provide efficient message delivery and hence re-
duces the number of redundant messages. However, additional messages are required to
maintain the appropriate topology of the system.

Message Routing Message routing plays a key role in a P2P system. In order to ana-
lyze the performance of message delivery in P2P systems, three measurements are com-
monly used: the average number of HOPs for requests, the clustering coefficient of the
system topology [2, 3], and the number of flooding messages originating from one re-
quest. For the HOPs of requests, the fewer the average number of HOPs, the lower the
communication cost. For the clustering coefficient, the higher the clustering coefficient
of a graph, the more nodes are connected in a regular fashion. The lower the clustering
coefficient of a graph, the more nodes are connected randomly [3]. Paper [3] also shows
that a small-world network could have the benefits of both a higher clustering coefficient
and a lower average number of HOPs.

In a P2P system, a search request travels through nodes by successive message
broadcasts on each node. Redundant broadcast messages may consume a major part of
the network bandwidth if there is no control on the message routing. We propose a mes-
sage routing mechanism which reduces the number of redundant messages originating
from one request.

System Connectedness The last issue that we discuss is the connectedness of the P2P
system. Due to possible disconnections between nodes such as leavings or failures of
nodes, a P2P system could possibly be split into disconnected components. A split system
leads to poor search performance because requests may not reach enough nodes. For a
dynamic system, it is necessary to tolerate splitting of the system. And, the system should
be able to recover failures and re-connect components.

In this paper, we present DSE (Distributed Search Environment), our P2P system.

DSE concentrates on the above three aspects and proposes solutions to the respective
problems. The rest of this paper is organized as follows. Section 2 illustrates the archi-
tecture of DSE systems and our simulation methodology. Section 3 introduces the

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1179

mechanism to control the system topology. Section 4 introduces an efficient message
routing mechanism which is based on the cluster structure of the system. Section 5 shows
the recovery mechanism to handle splits of the system. Section 7 concludes this paper.

2. SYSTEM ARCHITECTURE AND SIMULATION

2.1 System Architecture

The DSE system runs on each node and contain three major mechanisms: neighbor

clustering control (NCC), smart message routing (SMR), and ring-around-leader (RAL).
The NCC mechanism controls system topology by selecting neighbors of each node. The
SMR mechanism controls the routing path of each message. The RAL mechanism detects
and reconnects split components of the system if they exist. Fig. 1 (a) shows these
mechanisms and corresponding data structures.

Originator NID

NCC

SMR

RAL

Originator Address

DSE System

Data StructureFunctions

Message

Neighbor List

CID / NID

MTAG Buf

MTAG

BCTL

Originator CID

Data

(a) (b)

Fig. 1. Three mechanisms of the DSE system and message structure.

2.2 Simulation Methodology

To verify the performance of the DSE system, we adopt a strategy of developing

both a real system and a simulator. The real system, with a project name Apia is publicly
available [15]. Currently there are more than 40,000 registers and 1,000 to 2,000 online
users. We collect user-related data such as host addresses, search requests, online time,
etc., for the simulator to verify NCC, SMR, RAL mechanisms and other related im-
provements. In one week of tracking, we captured 5,718 users and selected 1,692 of them
who stay online the largest amount of time. To simplify our simulations, conditions of
dynamic and multiple IP address binding are not considered. The distribution of ad-
dresses of these nodes is listed in Table 1, which shows that most of them come from the
major ISPs of Taiwan. During the tracking period, we collected 200,198 search requests
which originated from these nodes.

In the following sections, the simulator builds a system with 1,000 to 2,000 nodes;
each node performs the NCC, SMR, and RAL tasks simultaneously and continuously.
Each node generates a search request every 20 to 60 seconds.

CHING-WEI HUANG AND WUU YANG

1180

Table 1. ISP distribution of nodes and message locality.

ISP HINET TANET SEEDNET APOL GIGA SONET OTHERS
Node Number 547 436 196 152 115 61 185

Percentage 32.33% 25.77% 11.58% 8.98% 6.80% 3.61% 10.93%
Message Locality 79.00% 76.72% 63.45% 66.97% 66.02% 64.33% N/A

Our simulation analyzes the NCC, SMR and RAL mechanisms in the following as-

pects: the average number of flooding messages generated by one request (called
AMOR), the average number of HOPs of request (called HOPOR), the clustering coeffi-
cient, reduced messages when SMR is enabled, and the relation between AMOR and
dynamic behaviors of nodes.

3. NEIGHBOR CLUSTERING CONTROL

NCC mechanism has two goals: (a) promote message locality and (b) reduce re-
dundant flooding messages and lower the number of HOPs of search requests. To achieve
the first goal, the NCC mechanism introduces a new address format called HIP which
considers IP distribution of ISPs (more precisely, the AS structure of the Internet) for
better connections. With a clustering structure of the system, most flooding messages
travel within their ISPs. Hence, the communication cost of message flooding can be re-
duced. To achieve the second goal, the NCC mechanism introduces a notion of node dis-
tance based on which nodes are organized into connected clusters so that the characteris-
tic path length is shorter and the clustering coefficient remains high [3]. By cooperating
with the SMR mechanism, redundant messages in message flooding can be reduced.

3.1 Node Cloning

When a new node joins the system, the DSE system initially asks the user to input

some arbitrary sentences. The speed of typing and the sentences are treated as user be-
havior related information. The DSE system then generates a unique ID, called NID, for
the node using the SHA1 function, with an argument which contains the IP address of the
host, a standard time stamp, and the user behavior related information. Consider the ex-
ample in Fig. 2 (b) where a new node H1 sets up the argument for SHA1 when it joins the
system.

H1 : 868C6DDD03

H2 : 71DC0E4E5D

H3 : 868C710101

H4 : 868C751D64

H5 : 868C6EFA7D

H6 : 868C6D1E09

H2

H1

H3

H4

H6

H5

H0
by H4

by H3

by H0

by H4

IP ADDRESS : 140.109.221.3

TYPING SPEED : 30 CHARS/SEC

HIP ADDRESS : 868C6DDD03

INPUT SENTENCE : Hi, I come from Orion

TIMESTAMP : 1095233434.3698

IP

H0 : 3C96142B0B

(a) (b)

Fig. 2. A newly joining node and neighbor updating.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1181

The argument fed to SHA1 varies the NID of each node. For any two given nodes
Ha and Hb, DSE system generates the same NID if all of the following conditions hold:
Ha and Hb join the system at exactly the same time, both of them join the system with the
same IP address; and both of them generate the same user behavior related information.
Obviously, it is almost impossible for any two new nodes to obtain the same NID. The
uniqueness and comparability of each NID are necessary for the NCC mechanism to con-
trol node connections, and the SMR mechanism to reduce redundant messages in mes-
sage flooding.

Since there are no servers to provide a list of initial neighbors for each new node to
connect to, the DSE system chooses some default nodes, called navigators, to serve as
the initial neighbors for every new node. Navigators perform exactly the same as other
nodes except that all new nodes initially connect to them. The addresses of navigators
can be resolved by DNS. Therefore, navigators need not be some fixed hosts. Through
dynamic mapping of domain names and IP addresses, every node in the system can be a
navigator. Once a new node connects to any one of the navigators, it successfully joins
the system and begins to find more neighbors. In the following sections, we allocate five
navigators for the system in each simulation.

Standard global time is important for data synchronization among nodes in the sys-
tem. Each node reads the current standard global time by periodically querying the net-
work time servers with Network Time Protocol (NTP) [12]. The RAL mechanism (dis-
cussed in section 5) uses standard time and message exchange between nodes to detect
whether the system is split.

Although each node in the DSE system synchronizes its local time to standard
global time, the scalability of the system will not be limited because of the following
reasons: (a) plenty of NTP servers on the Internet are available to provide NTP service;
(b) synchronization with standard global time needs to be performed only every few
hours; (c) neighbors can synchronize standard global time with each other if any one of
them synchronized it from any NTP server.

