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Abstract

In this paper, the decision making problems with the dependence and the feedback effects are considered. Although the
analytic network/hierarchy process (ANP/AHP) has been proposed to deal with the problems above, several problems
make the method impractical. In this paper, we proposed the fuzzy decision maps (FDM), which incorporates the eigen-
value method, the fuzzy cognitive maps (FCM), and the weighting equation, to overcome the problem of preferential inde-
pendent and the shortcomings of the ANP. In addition, two numerical examples are used to demonstrate the proposed
method. On the basis of the numerical results, we can conclude that the proposed method can soundly deal with the deci-
sion making problems with the dependence and the feedback effects.
� 2006 Published by Elsevier Inc.
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1. Introduction

Multi-criteria decision making (MCDM) involves determining the optimal alternative among multiple, con-
flicting, and interactive criteria [1]. Many methods, which are based on multiple attribute utility theory
(MAUT), have been proposed (e.g. the weighted sum and the weighted product methods) to deal with the
MCDM problems. The concept of MAUT is to aggregate all criteria to a specific unidimension which is called
utility function to evaluate alternatives. Although many papers have been proposed to discuss the aggregation
operator of MAUT [2], the main problem of MAUT is the assumption of preferential independence [3,4].

On the assumption of preferential independence, it can be seen that the dependence and the feedback effects
cannot be considered. However, the real-life situation usually emerges the dependence and the feedback effects
simultaneously while making decisions. The analytic network process (ANP) was proposed in [5,6] to
overcome the problem of dependence and feedback among criteria or alternatives. The ANP is the general
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form of the analytic hierarchy process (AHP) [7], which has been used for multi-criteria decision making
(MCDM), to release the restriction of hierarchical structure, and has been applied to project selection [8,9],
product planning, strategic decision [10,11], and optimal scheduling [12].

The advantages of the ANP are that it is not only appropriate for both quantitative and qualitative data
types, but it also can overcome the problem of interdependence and feedback among criteria. Although the
ANP have been widely used in various applications, two main problems should be highlighted as follows.
The first is the problem of comparison. In the ANP, the decision maker is asked to answer the question like
‘‘How much importance does a criterion have compared to another criterion with respect to our interests or
preferences?’’ However, sometimes the questions are hard even for the expert to answer the question above
due to some questions are anti-intuitive. We will highlight the problem again in Section 3. Furthermore,
the key for the ANP is to determine the relationship structure among features in advance [9]. The different
structure results in the different priorities. However, it is usually hard for the decision maker to give the true
relationship structure by considering many criteria.

In this paper, we proposed the fuzzy decision maps (FDM), which incorporates the eigenvalue method, the
fuzzy cognitive maps (FCM) [13,14], and the weighting equation, to overcome the problem of preferential
independent and the shortcomings of the ANP. Not only dependence effects but also feedback effects can
be considered to derive the best alternative. Besides, two numerical examples are used to demonstrate the pro-
posed method and compared with the ANP. On the basis of the numerical results, we can conclude that FDM
can provide another method to deal with the structural MCDM problem.

The rest of this paper is organized as follows. In Section 2, we describe the contents of the analytic network
process. Fuzzy decision maps are proposed in Section 3. Two numerical examples, which are used here to dem-
onstrate the proposed method, are in Section 4. Discussions are presented in Section 5 and conclusions are in
the last section.

2. The analytic network process

Since the ANP/AHP has been proposed by Saaty, it has been widely used to deal with the dependence and
the feedback decision making. The method of the ANP can be described as follows. The first phase of the ANP
is to compare the criteria in whole system to form the supermatrix. This is done through pairwise comparisons
by asking ‘‘How much importance does a criterion have compared to another criterion with respect to our inter-
ests or preferences?’’ The relative importance value can be determined using a scale of 1–9 to represent equal
importance to extreme importance [5,7]. The general form of the supermatrix can be described as follows:



Cluster 2
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Fig. 1. The structure of the case 1.
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where Cm denotes the mth cluster, emn denotes the nth element in mth cluster, and Wij is the principal eigen-
vector of the influence of the elements compared in the jth cluster to the ith cluster. In addition, if the jth clus-
ter has no influence to the ith cluster, then Wij = 0.

Therefore, the form of the supermatrix depends much on the variety of the structure. There are several
structures which were proposed by Saaty including hierarchy, holarchy, suparchy, and intarchy to demon-
strate how the structure affects the supermatrix. Here, two simple cases, which both have three clusters, are
used to display how to form the supermatrix based on the structures.

