
Dynamic Provisioning of a Parallel Workflow Management System

Ching-Hong Tsai
Department of Computer
Science, National Chiao-
Tung University, Taiwan
chtsai@cs.nctu.edu.tw

Kuo-Chan Huang
Department of Computer and

Information Science,
National Taichung
University, Taiwan

kchuang@mail.ntcu.edu.tw

Feng-Jian Wang
Department of Computer
Science, National Chiao-
Tung University, Taiwan
fjwang@cs.nctu.edu.tw

Abstract

Most workflow management systems nowadays
are based on centralized client/server architecture.
Under this architecture, the response time of request
might increase unacceptably when the number of users
who login to the system increase quickly and a large
amount of requests are sent to the centralized server
within a short time period. Parallel server architecture
could help to resolve the performance bottleneck of a
single server. However, a static parallel architecture
with a fixed number of servers is not efficient at
resource utilization because the numbers of users and
their requests usually change time by time, especially
for big and fast changes. This paper presents an
effective architecture of dynamic resource-
provisioning and then the implementation for a
parallel workflow management system. There are a
series of experiments conducted and the results
indicate that it is an effective approach to handling the
time-varying workloads in real world WfMS.

1. Introduction

To fulfill the ever growing needs of business

process automation, workflow management systems
(WfMS) have been broadly adopted by many
enterprises to 1) assign the required human resources
and artifacts for executing each task, 2) control the
business flows of tasks, and 3) monitor the executions
of tasks, effectively. Most workflow management
systems work based on client-server architecture,
where each system provides one single workflow
engine and other tools such as database system to
support the development and running of a workflow
application. For example, Agentflow, a well-known
JAVA-based WfMS developed by our laboratory and

then Flowring co. [1] in Taiwan, works with this
structure.

Obviously, the response time under such
architecture is bounded by the computing power of a
centralized server engine and the capacity of the
database at least. The increment of response time might
not be tolerable when there are too many requests sent
to the server within a short time period, i.e. the single
centralized server becomes the performance
bottleneck. On the other hand, a fixed number of
servers with a static parallel architecture might not be
effective as expected because a big amount of changes
of users, incoming requests, and the corresponding
execution time might occur in a sudden in a real world
WfMS.

This paper presents a grid architecture for a series
of server engines to resolve the performance bottleneck
of a WfMS, where each component WfMS runs with a
single centralized server engine, such as Agentflow.
The proposed grid architecture is focused on the utility
computing aspect of grid computing [6,7,8,12], which
is similar to the recently emerging concept of cloud
computing. The computing resources in the grid are
stable without frequent joining or leaving activities.
Dynamic provisioning capabilities are the major
concern for fulfilling the time-varying resource
requirements of individual applications. We made an
implementation of the proposed architecture and
conducted a series of evaluation experiments. The
experimental results indicate that our architecture is
effective for handling the time-varying workloads in
real world workflow management systems.

2. Background

The Agentflow system [1] is a JAVA-based WfMS

with centralized client-server architecture. There are
three main components in Agentflow:

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.116

566

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.116

566

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.116

566

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.116

566

• Process Definition Environment (PDE). This is a
graphical editor for modeling various views of a
business, including process view, artifact view and
organization view. Different views are modeled by
separate tools in PDE, e.g. an organization
designer for constructing the organization view, an
e-form designer for designing the artifact view,
and a process designer for modeling process view.

• Flow Engine (also called PASE server). This is a
workflow enactment environment, which drives
the flow of works and is also responsible for
process enacting, control, management, and
monitoring.

• Agenda. This is a client-side tool. Users can use it
to browse their own task lists, do the tasks
assigned to them, initiate processes, and monitor
the states of the flow.

The database system inside Agentflow contains two

repositories, process definition repository and runtime
repository. The process definition repository stores
process definitions and the runtime repository keeps all
instance data during workflow execution. Agentflow
provides a JAVA-based application programming
interface, Workflow Common Interface (WFCI), which
allows direct interactions with the PASE server. For
example, WebAgenda is a web-based agenda which
communicates with the PASE server through the
WFCI.