3.2 Node Clustering

3.2.1 Basic notion

Instead of controlling node connections based on traditional IP address format
(x.y.z.w), we adopt a new address format called HIP. The HIP format is composed of two
parts. For the first part, we give each ISP a unique identifier, called ISPID, in two hexa-
decimal characters form. The second part of HIP is an eight hexadecimal characters form
of the original IP address. Fig. 3 (a) shows the HIP of a given host. The ISPID is 4C
which represents the ISP identifier that the host belongs to. The rest of HIP, 8C6DFA70,
is the 8-hexadecimal character representation of the IP address 140.109.250.112.

Before using HIP to control node connections, we give some related definitions.
First, we define the depth of each character in HIP as its position in HIP (started from 0).
Second, we define the prefix of HIP of size K, denoted by Prefix(HIP, K), as the sub-
string of the first K + 1 characters. Third, the (K + 1)’th character of HIP is denoted by
depthChar(HIP, K). Fig. 3 (a) shows each depth of a given HIP and Prefix(HIP, 6). For a
given character C in the circle of hexadecimal characters (0-9, A-F), we define the left

CHING-WEI HUANG AND WUU YANG

1182

E

IP = 140.109.250.112
HIP = 4 C 8 C 6 D F A 7 0

IP ADDRESS (depth 2 to 9)

ISPID (depth 0,1)

Prefix(NID,6) = 4C8C6D

left side

right side

cycleDistance(3,E)=5

0 1
2

3

4

F

D

B

A
0

9 8
7

6

5
C

(a) (b)

Fig. 3. HIP prefix and the left/right side of character “2”.

side of C as the anti-clockwise half characters by C, and the right side of C as the clock-
wise half characters by C. And cycleDist(A, B) is defined as the length of the shortest
path between characters ‘A’ and ‘B’ on the circle of hexadecimal characters. Fig. 3 (b)
shows the circle, left/right sides of character ‘2’, and cycleDist(3, E).

On the other hand, for a given node X, we define node Y as a left/right neighbor of
node X in depth K if depthChar(Y, K) is in the left/right side of depthChar(X, K), and
Prefix(HIPy, K − 1) = Prefix(HIPx, K − 1) for K > 1 or depthChar(HIPy, 0) = depthChar
(HIPx, 0) for K = 0. For HIPs, the space at depth 0 is divided into 16 segments. HIPs Di
with different depthChar(Di, 0) fall in different segments of depth 0. HIPs Di with the
same depthChar(Di, 0) but different depthChar(Di, 1) fall in the same segment of depth 0
but in a different segment of depth 1. As a consequence, different HIP falls in a different
position without collisions. Here we called such a distribution space of HIP the HIP
space. The capacity of HIP space is 1610 because each HIP is a 10 character hexadecimal
string. Such HIP space should be large enough to cover HIPs of billions of nodes.

3.2.2 Connection rules

The connections of nodes are determined based on two rules: near-first and depth-
first. The near-first rule makes nodes connect to each other to form hierarchical clusters.
The depth-first rule controls connections across clusters so that these connections play
roles of shortcuts for faster message travelling.

For the near-first rule, we introduce a notion called node distance which is based on
which closer nodes connect to each other. Hence, the system structure is transformed to
be hierarchical and connected clusters. Fig. 4 shows the definition of node distance. The
node distance takes two HIP addresses to compute their distance. Each node continu-
ously checks each new node that it meets. If the new one is nearer than its current
neighbor, the current one will be replaced by the new one. We call these neighbors which
are decided by the near-first rule the near-first neighbors.

9
(9)

0

distance(,) cycleDistance(,) i
i i

i

A B a b K −

=
= ∗∑

A = a0.a1 … a9, B = b0.b1 … b9, K = 16

Fig. 4. Definition of node distance.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1183

Notice that the definition of node distance does not have to reflect the accurate dis-
tance of the physical link between two nodes. The definition intends only to have nodes
in the same AS connect to each other so that message locality (discussed in section 3.4)
can be promoted and the SMR mechanism (discussed in section 4) reduces redundant
flooding messages.

For the depth-first rule, each node tries to connect at least one left and right
neighbor in every depth if they are available. Moreover, selected neighbors at each depth
should be as near to the local node as possible. Consider the example in Fig. 5 where
node H0 connects to its left and right neighbors at some depths. Node H0 made connec-
tions to H1 and H2 because they are right and left neighbors of H0 at depth 8. Similarly,
H4 is a left neighbor at depth 1 and H5 is a right neighbor of node H0 at depth 0. Notice
that it is not necessary that left and right neighbors at each depth are always available.
When the system contains fewer nodes, the number of neighbors at more depths will be
absent. On the other hand, since each node connects at least one left and one right
neighbor at every depth (if they are available) and the HIP address has 10 depths, each
node has at most 20 such neighbors. We called those neighbors which are decided by the
depth-first rule the depth-first neighbors.

depth 9

H2 H1

H3
H4

H0

H8

H6 H5

H7

32 87
depth 0

H8
H7
H6
H5
H4
H3
H2

3843E7B9339
3843E7B9309
280879060A0
765439F4EC0
35AEF342731

7
8

R
L
L
R
L
R
L

H0 N/AN/A
H1 3843E7B9878R

3843E7B932 (67.231.185.1)

3843E7B902
3843E7BE46

L/R Depth NIDNeighbor (with repectto H0)

0 1 2 3

Fig. 5. Node connections.

In order to determine the correct HIP address of a given IP address, each node
maintains an ISPID table to retrieve the ISPID of any given IP address. Since the AS
structure of the Internet is not always fixed, the ISPID table should be able to be updated
to reflect the current mapping of IP address ranges and their ISPIDs. DSE implements an
ISPID table updating mechanism via message flooding. The designer or manager of DSE
maintains the correct ISPID table on a regular time schedule and distributes it to all
nodes to update their ISPID table via message flooding. Notice that the IP address ranges
of ISPs are usually available to the public. For example, the IP address ranges of ISPs to
be used in our simulation can be obtained from [20].

CHING-WEI HUANG AND WUU YANG

1184

3.2.3 Forwarding path

Given a system G running the NCC mechanism, the forwarding path of messages
determines how many HOPs, on average, a request takes to travel to every node. Since
the travelling of each request is bread-first-search, the length of the shortest path from the
request originator to other nodes determines the HOPs of the request.

Ha 2430992E87 Hk1

Ha

Hk2

k3H

Hkt

Hb 1 HOP

1 HOP

Hb 8451320EFA
Hk1 343A98BC46
Hk2 88C12D0675
Hk3 84186C1A61
Hkt 8451320E79

NODE HIP

Fig. 6. Forward path of a request from node Ha to node Hb.

Suppose the connections of system G are stable, the example in Fig. 6 shows how a
given request R moves from a given node Ha to node Hb through the shortest path be-
tween them. First, Ha forwards R to its right neighbor Hk1 at depth 0. Then, Hk1 moves R
to it right neighbor at depth 0. Request R is forwarded continuously to right nodes at
depth 0 until it arrives at node Hk2, where Prefix(HIPHk2, 0) = Prefix(HIPHb, 0). Since
depthChar(Hk2, 1) = 8 and depthChar(Hb, 1) = 4, the request R is forwarded by Hk2 to its
left neighbor at depth 1. The forwarding of R to left neighbors at depth 1 continues until
it arrives at a node Hk3, where Prefix(HIPHk3, 1) = Prefix(HIPHb, 1). The following for-
warding of R continues until R arrives at node Hkt so that Prefix(HIPHkt

, 8) = Prefix(HIPHb,
8). Then, Hkt moves R to its neighbor Hb.

Except for the first forwarding of R by Ha to its right neighbor at depth 0 (only takes
1 HOP), each time R is forwarded from one node to another at the same depth, it takes at
most 8 HOPs (the cycleDist of any two nodes). Therefore, the upper limit of HOPs in the
whole forwarding process of R to any node is 1 + 8 * 10. In a real system, the forwarding
of a request takes much fewer than 81 HOPs because there are not that many nodes in the
whole HIP space. For a system with N nodes, the number of forwarding between depths
is log16N. Hence, the upper bound of HOPs in the whole forwarding process of a request
is 1 + 8 * log16N, or in general, O(log16N).