The supermatrix can be formed as the following matrix:
In Fig. 2, the second case is more complex than the first case.
Then, the supermatrix of the second case can be expressed as
After forming the supermatrix, the weighted supermatrix is derived by transforming all columns sum to unity
exactly. This step is much similar to the concept of Markov chain for ensuring the sum of these probabilities of
all states equals to 1. Next, we raise the weighted supermatrix to limiting powers such as Eq. (1) to get the
global priority vector or called weights.
lim
k!1

W k ð1Þ
Cluster 2

Cluster 1

Cluster 3

Fig. 2. The structure of the case 2.
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In addition, if the supermatrix has the effect of cyclicity, the limiting supermatrix is not the only one. There are
two or more limiting supermatrices in this situation, and the Cesaro sum would be calculated to get the pri-
ority. The Cesaro sum is formulated as
lim
k!1

1

N

� �XN

j¼1

W k
j ð2Þ
to calculate the average effect of the limiting supermatrix (i.e. the average priority weights) where Wj denotes
the jth limiting supermatrix. Otherwise, the supermatrix would be raised to large powers to get the priority
weights. The detailed discussion of the mathematical processes of the ANP can refer to [5,15].

In order to describe the concrete procedures of the ANP, a simple example of system development is dem-
onstrated to derive the priority of each criterion. As we know, the key to develop a successful system depend-
ing on the match of human and technology factors. Assume the human factor can be measured by the criteria
of business culture (C), end-user demand (E), and management (M). On the other hand, the technology factor
can be measured by the criteria of employee ability (A), process (P) and resource (R). In addition, human and
technology factors are affected with each other as like as shown in Fig. 3.

The first step of the ANP is to compare the importance between each criterion. For example, the first matrix
below is to ask the question ‘‘For the criterion of employee ability, how much the importance does one of the
human criteria than another.’’ The other matrices can easily be formed with the same procedures. The next
step is to calculate the influence (i.e. calculate the principal eigenvector) of the elements (criteria) in each com-
ponent (matrix) using the eigenvalue method.
Ability
 Culture
 End-user
 Management
 Eigenvector
 Normalization
Culture
 1
 3
 4
 0.634
 0.634

End-user
 1/3
 1
 1
 0.192
 0.192

Management
 1/4
 1
 1
 0.174
 0.174

Process
 Culture
 End-user
 Management
 Eigenvector
 Normalization

Culture
 1
 1
 1/2
 0.250
 0.250

End-user
 1
 1
 1/2
 0.250
 0.250

Management
 2
 2
 1
 0.500
 0.500

Resource
 Culture
 End-user
 Management
 Eigenvector
 Normalization

Culture
 1
 2
 1
 0.400
 0.400

End-user
 1/2
 1
 1/2
 0.200
 0.200

Management
 1
 2
 1
 0.400
 0.400

Culture
 Ability
 Process
 Resource
 Eigenvector
 Normalization

Ability
 1
 5
 3
 0.637
 0.637

Process
 1/5
 1
 1/3
 0.105
 0.105

Resource
 1/3
 3
 1
 0.258
 0.258

End-user
 Ability
 Process
 Resource
 Eigenvector
 Normalization

Ability
 1
 5
 2
 0.582
 0.582

Process
 1/5
 1
 1/3
 0.109
 0.109

Resource
 1/2
 3
 1
 0.309
 0.309

Management
 Ability
 Process
 Resource
 Eigenvector
 Normalization

Ability
 1
 1/5
 1/3
 0.136
 0.136

Process
 5
 1
 3
 0.654
 0.654

Resource
 3
 1/3
 1
 0.210
 0.210
Now, we can form the supermatrix based on the eigenvectors above and the structure in Fig. 3. Since the
human factor can affect the technology factor, and vise versa, the supermatrix is formed as follows:
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Then, the weighted supermatrix is obtained by ensuring all columns sum to unity exactly.
Last, by calculating the limiting power of the weighted supermatrix, the limiting supermatrix is obtained as
follows:
Culture
End-User

Management 

Ability
Process

Resource

Human

Technology

Fig. 3. The structure of the system development.
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and
As we see, the supermatrix has the effect of cyclicity, and the Cesaro sum (i.e. add the two matrices and divid-
ing by two) is used here to obtain the final priorities as follows:
In this example, the criterion of culture has the highest priority (0.233) in system development and the criterion
of end-user has the least priority (0.105).