Some research projects deal with supporting
computational workflows on grid systems. These
systems manage the job dependencies and control the
flows of jobs in a gird environment and are sometimes
called grid workflow systems. These grid workflow
system include GridAnt [11], Triana [13], XCAT [10],
GridFlow [4], and Kepler [2]. Most of these grid
workflow systems are focused on the support of
scientific workflow applications. In this paper, we
develop a dynamic resource provisioning architecture
for supporting business workflow applications.

3. Scalable workflow computing with

dynamic resource provisioning

This section extends Agentflow to a scalable

workflow computing platform with dynamic resource
provisioning. The scalable platform produces an
acceptable and stable response time for requests under
a wide range of request workloads. Here, we first
present the system architecture and then the strategies
for achieving on-demand resource provisioning.

3.1. PASE grid architecture

During the execution of a typical WfMS,
Agentflow, there is a problem found. The request
response time increases greatly when the requests
arrive at one Agentflow at a high rate. It indicates that
there is a bottleneck for Agentflow system. Based on
the review of Agentflow system in above section, the
single centralized server for the platform might be the
source for the bottleneck. Therefore, we propose a
scalable workflow computing platform, called PASE
grid, which equips Agentflow with dynamic resource
provisioning capability. The PASE grid architecture is
shown in Figure 1 and its constituent components will
be elaborated in the following.

Figure1. PASE grid architecture

A PASE resource contains both hardware and

software resources. The hardware resources are
typically computers like PCs, notebooks, or
workstations on which the software resources can run.
The software resources include PASE servers and
databases used to store runtime data and replicas of
process definitions. The PASE server and database of a
PASE resource can run on the same computer or on
different machines. Each PASE resource is managed
by one PASE information server (PIS), and it can be
used by only one PASE broker at any instant.

Process definition repository (PDR) contains the
business process definitions designed in process
definition editor (PDE). When a PASE broker wants to
add a new PASE resource, the PIS will replicate the
corresponding content of PDR into the database of the
PASE resource according to the incoming request. In
each domain, there might be more than one PDR, and
each PDR can be accessed by more than one PASE
resource.

Global runtime repository (GRTR) contains the
workflow instances which are completely executed for
future references. When a PASE broker wants to

567567567567

remove a PASE resource, it will first move the PASE
resource’s runtime data into GRTR. There is only one
GRTR in a PASE grid, managed by the PASE broker.

PASE information server (PIS) plays a role similar
to the MCAT in Storage Resource Broker [3] or Grid
Information Service (GIS) in Globus Tookit [9],
maintaining necessary information about a domain,
e.g., the information for all the PASE resources belong
to the domain. Furthermore, it is responsible for
replicating data from PDR into new PASE resources
and clearing the database of removed PASE resources.

The state of a PASE resource can be ready,
reserved, running, or blocking. A PASE resource is
ready when the database is already created and the
PASE server is initiated. The reserved state indicates
that the PASE resource is reserved by some PASE
broker, but not utilized by the PASE broker yet. The
running state indicates that the PASE broker is using
the PASE resource to serve incoming requests. The
blocking state indicates the failure of a PASE resource.

A PASE broker coordinates PIS’s, PASE resources,
PDR’s, and GRTR. The architecture of a PASE broker
is illustrated in Figure 2.

Figure. 2. PASE broker architecture

PISManager connects to and manages all PIS’s. A

PISC in Figure 2 is a connection from the PASE broker
to a PIS. PISManager periodically retrieves and caches
the information maintained in PIS’s. Initially, the
administrator can select the PASE resources and the
PDR’s he/she wants to use, then PISManager sends
replication request to all PIS’s for replicating process
definitions into their PASE resources. PDRManager
connects to and manages all PDR’s. A PDRC in Figure
2 is a connection from the PASE broker to a PDR. All
the clients’ requests of getting the process definition
related data are handled by PDRManager.
GRTRManager backups the completed workflow
instances inside the PASE resource which is to be
removed by the PASE broker.

WFCIPoolManager creates AbstractWFCI’s
(AW’s) and connects them to the corresponding PASE
resources with the JAVA RMI mechanism. Each AW
wraps a WFCI connection and records some metadata
about the connection, such as a list of processes and a
list of member records. In addition, AW is defined with
three metrics below to measure the workload for the
reference of job dispatching.