Notice that the connections to nodes at different depths play the roles of shortcuts
between clusters to make the travelling of each request over the whole system faster. If
each node maintains more distant neighbors (currently, two neighbors) at each depth, the
upper bound of HOPs of each request will be less than O(log16N).

3.3 Neighbor Updating

In DSE, each node uses two methods to contact new neighbors: message recognition
and neighbor introduction. The first method is fulfilled by message flooding. Consider
the message structure shown in Fig. 1 (b). The header of each message records the IP
address and NID of the message originator. When a node originates a flooding message,
every node which received the message extracts the header and builds a connection to the

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1185

originator if it will be a better neighbor than its current neighbors (by node connection
rules in section 3.2.2).

The second method introduces the use of third party neighbors. Each node periodi-
cally gathers a set of NIDs and addresses of its neighbors, then broadcasts the set to its
neighbors. Each neighbor who receives the set builds connections to some nodes in the
set if they are better neighbors than current neighbors. Given nodes Hx, Hy, and Hz, we
say that Hx is introduced to Hy (or Hy is introduced to Hx) by Hz if the connection between
Hx and Hy is built via the neighbor set broadcasted by node Hz. Consider the example in
Fig. 2 (a), where a connection between nodes H1 and H6 is built by the introduction by
nodes H0, H3, and H4: Initially, node H6 has three neighbors H1, H2, and H3. Node H1 is
introduced to H3 by H0, and then H1 is introduced to H4 by H3, and finally H1 is intro-
duced to H6 by H4. As a consequence, node H1 has a new neighbor H6 which is the clos-
est node to node H1. Similarly, node H5 could be introduced to H6 by H4, and become a
neighbor of H6.

The selection of neighbors is based on node connection rules. For the near-first rule
(to cluster nodes), a lower bound on the number of neighbors, called NBLB, is given for
each node. Every node has at least NBLB near-first neighbors if they are available. For
the depth-first rule (to connect nodes across clusters), each node contains at least 20 such
neighbors. To summarize both rules, each node maintains at least NBLB + 20 neighbors.
For a given system G, we say that G is stable if each node in G maintains at least NBLB +
20 neighbors which are obtained from the node connection rules.

Given a stable system G with N nodes and a new node H which just connects to
one node in the system, we say that H takes one move to a closer cluster if H meets
closer neighbors whose NIDs are closer to the NID of H at one lower depth, through
the third party introductions by its current neighbors. Ideally, a newly joined node H
takes one move to a closer cluster because its neighbors connect to nodes located in a
different cluster (by the depth-first rule). Therefore, H takes O(log16N) moves to the
closest cluster.

3.4 Message Locality

The Internet is composed of connected AS’s and each ISP may contains several AS’s.

There is usually less communication within the same AS than across AS’s. Also, the
communication within the same ISP is also usually smaller than across ISPs.

The NCC mechanism promotes message locality. That is most messages travel
within the same AS. As a consequence, communication costs could be reduced signifi-
cantly because fewer messages travel across AS’s. Given a node Hx and a message M, M
is called a local message of Hx if Hx is either the source or the destination of M, and both
the source and destination belong to the same AS. We define the message locality of Hx
as the number of local messages of Hx divided by the number of total messages whose
source or destination is Hx. Higher message locality of more nodes indicates that more
messages are traveling within the same AS’s.

3.5 Experiment Verification

In this experiment, one new node is created per second until there are 1,000 nodes

CHING-WEI HUANG AND WUU YANG

1186

all. Each time the number of nodes is a multiple of 100, the system suspends creating
new nodes for a period of time. We measure the average number of HOPs that a request
travels (denoted as HOPOR) and the clustering coefficient.

Fig. 7 shows that the NCC mechanism raises the clustering coefficient. As we can
see, the dynamic behaviors of the system affect the clustering coefficient. During the
period when new nodes join the system, the clustering coefficient drops quickly because
the clustering effect has been destroyed. But for the period in which no new nodes join
the system, the clustering coefficient rises gradually. On average, the clustering coeffi-
cient alternates between 0.7 and 0.85. The result shows that the NCC mechanism organ-
izes nodes into clusters.

time (second)

number of nodesclustering coefficient

number of nodes

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1000 2000 3000 4000 5000 6000 7000
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

0.6

clustering coefficient

0.65

HOPOR

time (second)

number of nodes

0

4

5

6

0 1000 2000 3000 4000 5000 6000 7000
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

HOPOR (step)

number of nodes
HOPOR (average)

2

1

3

Fig. 7. Relationship between clustering coeffi-

cient and node size.
Fig. 8. Relationship between HOPOR and the

number of nodes.

The second measurement concerns the relation between HOPOR and the number of
nodes. Fig. 8 shows that average HOPOR grows slower and slower with an upper bound
of 4. HOPOR is also affected by the dynamic behaviors of the system. During the period
when new nodes join the system, HOPOR grows quickly. In the period when the number
of nodes remains fixed, HOPOR drops gradually. In terms of average communication
distance, the value of HOPOR can also be used to represent an approximate diameter of
the overlay network. The result in Fig. 8 shows that the average diameter of the DSE
overlay network is fewer than 4 when the number of nodes is less than 1,692.

The previous discussions in sections 3.2.2 and 3.2.3 show that given a system with
N nodes connected based on the node connection rules, the upper bound of HOPs of a
request (i.e., HOPOR) is O(log16N). Fig. 8 verifies our inference for a system that con-
tains less than 1,692 nodes. Since the complexity of the simulation limits the size of our
experiment, further analysis of the system with more than 10,000 nodes should be done
in future work.

In the next experiment, the system contains 1,692 nodes whose IP addresses and re-
spective ISPs come from the collected data of our real system. The result in Table 1
shows that NCC mechanism effectively promotes the message locality. Another interest-
ing point is that the more nodes in each ISP to anticipate the P2P system, the higher mes-
sage locality of each node in the ISP is.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1187

Compared to the message locality of Gnutella, which is 2% to 5% on average, our
NCC mechanism significantly reduces messages which travel across different AS. For
the biggest ISP, HINET, almost 80% of messages travel within it.

4. SMART MESSAGE ROUTING

Given a message M which is travelling in a P2P network, we say that M is redundant

if it arrived at any given node more than once. Consider a fully-connected small system
{H1, H2, H3} where H1 starts to flood a request R. After H2 and H3 received R simultane-
ously, they may forward it to each other. Hence, two redundant messages are generated.

Message flooding inevitably generates redundant messages. Without careful control
of system topology and a good message routing algorithm, redundant messages can be
tremendous. The SMR mechanism provides two methods to solve this problem: dupli-
cated forwarding avoidance, and redundant forwarding prevention. The difference be-
tween these methods is the timing to perform them. Redundant forwarding prevention
works before a message is forwarded (the message is not yet, but may be, redundant
later), while duplicated forwarding avoidance works after a message arrives at a node
(the message is already redundant).

Before the following sections, we define some terms used later. A request usually
means a search request which travels over all nodes in the system. The node which starts
a request is called the originator of the request. The path of a request is based on mes-
sage forwardings from node to nodes. Given a message which is forwarded from one
node to another in one HOP, the first node is called the source of the message, and the
second node is called the destination of the message.

4.1 Duplicated Forwarding Avoidance

In DSE system, every request owns a unique tag, called the MTAG, which is as-
signed by request originator. Every node has a buffer for storing MTAGs of recently ar-
rived messages. Since the topology of a P2P system may contain loops, duplicated for-
wardings of a message to same nodes are inevitable. SMR check recent MTAGs to make
sure whether an incoming message arrived before. If there is a tag in the buffer, the mes-
sage will be discarded and not forwarded to other nodes.