In order to show the effect of the different structure in the ANP, the other structure, which has the feedback
effect on human factors, is considered as shown in Fig. 4.

There are two methods to deal with the self-feedback effect. The first method simply place 1 in diagonal
elements and the other method performs a pairwise comparison of the criteria on each criterion. In this exam-
ple, we use the first method. With the same steps above, the unweighted supermatrix, the weighted supmatrix,
and the limiting supermatrix can be obtained as follows, respectively:
Culture
End-User

Management 

Ability
Process

Resource

Human

Technology

Fig. 4. The structure of system development with feedback effects.
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Since the effect of cyclicity does not exist in this example, the final priorities are directly obtained by limiting
the power to converge. Although the criterion of culture also has the highest priority, the priority changes
from 0.233 to 0.310. On the other hand, the least priority is resource (0.084) instead of end-user. Compare
with the priorities of the two examples, the structures play the key to both the effects and the results. In addi-
tion, it should be highlighted that when we raise the weighted matrix to limiting power, the weighted matrix
should always be the stochastic matrix.

From the contents of the ANP above, it is clear that the key for the ANP is to determine the network struc-
ture among all features in advance [9] and answer the questions precisely. However, sometimes both of them
are hard for the decision maker to give. Next, we propose the fuzzy decision map method to overcome the
problems of the ANP for dealing with the MCDM problems with dependence and feedback in Section 3.

3. Fuzzy decision maps

In order to deal with the problem of dependence and feedback among criteria, we first depict the FCM as
shown in Fig. 5 to illustrate the situation of decision making. In Fig. 5, eij denotes the interaction effect from
Criterion 1

Criterion 4

Criterion 5

Criterion 3
 

Criterion 2
 

e21

e 31

 

e 14

e 25

e 52

 

e 55

e 33

e 34

Fig. 5. The problem of a decision map.
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the jth criterion to the ith criterion, and eii indicates the compound effect of the ith criterion. As we know, due
to the problem of compound and interaction effects, it is hard for decision makers to make a good decision
using the simple weighted method.

A way to overcome the problems above is to obtain the information of influences among criteria and then
to derive the finial weights by considering the influences among criteria. However, since these criteria may
have loop or feedback relationships, it is hard to derive the influences among criteria. Next, we first employ
the FCM to derive the influence among criteria and then obtain the finial weights by using the weighted
formulation.

FCM, which was first proposed by Koska [14,15], extends the original cognitive maps [16] by incorporating
fuzzy measures to provide a flexible and realistic method for extracting the fuzzy relationships among objects
in a complex systems. Recently, FCM have been widely employed in the applications of political decision-
making, business management, industrial analysis, and system control [17–19], except for the area of MCDM.
The concepts of FCM can be described as follows.

Given a 4-tuple (N,E,C, f) where N = {N1,N2, . . . ,Nn} denotes the set of n objects, E denotes the connec-
tion matrix which is composed of the weights between objects, C is the state matrix, where C(0) is the initial
matrix and C(t) is the state matrix at certain iteration t, and f is a threshold function, which indicates
the weighting relationship between C(t) and C(t+1). Several formulas have been used as threshold functions
such as
f ðxÞ ¼
1 if x P 1

0 if x < 1

�
; ðHard line functionÞ

f ðxÞ ¼ tanhðxÞ ¼ ð1� e�xÞ=ð1þ e�xÞ; ðHyperbolic-tangent functionÞ
and
f ðxÞ ¼ 1=ð1þ e�xÞ. ðLogistic functionÞ

The influence of the specific criterion to other criteria can be calculated using the following updating
equation:
C ðtþ1Þ ¼ f ðC ðtÞEÞ; C ð0Þ ¼ In�n; ð3Þ
where In·n denotes the identity matrix.
The vector-matrix multiplication operation to derive successive FCM states is iterated until it converges to

a fixed point situation or a limit state cycle. The state vector remains unchanged for successive iterations is
called a fixed point situation and the sequence of the state vector keeps repeating indefinitely is called a limit
state cycle.