WFCIPoolManager manages three pools: running
pool, suspending pool, and blocking pool,
corresponding to AW’s of different states. The running
pool contains the AW’s providing services currently.
The suspending pool contains the AW’s which would
not take any new process enactment requests but are
still handling some unfinished workflow instances
already running on them. The blocking pool contains
the AW’s which are at some failure states founded by
the PASE broker.

PerformanceMonitor (PM) monitors the
performance of the overall system based on the one or
more load metrics specified by the administrator.
These metrics include the number of instances, the
average request arrival rate, and the average request
response time. When the system is overloaded,
PerformanceMonitor will inform WFCIPoolManager
to find out more usable PASE resources from the PIS’s
in use under the order defined in PISManager, and
create the connections to them. If there are no new
PASE resources found, WFCIPoolManager replies an
alert to the administrator and a new PASE resource is
added manually. Moreover, when the system has been
under-utilized in a (pre-)fixed time period, it also
informs WFCIPoolManager to remove some AW’s.

When a client sends a process enactment request
(PER) to PASEDispatcher, it will select an appropriate
PASE resource to instantiate the corresponding
workflow definition according to a dynamic request
dispatching algorithm which will be described in detail
later. For efficiency of data sharing, all the tasks in a
workflow will be allocated to the same PASE resource
where the workflow is instantiated. Therefore, clients
can send their requests except PER’s directly to the
specific PASE resources according to the global ID’s
of the tasks they want to manipulate. This arrangement
can greatly reduce the burden of PASEDispatcher.

The following describes how clients can determine
the destination PASE resources of their task
manipulation requests. When a process is instantiated
or a task is created on a PASE resource, the PASE
resource generates a local ID for the process instance
or the task. The local ID is unique within the PASE
resource. However, the tasks and process instances on
different PASE resources might have the same value
for their local ID’s. Therefore, a global ID is required
to provide the uniqueness within the entire PASE grid.

568568568568

The global ID is also used for revealing the
information of the PASE resource address. The global
ID is formed by appending the corresponding PASE
resource address to the local ID. An example of the
mapping of local ID’s to global ID’s is shown in Table
1.

Each PASE resource performs necessary
conversions between local and global ID’s when it
sends or receives process or task related information.
Therefore, based on the global ID of the task to be
manipulated, a client can find and send out its request
to the PASE resource.

3.2. On-demand resource provisioning

strategies

This section discusses the resource provisioning

strategies used in the PASE grid. Among the various
kinds of user requests, task manipulation requests
(TMRs) and process enactment requests (PERs) can
benefit from this PASE grid architecture. On the other
hand, the data collection requests (DCRs) would need
a little bit longer time than those in the original
centralized architecture.

PER is used to create a workflow instance
according to a predefined process definition. When a
PER occurs, PASEDispatcher selects a PASE resource
for processing the request according to the following
dynamic request-dispatching algorithm. For each
PASE resource in the running pool, PASEDispatcher
computes the additional workload that it can still
accommodate by subtracting its current workload from
its most sustainable workload specified by the
administrator. The workload can be measured by three
different modes: the number of instances, the average
request arrival rate, and the average request response
time, as described in the previous section. The
maximum workload that a PASE resource can sustain
is also represented in all the three modes. The PASE
resource which can sustain the largest additional
workload is chosen to handle the incoming PER.

DCR is used to retrieve the instance related data or
process-definition related data. A DCR may require
more than one PASE resource to collaboratively
accomplish its request and these PASE resources are
determined by the data to be retrieved. TMR is used to
manipulate a task or a group of tasks. It is sent to the

PASE resource where the corresponding process
instance it belongs to is created.

PerformanceMonitor monitors the performance of
each PASE resource in the PASE grid. It sends an
event to WFCIPoolManager for adding new PASE
resources or withdrawing some existing PASE

resources when the entire PASE grid is overloaded or
under-utilized. PerformanceMonitor checks each PASE
resource in the running pool periodically to see if its
current workload is larger than the maximum or lower
than the minimum workload, where both maximum
and minimum are specified by the administrator. If the
workloads of all PASE resources in the running pool
exceed their maximum, the PASE grid is overloaded.
On the other hand, if the workloads of all PASE
resources in the running pool are lower than their
minimum for a pre-defined time period, the PASE grid
is deemed as under-utilized.