4.2 Redundant Forwarding Prevention

4.2.1 Basic concept

The redundant forwarding prevention is the major part of the SMR mechanism. As
shown in Fig. 1(b), every message contains a list, called the broadcast travel list (BCTL),
which stores part of NIDs of visited nodes and those nodes where the message will be
forwarded to. The node through which a message travels check the BCTL to prevent the
message from being forwarded to one of its neighbor more than once.

The effect of preventing redundant forwarding is highly related to two factors: the
topology of the system and the capacity of BCTL. For the first factor, a system with
higher clustering coefficient prevents more redundant forwardings because BCTL of

CHING-WEI HUANG AND WUU YANG

1188

each message contains more nodes which are within the same cluster. Hence, more nodes
can be filtered out during the forwarding of messages. For the factor of the capacity of
BCTL, we set the capacity of BCTL as multiples of NBLB because every node maintains
at least NBLB neighbors. We denote BCTL of multiple K if the capacity of the BCTL is K
times NBLB. BCTL of multiple 0 means that redundant forwarding prevention is disabled.
For easier explanation in the following discussion, the notation BCTL(M, H, 0) means
the BCTL before message M is forwarded to its destination H, and BCTL(M, H, 1) means
the BCTL after message M is forwarded out by/from H.

4.2.2 Prevention for first stage

The process of redundant forwarding prevention is divided into two stages. Given a

node, the first stage focuses on the nodes to which the message will be forwarded. Before
a message is forwarded by local node, any neighbor which is already in the BCTL of the
message will be filtered out from the forwarding because the message has travelled
through those nodes. Then, the rest of neighbors are pushed into the BCTL, and the mes-
sage is forwarded to them.

In the example in Fig. 9, there are two clusters {H1, H2, H3, H4, H5} and {H6, H7, H8,
H9, H10}, and node H2 originates a request message M. The message M is first sent to its
neighbors H1, H3, and H5. Hence, BCTL(M, H2, 1) = {H1, H2, H3, H5}. After H1 receives
M, it will not forward M to H3 because H3 is in BCTL(M, H1, 0).

H2

H6

H4H3

H1

H5

H7

H9

H8

H10BCTL : {H1, H3, H5, H2}

Message Body

BCTL : {H1, H3, H5, H2, H4}

Message Body

M

M

Fig. 9. Broadcast in intra-cluster and inter-cluster.

H1

H2

H7

H6

H5

H3M BCTL(M,H2,0) BCTL(M,H3,0) BCTL(M,H4,0)

V.S.

BCTL(M,H6,1)

M

H4,H3,H2,H1,H6

BCTL(M,H6,0)

M

H3,H2,H1,H6

M

H4,H3,H2,H1

M

H4,H3,H2,H1

M

H4,H3,H2,H1

H4

Fig. 10. Redundant forwarding prevention on stage 1.

On the other hand, the capacity of BCTL affects the prevention of redundant mes-
sage. In the example in Fig. 10, suppose NBLB is 4 and we setup BCTL of multiple 1.
Node H1 originates a request message M to its neighbors H2, H3, and H4. With the first
stage prevention, the message forwarding H2 → H3 and H3 → H2 are filtered out by node

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1189

H2 and H3, respectively. When M is forwarded to H6 by H2, BCTL(M, H6, 0) = {H3, H2,
H1, H6} and H4 is removed from the set because of the capacity limit of BCTL. When M
is forwarded to H4 by H6, a redundant forwarding occurs. If we setup BCTL of multiple 2,
such redundant forwarding could be prevented because BCTL(M, H6, 0) still contains
node H4.

4.2.3 Prevention for second stage

The second stage prevention focuses on the nodes by which a message is forwarded
to the same destination from different sources. Before a node forwards a message, if it
knows that one of its neighbors will also forward that message to the same destination,
then only one node will forward it. The choice of the node by which the message is for-
warded depends on the comparison of their NIDs. When several nodes prepare to for-
ward the same message to the same destination, the one with the largest NID will for-
ward the message. In other words, two basic requirements to fulfill the second stage pre-
vention are necessary: (a) NID of each node is unique and comparable; (b) every node
knows the neighbors of its neighbors.

Given a message M and a node H, NBRQ(H) is defined as the set of neighbors of
node H, TS(M, H) is defined as NBRQ(H)-BCTL(M, H, 0) and NS(M, H) is defined as
NBRQ(H) ∩ BCTL(M, H, 0). Notice that the notation “-” means set difference. TS(M, H)
represents the remaining nodes to which M will be forwarded by H after the first stage.
NS(M, H) represents the neighbors of H that are already in BCTL(M, H, 0). The concept
of the second stage prevention is as follow. For each node Y in TS(M, H), if there exists a
node X in NS(M, H) such that Y is a neighbor of X and the NID of X is greater than the
NID of H, then H will not forward M to Y.

H1

H2

H3

H4

H6

<ID530>

<ID461>

<ID47>

<ID2192>

<ID731>

H5

<ID89>

M

Fig. 11. Redundant forwarding prevention on stage 2.

Consider the example in Fig. 11. The string inside the angle brackets, e.g. <ID461>,

denotes the NID of the node. When message M is originated by node H1 and arrives at
nodes H2, H3, H4 and H5, the message forwardings of H2 ↔ H3 and H3 ↔ H4 are filtered
by the first stage prevention. Now consider the message forwardings H2 → H6, H3 → H6
and H4 → H6. Note that BCTL(M, H2, 0) = BCTL(M, H3, 0) = BCTL(M, H4, 0) = {H1, H2,
H3, H4, H5}. At this time, NBRQ(H3) = {H1, H2, H4, H6}, TS(M, H3) = NBRQ(H3) −
BCTL(M, H3, 0) = {H1, H2, H4, H6} − {H1, H2, H3, H4, H5} = {H6}, and NS(M, H3) = {H1,
H2, H4, H6} ∩ {H1, H2, H3, H4, H5} = {H2, H4}. Without second stage prevention, both H2
and H3 will forward M to H6. With second stage prevention, H3 discovers two facts: first,
the NID of H2 (which is “ID2192”), is greater than that of H3 (which is “ID47”). Second,

CHING-WEI HUANG AND WUU YANG

1190

NBRQ(H2) and NBRQ(H3) both contain the destination H6. Therefore, H3 will not for-
ward M to H6. A similar fact will also be discovered by H4. As a result, M is forwarded to
H6 only by H2. The algorithm of the SMR mechanism is given in Fig. 12.

function broadcast(message M) {

// L is the local node, BCTL of multiple K is setup

TS := NBRQ(L) − M.BCTL;
NS := NBRQ(L) ∩ M.BCTL;
SQ = {};

for (X in TS) {
if (∃ G in NS such that NIDG > NIDL && X ∈ NBRQ(G))

continue;
SQ := SQ ∪ {X};
};

M.BCTL := M.BCTL ∪ SQ;
cutBCTL(M.BCTL, K * NBLB); // reduce the size of M.BCTL to K * NBLB

 for (Y in SQ) {
sendto(Y, M); // send message M to node Y
};

};

Fig. 12. Redundant delivery prevention in the SMR mechanism (assume BCTL of multiple 2).

The capacity of the BCTL affects the performance of the SMR mechanism. When

the BCTL is full, the replacement of the BCTL adopts the first-in-first-out policy to drop
the oldest nodes in BCTL. BCTL should always keeps the most recently visited nodes
because the redundant message preventions at both stages concern nodes at which each
message just arrived and forwarded to.

4.2.4 Clustering and topology matching

The SMR mechanism reduces redundant flooding of messages based on the cluster-
ing structure of the system. The SMR mechanism works if most nodes understand where
messages come from (sources) and where they are going to (destinations). Furthermore,
each node should be able to identify as many of these sources and destinations as possi-
ble. With a clustering structure for the system, most sources and destinations are closer.
They can be identified much easier if each node knows the neighbors of their neighbors.