Now, we can summarize the proposed method to derive the priorities of criteria as follows:

Step 1. Compare the importance among criteria to derive the local weight vector using the eigenvalue
approach;

Step 2. Depict the fuzzy cognitive map to indict the influence among criteria by the expert;
Step 3. Calculate Eq. (3) for obtaining the steady-state matrix;
Step 4. Derive the global weight vector. In order to derive the global weights, we should first normalize the

local weight vector (z) and the steady-state matrix (C*) as follows:
zn ¼
1

k
z; ð4Þ
and
C�n ¼
1

c
C�; ð5Þ
where k is the largest element of z and c is the largest row sum of C*. Then, we can obtain the global weight
vector by using the following weighting equation:
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w ¼ zn þ C�nzn. ð6Þ

Next we used two numerical examples to demonstrate the proposed method in Section 4.

4. Numerical examples

In this section, two numerical examples are employed to demonstrate the proposed method and compared
the results with the ANP. The first example is the multi-criteria decision problem about purchasing cars. The
second example is modified by Fig. 1 to consider the more complicated decision problem. Note that in this
paper we use two threshold functions including the pure-linear and the hyperbolic-tangent functions to indi-
cate the relationships among criteria.

Example 1. Consider a decision maker try to purchase a car according to the following four criteria including
Price (P), Durability (D), Robustness (R), and Repair Cost (C). For choosing the best alternative, we should
derive the weights of each criterion and calculate the weighted scores of each car. In order to derive the local
weights of each criterion, we first compare the importance among criteria using the following matrix:
Price
 Durability
 Robustness
 Repair Cost
 Local Weights
Price
 1
 1/3
 1/5
 1/3
 0.1370

Durability
 3
 1
 1/3
 1/2
 0.2999

Robustness
 5
 3
 1
 2
 0.8218

Repair Cost
 3
 2
 1/2
 1
 0.4647
From the matrix above, we can calculate the local weights by using the eigenvalue method. Next, since a
criterion may have interaction effects with other criteria, we then depict the FCM to indict the influence among
criteria as shown in Fig. 6.

On the basis of Fig. 6, we can formulate the connection matrix as follow:
Next, we can obtain the two steady-state matrices by calculating Eq. (3) to the convergent state using the pure-
linear and the hyperbolic-tangent functions as follows:
f(x) = x
 Price
 Durability
 Robustness
 Repair Cost
Price
 0.2465
 0.5763
 0.5180
 0.2678

Durability
 0.3691
 0.2096
 0.4131
 0.3260

Robustness
 0.3296
 0.3082
 0.1759
 0.4578

Repair Cost
 0.2493
 0.1153
 0.1036
 0.0536
f(x) = tanh(x)

Price
 0.0402
 0.2181
 0.1813
 0.0480

Durability
 0.1243
 0.0359
 0.1471
 0.1031

Robustness
 0.1050
 0.0978
 0.0280
 0.1851

Repair Cost
 0.1037
 0.0221
 0.0183
 0.0049
After obtaining the influences among criteria, we can employ Eq. (6) to obtain the global weights. In addi-
tion, on the information of importance among criteria, we can calculate the global weights using the ANP. The
comparison of the ANP and the proposed method can be presented as shown in Table 1.
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Repair costDurability

Robustness

0.4

0.2

0.25

0.15 0.3

0.15

0.15

0.35

0.2

Fig. 6. An fuzzy cognitive map for Example 1.

Table 1
The comparison of the ANP and the proposed method

Weights Price Durability Robustness Repair Cost

Original weights 0.0795 0.1740 0.4768 0.2696
ANP 0.2852 0.1766 0.3166 0.2216
FCM (f(x) = x) 0.2165 0.1965 0.3993 0.1877
FCM (f(x) = tanh(x)) 0.2102 0.2332 0.3765 0.1801
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It should be highlighted that although we employ the ANP to derive the global weights, a main problem
should be highlighted to display the shortcoming of the ANP as follows. In order to form the supermatrix,
we should ask the question like ‘‘For the criterion of Price, how much the importance does Durability than
Robustness?’’ or ‘‘For the criterion of Robustness, how much the importance does Price than Repair Cost?’’
The questions above usually are strange and hard even for the expert to answer. We will deeply discuss the
problem above in Section 5.