Once all running PASE resources are overloaded,
WFCIPoolManager will try to discover computing
resources outside and set them as available PASE
resources for use. The resource addition is done
gradually in order to reduce variation.
WFCIPoolManager firstly finds a set of PASE
resources from the suspending pool whose
corresponding PDR’s are running and then moves the
PASE resource with the largest workload among them
to the running pool. For each run of PASE resource
addition, WFCIPoolManager is designed to choose the
PASE resource which increments the least computing
power among the resources discovered, and puts it into
the pool. The selection method can save the time for
setting up a new PDR.

On the other hand, when the incoming requests
decrease and the overall system has been under-
utilized, the PASE grid will release a portion of the
PASE resources for use by other demanding PASE
brokers. WFCIPoolManager selects a running PASE
resource and move it to the suspending pool.
Corresponding to the above resource-addition
mechanism, WFCIPoolManager follows a gradual-
shrink policy, i.e., it withdraws the PASE resource
with the least workload processing power in the
running pool.

WFCIPoolManager periodically checks all the
AW’s in the suspending pool. For those AW’s finished
all workflow instances on them, it first informs the
GRTRManager to backup instance data and then asks

Table 1. Mapping between local and global ID’s

Global ID PASE resource address Local ID

Tsk(140.113.210.11:20000)000000000001 140:113.210.11:20000 Tsk000000000001
Proc(140.113.210.21:20000)000012345678 140.113.210.21:20000 Proc000012345678

569569569569

PISManager to clear up the instance data as well as the
process definition data in the PASE resources’
databases. Finally, WFCIPoolManager disconnects
these PASE resources from the PASE broker.

4. Performance evaluation

Based on the PASE grid architecture described in

section 3, we have implemented a prototype system
and conducted a series of experiments for performance
evaluation. We set up a PASE grid consisting of four
PASE resources. All PASE resources will use the same
process definition repository in the experiments.

In the experiments, we explore three different load
metrics for defining the load limit on each PASE
resource, including workflow instance number, request
arrival rate, and average response time. The first two
metrics are workload directed, and the third is
performance directed. Since the load limit should be
directly related to user’s awareness of system
performance, the load limit values for the first two
metrics are dependent on the computing capabilities of
the underlying machines, and the load limit values for
the third metric are consistent on all machines.

The process definitions adopted in the experiments
are real cases obtained from [5], which are used to
construct a department management system in
universities. The department management system
includes five subsystems: 1) the working system for
M.S. students, 2) the working system for Ph.D.
students, 3) bulletin system, 4) department computer &
network center, and 5) laboratories. The services
provided by these subsystems are defined and run on
Agentflow. In the following experiments, we created
1,500 members representing faculties, assistants and
students, who manipulate department management
system to accomplish various sorts of tasks commonly
seen in daily operations of a department.

In this experiment, at first we add only one PASE
resource and configure its corresponding PDR. Later
on, if the incoming requests increase and the system is
overloaded, the PASE broker will automatically add a
new PASE resource to the grid and configure its
corresponding PDR.

In the following experiments, the amounts of
workflow instances range from 50 to 2,500, the request
arrival rate is 0.002 requests/ms, and the average task
service time is 1,000 ms. The requests considered in
the experiments are createProcess(), startTask(),
completeTask(), and getTaskOfCompany(). Four
different experiments are conducted to evaluate the
performances of four different scenarios, including a
single PASE server in the original Agentflow

architecture and the PASE grid architecture with three
different load metrics, respectively.

Figure 3 shows that the maximum average request
response time of the single PASE server architecture is
longer than 100,000 ms, while the maximum average
request response time of the PASE grid architecture is
shorter than 4,500 ms. This result indicates that the
PASE grid architecture proposed in this paper can
effectively maintain an acceptable request response
time under request loads of large variation.