On the other hand, the NCC mechanism clusters the system using additional knowl-
edge of Internet topology. As a consequence, nodes in the same ISP tend to form clusters.
The reason to exploit topology is to achieve greater message locality, not redundant mes-
sage reduction. If the NCC mechanism is modified so that Internet topology is not con-
sidered (by eliminating the first two characters of each NID), the NCC mechanism still

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1191

clusters the system. And, the SMR mechanism still reduces redundant flooding of mes-
sages without any loss of performance. The only drawback is lower message locality.

4.3 Experiment Verification

The SMR mechanism tries to reduce redundant messages in message floodings. We

evaluate its performance by analyzing the relation between AMOR and BCTL of multi-
ple K. In the following experiment, we use a BCTL of multiple 3, and NBLB is 20. The
TTL (time-to-live) of each request is ∞ HOPs so that it can be flooded to every node in
the system. The first part of the SMR, duplicate forwarding avoidance, is always enabled
so that each message will never be forwarded indefinitely. We analyze how many redun-
dant messages are reduced by the first and second stage preventions.

Given a system with up to 200 nodes, we first disable the second stage prevention of
SMR and focus on the performance of the first stage prevention. We examine AMOR
under five conditions: BCTL of multiple K, where K = 0, 1, 2, 3, and 4. The result in Fig.
13 shows that AMOR under BCTL of multiple 0 is at least six times the value under
BCTL of multiple 1. AMOR under BCTL of multiple 2 can be further reduced, but the
reduction slows down. AMORs under BCTL of multiple K remain almost the same value
for K = 2, 3, 4. The result shows that although a larger BCTL promotes the performance
of redundant forwarding prevention, it need not be very large. Ideally, the NCC mecha-
nism clusters all nodes so that the number of neighbors of each node is about NBLB.
Therefore, BCTL of multiple 1 should be sufficiently large to filter out most redundant
messages. However, frequent joins and leaves of nodes in a real system counteract the
clustering effect. A little bit larger BCTL should be better. The simulation result shows
that the best choice of K is 2.

AMOR

100
200

BCTL of multiple 0

BCTL of multiple k, k=2,3,4
BCTL of multiple 1

time (second)

0 100 200 300 400 500

2500

2000

number of nodes

AMOR

1500

1000

500

0

3000
number of nodes

AMOR

time (second)

number of nodesAMOR

100

200

BCTL of multiple 2 with
the second stage prevention

the second stage prevention
BCTL of multiple 2 without

number of nodes

0
4003002001000

1000

800

600

400

200

500

Fig. 13. Relation between AMOR and BCTL

of multiple k.
Fig. 14. AMOR with and without second stage

prevention.

The second part of this experiment focuses on the performance of the second stage

prevention. With the first stage prevention enabled, we compare AMOR under BCTL
with multiple 2 with and without the second stage prevention. Fig. 14 shows that BCTL
of multiple 2 with the second stage prevention further decreases by approximately half of
AMOR without the second stage prevention.

CHING-WEI HUANG AND WUU YANG

1192

In summary, both of the first and second stage preventions indeed reduce redundant
messages. Consider both Figs. 13 and 14 at a timestamp of 330. The peak of total mes-
sages reaches 2750 if all preventions are disabled. However, with the first and second
stage preventions enabled, the number of messages is reduced to 350. About 87.27%
messages are prevented from being redundant by the SMR mechanism.

Fig. 15 shows the relation between AMOR and the number of nodes. Consider the
two periods of time, T1 and T2 in Fig. 15. When the number of nodes increases from 700
to 800 in period T1, the system is not stable and AMOR increases rapidly. In period T2,
the number of nodes is fixed at 800 and AMOR quickly drops to a stable lower bound.
We also found that the lower bound of AMOR in the stable period is approximately O(N),
where N is the number of nodes. This property illustrates that a search request generates
much fewer redundant messages.

AMOR

time (second)

T2

T1

number of nodes

0

30000

35000

40000

45000

50000

0 1000 2000 3000 4000 5000 6000 7000
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

20000

15000

AMOR (step)

Number of nodes
AMOR (average)

10000

5000

25000

number of nodes

flooding messages

0

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

0 200 400 600 800 1000 1200 1400 1600

with two stages prevention, NBLB=60

without two stages prevention, NBLB=20
with two stages prevention, NBLB=20
with two stages prevention, NBLB=40

2e+08

4e+08

Fig. 15. Relationship between AMOR and

node size.
Fig. 16. AMOR with and without second

stage prevention.

Fig. 16 shows the relation between the number of flooding messages with and with-

out two stages prevention for different system size N. Each node originates one request in
20 to 60 seconds, TTL of each request is ∞ HOPs, and each node maintains 40 neighbors
(NBLB is 20). The result shows that although the number of flooding messages is not
O(N), the reduction in messages by two stages prevention is still very significant. An-
other factor that influences the performance of the SMR mechanism is the value of NBLB.
The result also shows that NBLB of 40 can reduce more redundant flooding messages
than when NBLB is 20.

On the other hand, the dynamic variation of the system also affects AMOR. The
third part of our experiment initiates a system with 300 nodes. After the system is stable,
it enters four dynamic variation phases. In each phase, one node leaves and one new node
joins the system simultaneously every PT seconds, where PT = 4, 2, 1, and 0.5 for each
phase. Fig. 17 shows that AMOR increases when PT decreases, especially when PT
changes from 4 to 2 seconds and from 2 to 1 second. However, the increase becomes
smaller and smaller. The result shows that the SMR mechanism adapts well to the dy-
namic variation of the system.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1193

PT=4

time (second)

100

200

300

AMOR

PT=2 PT=1 PT=0.5

0
400 600 800 1000 1200 1400 16000

1400

1200

1000

number of nodes
AMOR

800

number of nodes

600

400

200

200

Fig. 17. Relation between AMOR and dynamic variation of a system.

5. NETWORK CONNECTEDNESS

The performance of searching on a P2P system depends heavily on the connected-
ness of the system. If the system is split into N components, the search hit ratio drops to
1/N in the worst case because a search request can only reach nodes of a single compo-
nent. Since failures of network connections between nodes are inevitable, splitting of the
system is always possible. We propose the RAL mechanism, which represents ring-around-
leader, to reconnect components if split occur.

Research [7] shows that the unstructured P2P networks are strong and robust on
network connectedness, but the property is not necessarily true for our DSE system. The
NCC mechanism controls connections of nodes so that the whole system is connected
clusters. In Gnutella some nodes play important roles in making network connectedness
strong because they maintain a large number of connections to other nodes. These con-
nections also provide shortcuts for message delivery. Also, connections of nodes in
Gnutella seldom change. In DSE, each node maintains roughly the same number of con-
nections, and moreover, connections change frequently for better system topology so that
the SMR mechanism reduces redundant messages and promotes message locality. There-
fore, the RAL mechanism is necessary for occasional splits of the system.

5.1 The Ring-Around-Leader Mechanism

5.1.1 Basic concept

The RAL mechanism uses message exchange among nodes to detect if a system has
been split. The basic idea of RAL is simple. Each node in a connected component obtains
the same unique tag. If the system is split into several disconnected components, each
node in different components obtains different tags.

In the DSE system each node maintains two important pieces of information, the
NID which identify each node and one called the CID (component identification) which
is the largest NID that the node knows in the same component. The format of CID is the
largest NID attached with a timestamp and the address of a special node called the leader
of the component. Ideally, every node shares the same CID if the whole system is a sin-
gle connected component.

CHING-WEI HUANG AND WUU YANG

1194

The CID that each node has can be updated by message flooding or periodic mes-
sage exchange between each pair of connected nodes. For the method of message ex-
change, the CID is obtained by mutual election of nodes. When a node X joins a DSE
system, the initial value of its CID, denoted CID(X), is set to its own NID, denoted
NID(X), attached with the current timestamp and its address. For each pair of connected
nodes A and B, CID(A) is compared to CID(B). If CID(A) is larger than CID(B), then B
assign its CID to CID(A). Suppose that the DSE system is connected, CIDs of each node
will be the largest NID of all nodes (attached with some timestamp and address) after
several message exchanges. The time to generate the largest CID for every node is
O(logcN) where N is the number of nodes and C is the average number of neighbors of
each node. The node that provides the largest CID is called the leader of the component.