Example 2. In this example, five criteria are used to select the best alternative. In order to derive the local
weights, we first compare the importance between the criteria and then employ the eigenvalue method to
obtain the eigenvector.
Criterion 1
 Criterion 2
 Criterion 3
 Criterion 4
 Criterion 5
 Local Weights
Criterion 1
 1
 3
 1
 5
 1/3
 0.4716

Criterion 2
 1/3
 1
 1/3
 3
 3
 0.4437

Criterion 3
 1
 3
 1
 5
 1/3
 0.4716

Criterion 4
 1/5
 1/3
 1/5
 1
 1/2
 0.1154

Criterion 5
 3
 1/3
 3
 2
 1
 0.5874
Next, suppose the relationships among criteria above can be depicted using the FCM as shown in Fig. 7:
From Fig. 7, it can be seen that the problem above contains the compound and the interaction effects simul-

taneously. Next, we present the proposed method to determine the best alternative as follows.
First, on the basis of Fig. 7, we can formulate the connection matrix as follow:



Criterion 1

Criterion 4

Criterion 5

Criterion 3

Criterion 2

0.35

0.35

0.50

0.45

0.30

0.25

0.15

Fig. 7. A fuzzy cognitive map for Example 2.

Table 2
The global weights using pure-linear and hyperbolic-tangent functions

Weights Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Original weights 0.2257 0.2123 0.2257 0.0552 0.2811
FCM (f(x) = x) 0.2165 0.1909 0.1447 0.1622 0.2857
FCM (f(x) = tanh(x)) 0.2238 0.1842 0.1516 0.1654 0.2751
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Next, by using the pure-linear and the hyperbolic-tangent functions, we can calculate the steady-state matrices
as follows:
f(x) = x
 Criterion 1
 Criterion 2
 Criterion 3
 Criterion 4
 Criterion 5
Criterion 1
 0
 0.4268
 0.4118
 0
 0.1707

Criterion 2
 0
 0.2195
 0
 0
 0.4878

Criterion 3
 0
 0
 0.1765
 0
 0

Criterion 4
 0.5000
 0.2134
 0.7353
 0
 0.0853

Criterion 5
 0
 0.7317
 0
 0
 0.6260
f(x) = tanh(x)

Criterion 1
 0
 0.1800
 0.1868
 0
 0.0308

Criterion 2
 0
 0.0396
 0
 0
 0.1761

Criterion 3
 0
 0
 0.0809
 0
 0

Criterion 4
 0.2449
 0.0445
 0.2812
 0
 0.0076

Criterion 5
 0
 0.2605
 0
 0
 0.1850
Finally, using Eq. (6), we can obtain the global weights as shown in Table 2.
Next, we provide the depth discussions according to the results of the numerical examples above in Section 5.

5. Discussions

Structural MCDM problems involve determining the best alternatives by considering the dependence and
the feedback effects among criteria. In order to deal with the problems above, the crucial point is to derive the
global weights by considering the dependence and the feedback effects. Although the ANP/AHP has been pro-
posed to handle this problems, a more easy and convenient approach is limited.
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In this paper, the fuzzy decision maps, which combine the eigenvalue method, the fuzzy cognitive maps, and
the weighting equation, are proposed to deal with the structural MCDM problems. The local weights are first
derived using the eigenvalue method. Then, the FCM is verified to indicate the influence between criteria.
Next, the steady-state matrix is derived using the updating equation. Finally, the global weights are obtained
using the weighting equation.

From the process of the numerical examples above, we can describe two main shortcomings of the ANP as
follows. First, since some questions are hard even for the expert to compare the importance among criteria, the
final solution is doubtable. Second, the result of the ANP is highly dependent on the network structure. How-
ever, the true network structure is hard to identify due to the interaction effect between two criteria may be
caused by another criterion.

In contrast, the advantages of the proposed methods can be summarized as follows. First, we can employ
the different threshold functions to indicate the various kinds of relationship among criteria. Second, instead
of asking the weary questions like the ANP, all we have to do is to judge the degree of influences between
criteria. Third, both the compound and the interaction effects can easily be solved using the proposed method.
Fourth, only the direct influences should be identified. The indirect influences can be generated by the steady-
state matrix. In addition, we can use the direct and the indirect influences for other applications.

6. Conclusions

The MCDM problems with dependence and feedback effects are hard for the decision maker to make a
good decision. Although the ANP have been widely used to deal with this problem, some shortcomings should
be overcome for proving the satisfaction solution. In this paper, the FDM method is proposed to deal with the
structural MCDM problems. Without answering the troublesome questions and verifying the true structure,
only the influence between criteria should be given using the proposed method. On the basis of the numerical
results, we can conclude that the proposed method can soundly deal with the structural MCDM problems
with dependence and feedback effects.
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