All

0

20000

40000

60000

80000

100000

120000

140000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instance

R
es

po
ns

e
T

im
e(

m
s)

Single PASE

PASE Broker(ins)

Pase Broker(ar)

PASE Broker(rt)

Figure. 3. Average response time of all requests

As seen in the above figure, the arrival-rate mode

and the response time mode in general outperform the
instance mode. The PASE broker with the arrival-rate
mode performs best and delivers a shorter and more
stable average response time than with the other two
modes. However, the performance based on the arrival-
rate mode or the response-time mode could be
influenced by the corresponding buffer sizes set in the
performance monitor. Therefore, the performance
based on these two modes need be studied further in
the future work.

5. Conclusions and future work

This paper presents a dynamic architecture of

resource provisioning and a set of algorithms to
construct a (parallel) workflow management system.
We implemented a system and made a series of
experiments to evaluate this implementation. The
results indicate that the proposed architecture is an
effective approach to handling the time-varying
workloads in real world workflow management
systems. The scalable platform with the capability of
dynamic resource provisioning can provide acceptable
and stable request response time under a wide range of
dynamic request workloads. This is a desirable feature
for modern service-oriented systems which confront
the incoming requests with the amounts of
unpredictable and dynamical change, while being
expected to maintain acceptable and stable response
time.

570570570570

Besides, some works might be worthwhile for
improving the system performance further. For
example, determining an appropriate buffer size for
measuring average response time and request arrival
rate is crucial for accurately representing the system
workload. Further investigations are required on this
issue in order to ensure that the dispatcher can
effectively assign the income requests to appropriate
PASE resources for delivering good and stable runtime
performance. Using history records to help predict
future incoming requests is another promising
approach to enabling the dispatcher for making more
appropriate allocation decisions.

6. References

[1] Agentflow system, Flowring Technology Corp,
http://www.flowring.com.

[2] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludaescher,
B., Mock, S., “Kepler: Towards a Grid-enabled system for
scientific workflows”, Proceedings of Workflow in Grid
systems Workshop in GGF10, 2004.

[3] Baru, C., Moore, R., Rajasekar, A., Wan, M., “The SDSC
Storage Resource Broker”, Proceedings of the 1998
conference of the Centre for Advanced Studies on
Collaborative research.

[4] Cao, J., Jarvis, S. A., Saini, S., Nudd, G. R., “GridFlow:
Workflow management for Grid computing”, Proceedings of
the 3rd International Symposium on Cluster Computing and
the Grid, 2003.

[5] Chou, S. J., Feng-Jian Wang, F. J., Constructing a
Management System for a University Department, Master
Thesis, National Chiao-Tung University, 2001.

[6] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.,
“Grid Information Services for Distributed Resource
Sharing”, Proceedings of 10th IEEE International
Symposium on High Performance Distributed Computing,
2001.

[7] Foster, I., “The Grid: A New Infrastructure for 21st
Century Science”, Physics Today, 2002, 55 (2). 42-47.

[8] Foster, I., Kesselman, C., Tuerke, S., The Grid: Blueprint
for a New computing Infrastructure, Morgan Kaufmann,
2003.

[9] Globus Toolkit, The Globus Alliance,
http://www.globus.org.

[10] Krishnan, S., Bramley, R., Gannon, D., Govindaraju,
M., Alameda, J., Alkire, R., Drews, T., Webb, E., “The

XCAT science portal”, Proceedings of Supercomputing,
2001.

[11] Laszewski, G. V., Amin, K., Hategan, M., Zaluzec, N.
J., Hampton, S., Rossi, A., “GridAnt: A client-controllable
Grid workflow system”, Proceedings of 37th Hawaii
International Conference on System Science, 2004.

[12] Roure, D. D., Baker, M. A., Jennings, N. R., Shadbolt, N.
R., “The Evolution of the Grid”, Grid Computing: Making
The Global Infrastructure a Reality, JohnWiley& Sons, 2003,
pp. 65–100.

[13] Shields, M., Taylor, I., “Programming scientific and
distributed workflow with Triana services”, Proceedings of
Workflow in Grid Systems Workshop in GGF 10, 2004.

571571571571