Besides message exchange, another way to generate a global CID is by message
flooding. For a given node which prepares to originate a request message, the CID of the
node is put in the header of the message before it is sent out. Via the flooding of the mes-
sage, the CID can be spread quickly and compared globally with CIDs of other nodes.

The CID is periodically attached with the latest timestamp by a node only when the
node finds the CID (without timestamp and address) is equal to its NID. In other words, a
node H is attached with its CID with current timestamp only when node H believes that it
is the leader of the component. The timestamp of a CID is used to check if the CID is out
of date. If a node finds the timestamp of its CID has not been updated in a long time, it is
probable that either the leader (for that CID) leaves/fails or the system is split. Any node
that finds its CID is out of date will treat itself as the new leader of the component,
which means that it assigns its CID to be its NID attached with current timestamp and
its address.

On the other hand, each node periodically checks if it is the leader. If it is it imme-
diately informs all of its neighbors to build a ring connection around it (the leader). The
ring assures the connectedness of the component when the leader fails or leaves the
system.

Leader

H1

H3

H4 H5

H6

H7

H8

H9

H10H2

H11

(ID43928,ID98290)

(ID11998,ID98290)

(ID47653,ID98290)

(ID12048,ID98290)

(ID66501,ID98290)

(ID44989,ID98290)

(ID85668,ID98290)

(ID20009,ID98290)

(ID43930,ID98290)

(ID10380,ID98290)

(ID98290,ID98290)

Existed connections

New connections after the ring {H2, H3, H4, H6, H7} was built
Fig. 18. An example for RAL: node H5 is the leader of the component.

Consider the example in Fig. 18 where each node is annotated with its (NID, CID)
pair. As can be seen, all nodes form a single connected component {H1, H2, H3, H4, H5,
H6, H7, H8, H9, H10, H11}. Node H8 has NID “ID44989” and CID “ID98290”. Node H5

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1195

has the same CID and NID value, “ID98290”, which means that H5 treats itself as the
leader of the component, and hence it informs all of its neighbors to form a ring connec-
tion {H2, H3, H4, H6, H7}.

5.1.2 Split recovery

Since the whole system is build based on connections between nodes, any discon-
nection between nodes may split the system. Given a node which has just failed, the RAL
mechanism considers two possible cases for it:

Case 1: The node is not the leader of the component.
If the failure of the node does not split the system, then the CID is still updated cor-

rectly and system works as usual. Conversely, if the failure of the node does split the
system, there must exist one node which first detects that the CID is out of date. The
node then tries to connect to the leader of the component (by using the address attached
with the CID) so that the split components can be rejoined.

In the example of Fig. 18, the failure of node H7 splits the system into two compo-
nents. No node in the component {H8, H9, H10, H11} will receive the CID with updated
timestamp from the leader H5. The CIDs of nodes H8, H9, H10 and H11 will eventually
expire. Any one of them, say H9, which first discovers that its CID expires will attempt to
contact the leader H5. Before the actual contact to H5, H9 first queries its neighbors H8,
H10 and H11 to see whether any of them has a connection to H5. If so, H9 drops the con-
nection attempt. Otherwise, H9 builds a connection to H5 so that two split components
can rejoined.

Case 2: The node is the leader of the component.
The failure of the leader of a component will never cause splitting of the component

because the leader’s neighbors have formed a ring connection. This guarantees that the
component remains connected even if the leader fails or leaves. In the example in Fig. 19
where the leader H5 has failed, the ring around H5, {H2, H3, H4, H6, H7}, will prevent the
component from being split. After node H5 fails or leaves, nodes in the ring around H5
will find CID “ID98290” eventually expires and replace their CIDs with their own NIDs.
After several message exchanges, a new leader H3 will be elected with the new CID
“ID85668”.

(ID43930,ID85668)

H1

H3

H4

H6

H7

H8

H9

H10H2

H11

(ID11998,ID85668)

(ID66501,ID85668)(ID10380,ID85668)

(ID47653,ID85668)

(ID20009,ID85668)

(ID43928,ID85668) (ID44989,ID85668)

(ID12048,ID85668)

(ID85668,ID85668)
Leader

Fig. 19. The old leader fails and a new leader H3 forms a ring {H1, H2, H4}.

CHING-WEI HUANG AND WUU YANG

1196

The RAL mechanism elects a leader of components based on message exchanges
between nodes. It is possible that temporary, inconsistent leaders may exist in the system.
If the system is connected, there will be only one leader after several message exchanges.
If the system is split, one of these inconsistent leaders will be a bridge to connect split
components. Then, there will be one leader again.

The RAL algorithm can recover the split system from single node failure. However,
it can not handle massive and simultaneous failures which affect the leader and its ring.
In the example of Fig. 18, if nodes {H2, H3, H4, H5, H6, H7} all fail simultaneously, the
system splits and can not be recovered by the RAL mechanism. The case of massive and
simultaneous failures of nodes is not considered in the RAL mechanism.

Another related concern for the RAL mechanism is that it has to be deployed in the
system from the very beginning. If some nodes, for some reason, delay to perform the
RAL mechanism after they join the system, the system may risk being split and can not
be recovered.

In handling the above two situations that RAL can not handle, navigators play im-
portant roles. Suppose some navigators are located in different components, then a newly
joined node may have a chance to rejoin some components when it connects to all navi-
gators simultaneously. How to allocate navigators so that they can distribute uniformly
over all nodes will be our future work on DSE.

5.1.3 Lazy update

The original RAL mechanism protects the connectedness of the system based on
message exchanges of component identification between nodes. Suppose each node
broadcasts its CID to its neighbors every T seconds and each node maintains NBLB + 20
neighbors. For a given system with N nodes, the total number of exchanged messages in
a day is N * (NBLB + 20) * 86400/T. Such a tremendous bandwidth cost is not acceptable
for a real P2P system.

We use a method called lazy-update to reduce the required bandwidth of the RAL
mechanism. The lazy-update method includes two rules: (a) duplicated message ex-
changes are avoided, and (b) the leader of a component spreads its CID by message
flooding instead of message exchange. Rule (a) eliminates duplicated CID exchanges
between nodes. Each node remembers the last CID message sent to it neighbors. Any
duplicated exchange message to the same neighbor will be discarded. Rule (b) eliminates
tremendous bandwidth consumption from the message exchange and speeds up CID
spreading by message flooding. The flooding of CID message makes CID synchroniza-
tion faster so that inconsistent CIDs will be reduced and unnecessary message exchanges
can be eliminated too.

Given an N node system, we now analysis the bandwidth cost. If the system is stable
and no new nodes join the system, the bandwidth cost comes only from message flooding
by the leader of the component. Since each request generates at least O(N) flooding mes-
sages (discussed in section 4.3), the number of flooding messages generated in a day is at
least O(N) * 86400/T assuming the leader triggers one request every T seconds.

When a new node joins the system, it takes O(logN) moves to the closest cluster
(i.e., with closest neighbors). Suppose it meets NBLB + 20 new neighbors at each move

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1197

and the average number of message exchanges it handles (performed by its neighbors or
itself) at each move is K, there are O(logN) * (NBLB + 20) * K exchanged messages that
it sends or receives. Therefore, we can estimate the bandwidth cost of message exchange
for the joining of a new node. If the new node will be the new leader of the system,
O(logN) * (NBLB + 20) * K exchanged messages are generated before it becomes a
leader. After that, it performs message flooding regularly to spread its CID.

With lazy-update, the RAL mechanism generates much fewer redundant exchange
messages. Moreover, only the leader of the component and newly joined nodes trigger
actions to generate messages (message flooding and message exchanges).

5.2 Experiment Verification

The RAL mechanism has the ability to reconnect a split system. We initially set up a
connected system of 800 nodes. Then nodes are removed one by one. By observing the
number of distinct CIDs (ignoring the attached timestamps and the addresses) with and
without the RAL mechanism, we verify the performance of RAL. Notice that a system of
K components leads to K distinct CIDs.

The experiment consists of four stages. In the first stage, 800 nodes are generated
and join the system one by one. In the second stage, the whole system runs into a stable
status. In the meanwhile, we begin to record the number of distinct CIDs. From the be-
ginning of the third stage, nodes are randomly removed from the system. At the end of
the third stage, 90% of the nodes (i.e, 720 nodes) are removed. The system runs into an-
other stable status from the beginning of the fourth stage.

Fig. 20 shows the number of distinct CIDs. Without the RAL mechanism, the num-
ber of distinct CIDs remains high from the beginning of the second stage to the end of
the fourth stage. The average number of distinct CIDs is 5.74, which means that the sys-
tem is split into 5.74 components on average. With the RAL mechanism, the number of
distinct CIDs remains at one from the beginning of stage 2 to the end of stage 4. The av-
erage number of components is 1.48 when the RAL mechanism is enabled.

#CID=3

stage 2stage 1 stage 3

number of nodesnumber of CIDs

800

80

time (second)

#CID=1

stage 4

0

0 100 200 300 400 500 600 700 800

number of nodes

number of CIDs with RAIN
number of CIDs without RAIN

12

10

8

6

4

2

14

Fig. 20. The number of components (distinct CIDs) in a dynamic system.

CHING-WEI HUANG AND WUU YANG

1198

The dynamic variation of the system affects the performance of RAL. In the exam-
ple of Fig. 20, there are two types of dynamic variations, the disconnections come from
the NCC mechanism and failures of nodes in stage 3. These dynamic variations make the
number of distinct CIDs pulsated during the period when the RAL mechanism is enabled.
When the system runs into a stable status (the number of nodes is fixed and the neighbors
of every node remain mostly unchanged), the pulsation of the number of distinct CIDs
will stop and the number of distinct CIDs reverts gradually to one.

The last important observation is the relationship between the failure of nodes and
the average number of HOPs per request. Two well-known P2P projects, Gnutella and
Freenet, both suffer from the failure of nodes. Research reported in [6] shows that when
the number of failed nodes exceeds a certain percentage (40% in the experiment), HO-
POR grows rapidly fast in both Gnutella and Freenet. Fig. 21 shows that with the coop-
eration of the NCC and RAL mechanisms, HOPOR is always below a small constant
upper bound.

#CID=1

stage 4stage 2stage 1

number of CIDs

800

80

number of nodes

time (second)

stage 3

0

14

0 100 200 300 400 500 600 700 800

10

number of CIDs
number of nodes

HOPOR

8

6

4

2

12

Fig. 21. Connectedness and HOPS in a dynamic system.

6. RELATED WORK

P2P systems can be classified as either structured systems or unstructured systems.
Chord [11], CAN [6], P-Grid [8], Pastry [10], and Tapestry [9], which use DHT [4] for
object placement and searching, belongs to structured P2P systems. Gnutella [15], on the
other hand, search for objects by message flooding. Kazaa, another well-known P2P sys-
tem [16], adopts a hierarchical structure. Powerful nodes are elected to be so called su-
pernodes which connect several clients (normal nodes) and search objects for them. Al-
though DHT based P2P systems perform excellently in searching for objects, other re-
lated problems should be addressed and solved. Complex search (partial query), for ex-
ample, is still difficult in a DHT network. Also, maintenance cost is another issue for any
P2P system with frequent joining and cutting of nodes [17].

For unstructured P2P systems, some methods are proposed to reduce the messages
originated from search requests. Research in [18] adopts a random walk to select some
neighbors instead of all neighbors to send the request. Other research [19] use cache to
let the search results could to be re-used by later search requests.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1199

Research in [21] provides a cluster-based architecture which is similar to our re-
search. However, neither Internet topology nor redundant message by message flooding
are considered in that research. Another problem is that the method in [21] needs a cen-
tral server to perform the clustering of nodes, while a central sever causes a bottleneck
for the system. Another paper [22] also adopts a cluster structure for its system, but the
clustering of nodes depends on similar properties of nodes. The Internet topology and
redundant message flooding are not considered.

The DSE system is an Internet topology-matching network for promoting message
locality. Researches reported in [23-25] provide similar mechanisms for building topol-
ogy matching systems. One major difference between them and DSE is that they use a
measurement based method to evaluate the distance between nodes. Although they claim
the measurement based method provides an accurate value of the distance between nodes,
the method can not represent accurate communication cost between nodes. For example,
a traffic jam on the route between two nodes may slow down their communication, how-
ever, the communication costs between them may be very cheap. Conversely, fast com-
munication may exist between two nodes which are located in different backbones. Also,
the researchers try to make the system a multicast tree to reduce unnecessary traffic by
cutting some connections across different AS’s (according to their distances). Such a
method takes risks splitting the system and, hence, hurt the performance of the system.
For our system, DSE makes the system a set of connected clusters. The SMR mechanism
utilizes the benefit of clustering to reduce redundant flooding, and the RAL mechanism
recovers the system if splits occur due to broken connections caused by the SMR mecha-
nism or failures of nodes.

Another two related researches [26, 27] provide different methods for topology
matching overlay and message routing. Research in [26] uses measured distance to some
default landmark hosts to group nodes into bins. Nodes in the same bin are likely to be in
the same AS. A DHT-based overlay network can be constructed on such structures to
reduce message routing latency. Research [27], on the other hand, uses AS-level topology
extracted from BGP reports [28] or landmark numbering (similar to [26]) to build an aux-
iliary expressway network, over a normal DHT based overlay network. The expressway
network is a set of powerful nodes which provide better connectivity, forwarding capac-
ity, and availability. Moreover, these expressway nodes are clustered based on the above
two methods to match the physical network topology. In summary, the landmark meas-
urement method of [26, 27] to group nodes depends highly on availability of landmark
hosts. The number of landmark hosts and how they distribute over the Internet deter-
mines the precise of the method. Moreover, scalability is another problem because all
nodes connect to landmark hosts for their topology-aware numbering. Our DSE system
adopts HIP address format which is similar to BGP method except that DSE considers
ISPID instead of ASID. The ISPID method provides three benefits. First, each ISP usu-
ally provides high bandwidth pipelines between its AS’s. Second, the IP address ranges
of each ISP are usually available to the public. Third, the mappings of IP addresses and
ISPIDs in DSE are fulfilled by its own built-in message flooding method. No other addi-
tional mechanism needs to publish the mappings.

For redundant message reduction, researches [29, 30] proposed their methods for
unstructured P2P networks. Research [29] built an auxiliary tree-like sub-overlay called
FloodNet within the unstructured P2P network such as Gnutella to reduce redundant

CHING-WEI HUANG AND WUU YANG

1200

flooding messages. The research is motivated by an observation that most redundant
messages are generated at their last few HOPs, but the flooding coverage expands much
faster within their first few HOPs. With a tree-like overlay, each message travels by pure
flooding within the low HOPs and switch to the sub-overlay for the remaining HOPs.
The simulation shows that such a design reduces redundant messages but retains the
same message propagation scope as that of standard floodings. One major difference
between LightFlood and DSE is that the latter clusters the system topology so that most
redundant messages on the same logical connections can be prevented, but the former
switches the flooding of each message at the last few HOPs to FloodNet so that the mes-
sage coverage expends to the same scope but with much fewer redundant messages. No-
tice that LightFlood does not change the original system topology. On the other hand, [30]
proposed a peer-to-peer lookup service called Yappers over an arbitrary topology. Yap-
pers groups nearby nodes to small DHTs and provides a search mechanism to traverse all
the small DHTs. Such a hybrid design reduces the nodes contacted for a lookup request
and, hence, reduces redundant messages. One major difference between Yappers and
DSE is that Yappers focuses on key-value lookup which can be solved by DHT, while
DSE concerns the reduction of redundant messages for flooding.

In comparison to well-known P2P network Kazaa, DSE provides different proper-
ties. Both Kazaa and DSE adopt a hierarchical structure, but the self-organization mecha-
nism of Kazaa elects so called supernodes which maintain many more connections to
other normal nodes. Also, the search for files is handled by supernodes. In other words,
each supernode is a small server to serve other normal nodes. The election of supernodes
is based on the bandwidth and computing capacity of nodes. Powerful nodes get a higher
priority to be supernodes. In DSE, every node is homogeneous. The hierarchical cluster
structure is for better message routing and higher message locality. Each search request
reaches every node in the DSE system to search for matched objects on local nodes. On
the other hand, the election of supernodes in Kazaa requires precise measurements of the
bandwidth and computing power of hosts. Frequent joins and leaves of nodes may hurt
the availability of supernodes and the function they provide. These problems do not
bother the DSE system because all nodes are homogeneous, and there are no nodes in
DSE to become bottlenecks of the system.

The supernode structure indeed reduces traffic significantly because only super-
nodes perform search requests for their clients. However, the SMR mechanism in DSE
utilizes the cluster structure of nodes to reduce by up to 87.27% of the redundant traffic
in message flooding.

7. CONCLUSION

The DSE system is a fully distributed and self-organizing P2P system. Our research
addresses the inefficient communication in unstructured P2P systems, such as Gnutella,
to propose NCC, SMR, and RAL mechanisms to improve the efficiency of communica-
tion. The NCC mechanism re-constructs the topology of the system as a clustered struc-
ture. The clustering of nodes depends on the logical distance between nodes. Compared
to Gnutella, the NCC mechanism significantly reduces the number of messages which
travel across AS’s. On the other hand, redundant message is a serious problem of the

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1201

message flooding in P2P systems. Based on the clustering structure of the system, the
SMR mechanism significantly reduces redundant messages in comparison to unstruc-
tured P2P systems in which forwarding of redundant flooding messages is not fully con-
sidered. The last issue that we consider is the connectedness of the system. A server less
P2P system organizes the whole system in a fully distributed way, hence splitting system
is always possible. We proposed the RAL mechanism which handles the recovery of split
components based on message exchanges between nodes. With the RAL mechanism,
flooding messages can be guaranteed to reach every node in the system if necessary.

With the cooperation of the NCC, SMR and RAL mechanisms, the communication
cost in P2P systems can be greatly reduced. Low-cost communication makes P2P sys-
tems more scalable and perform better.

REFERENCES

1. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, “Improving data access in
P2P systems,” IEEE Internet Computing, Vol. 6, 2002, pp. 58-67.

2. A. Oram, Peer-to-Peer Harnessing the Power of Disruptive Technologies, O’Reilly,
U.S.A., 2001.

3. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature, Vol. 393, 1998, pp. 440-442.

4. S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for DHTs: some open
questions,” in Proceedings of the 1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2002, pp. 45-52.

5. M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella network: properties
of large-scale peer-to-peer systems and implications for system design,” IEEE Inter-
net Computing Journal, Vol. 6, 2002, pp. 50-57.

6. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalablecontent-addressable
network,” in Proceedings of SIGCOMM, 2001, pp. 161-172.

7. S. Saroliu, P. Gummadi, and S. Gribble, “A measurement study of peer-to-peer file
sharing systems,” in Proceedings of the Multimedia Computing and Networking
(MMCN), 2002, pp. 156-170.

8. K. Aberer, “P-grid: a self-organizing access structure for P2P information systems,”
in Proceedings of the 6th International Conference on Cooperative Information Sys-
tems (CoopIS), 2001, pp. 179-194.

9. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: an infrastructure for fault-
tolerant wide-area location and routing,” Technical Report No. UCB/CSD-01-1141,
Computer Science Division, University of California, Berkeley, 2001.

10. A. Rowstron and P. Druschel, “Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems,” in Proceedings of the International
Conference on Distributed Systems Platforms, LNCS 2218, 2001, pp. 329-350.

11. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: a
scalable peer-to-peer lookup service for internet applications,” Technical Report No.
TR-819, MIT, 2001.

12. RFC 1305, Network Time Protocol, http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc
1305.html.

CHING-WEI HUANG AND WUU YANG

1202

13. RFC 1772, Autonomous System, http://www.faqs.org/rfcs/rfc1772.html.
14. Gnutella, http://gnutella.wego.com/.
15. Apia: Advanced P2P infrastructure and architecture, http://apia.peerlab.net/.
16. Kazaa, http://www.kazaa.com/.
17. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making

Gnutella-like P2P systems scalable,” in Proceedings of the ACM SIGCOMM, 2003,
pp. 407-418.

18. C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstruc-
tured peer-to-peer networks,” in Proceedings of the 16th Annual ACM International
Conference on Supercomputing, 2002, pp. 84-95.

19. N. Ambastha, I. Beak, S. Gokhale, and A. Mohr, “A cache-based resource location
approach for unstructured P2P network architectures,” Department of Computer Sci-
ence, Stony Brook University, New York, 2003.

20. TWNIC IP Address Distribution List, http://rms.twnic.net.tw/twnic/User/Member/
Search/main7.jsp?Order=ORG.ID.

21. A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-based
scalable network services,” in Proceedings of the 16th ACM Symposium on Operat-
ing System Principles, 1997, pp. 78-91.

22. C. H. Ng and K. C. Sia, “Peer clustering and firework query model,” in Poster Pro-
ceedings of the 11th International World Wide Web Conference, 2002.

23. Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, “A distributed approach to solving overlay
mismatching problem,” in Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS), 2004, pp. 132-139.

24. Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware topology match-
ing in P2P systems,” in Proceedings of the IEEE INFOCOM, Vol. 4, 2004, pp.
2220-2230.

25. Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, “AOTO: adaptive overlay topology opti-
mization in unstructured P2P systems,” in Proceedings of the IEEE GLOBECOM,
Vol 7, 2003, pp. 4186-4190.

26. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay
construction and server selection,” in Proceedings of the IEEE INFOCOM, 2002, pp.
1190-1199.

27. Z. Xu, M. Mahalingam, and M. Karlsson, “Turning heterogeneity into an advantage
in overlay routing,” in Proceedings of the IEEE INFOCOM, 2003, pp. 1499-1509.

28. BGP Routing Table Reports, http://bgp.potaroo.net/.
29. S. Jiang, L. Guo, and X. Zhang, “LightFlood: an efficient flooding scheme for file

search in unstructured peer-to peer systems,” in Proceedings of the International
Conference on Parallel Processing, 2003, pp. 627-635.

30. O. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: a peer-to-peer lookup ser-
vice over arbitrary topology,” in Proceedings of the IEEE INFOCOM, Vol. 2, 2003,
pp. 1250-1260.

TO CLUSTER P2P SYSTEM STRUCTURE FOR BETTER COMMUNICATION

1203

Ching-Wei Huang (黃經緯) received his B.S. degree in
Mathematics from National Tsing Hua University, Taiwan, in
1994 and the M.S. degree in Computer Science from National
Chiao Tung University, Taiwain, in 1997. Currently he is doing
his Ph.D degree in National Chiao Tung University. His research
interests are distributed computing, peer-to-peer systems, net-
work security, and XML processing.

Wuu Yang (楊武) received his B.S. degree in Computer
Science from National Taiwan University in 1982 and the M.S.
and Ph.D. degrees in Computer Science from University of Wis-
consin at Madison in 1987 and 1990, respectively. Currently he is
a Professor in the National Chiao Tung University, Taiwan,
R.O.C. Dr. Yang’s current research interests include Java and
network security, programming languages and compilers, and
attribute grammars. He is also very interested in the study of hu-
man languages, and human intelligence.

