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Abstract

Process capability indices have been widely used in the manufacturing industry providing numerical measures on
process potential and process performance. Capability measure for processes with single characteristic has been inves-
tigated extensively, but is comparatively neglected for processes with multiple characteristics. In real applications, a
process often has multiple characteristics with each having different specifications. Singhal [Singhal, S.C., 1990. A
new chart for analyzing multiprocess performance. Quality Engineering 2 (4), 397–390] proposed a multi-process per-
formance analysis chart (MPPAC) for analyzing the performance of multi-process product. Using the same technique,
several MPPACs have been developed for monitoring processes with multiple independent characteristics. Unfortu-
nately, those MPPACs ignore sampling errors, and consequently the resulting capability measures and groupings are
unreliable. In this paper, we propose a reliable approach to convert the estimated index values to the lower confidence
bounds, then plot the corresponding lower confidence bounds on the MPPAC. The lower confidence bound not only
gives us a clue minimum actual performance which is tightly related to the fraction of non-conforming units, but is also
useful in making decisions for capability testing. A case study of a dual-fiber tip process is presented to demonstrate
how the proposed approach can be applied to in-plant applications.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decade, numerous process capa-
bility indices (PCIs), including Cp, Ca, Cpu, Cpl,
ed.
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and Cpk, have been proposed in the manufacturing
industry to provide numerical measures on process
performance, which are effective tools for quality/
reliability assurance (see Kane, 1986; Chan et al.,
1988; Pearn et al., 1992, 1998; Kotz and Lovelace,
1998; Kotz and Johnson, 2002 for more details).
These indices are defined as

Cp ¼
USL� LSL

6r
; Cpu ¼

USL� l
3r

;

Cpl ¼
l� LSL

3r
; Ca ¼ 1� jl� mj

d
;

Cpk ¼ min
USL� l

3r
;
l� LSL

3r

� �
;

where USL and LSL are the upper and the lower
specification limits, respectively, l is the process
mean, r is the process standard deviation, m =
(USL + LSL)/2 is the mid-point of the specifica-
tion interval and d = (USL � LSL)/2 is half the
length of the specification interval. For normally
distributed processes, Cp, Ca and Cpk indices are
appropriate measures for processes with two-sided
specifications. The index Cp measures the overall
process variation relative to the specification toler-
ance, therefore only reflects process potential (or
process precision). The index Ca measures the de-
grees of process centering, which alerts the user if
the process mean deviates from its center. There-
fore, the index Ca only reflects process accuracy.
The index Cpk takes into account process variation
as well as process centering, providing process per-
formance in terms of yield (proportion of confor-
mities). Given a fixed value of Cpk, the bounds
on process yield p can be expressed as 2U(3Cpk) �
1 6 p 6 U(3Cpk) (Boyles, 1991), where U(Æ) is the
cumulative distribution function of the standard
normal distribution. For instance, if Cpk = 1.00,
then it guarantees that the yield will be no less than
99.73%, or equivalent to no more than 2700 parts
per million (ppm) of non-conformities. On the
other hand, the indices Cpu and Cpl have been
designed particularly for processes with one-sided
manufacturing specifications, which measure
the-smaller-the-better and the-larger-the-better
process capabilities, respectively. For normally
distributed processes with one-sided specification
limit, USL or LSL, the relationship between the
one-sided capability indices and the process yield
can be calculated as pu = P(X < USL) = U(3Cpu)
and pl = P(X > LSL) = U(3Cpl).

In factory applications a product usually has
multiple characteristics with each having different
specifications, which need to be monitored and
controlled hence is a difficult and time-consuming
task for factory engineers. A multi-process perfor-
mance analysis chart (MPPAC) proposed by Sing-
hal (1990), which evaluates the performance of a
multi-process product with symmetric bilateral
specifications. Singhal (1991) further presented a
MPPAC with several well-defined capability zones
by using the process capability indices Cp and Cpk

for grouping the processes in a multiple process
environment into different performance categories
on a single chart. Using the same technique, sev-
eral modified control charts have been developed
for monitoring processes with single or multiple
independent characteristics. Pearn and Chen
(1997) proposed a modification to the Cpk MPPAC
combining the more-advanced process capability
indices, Cpm or Cpmk, to identify the problems
causing the processes failing to center around the
target. By combining Singhal�s MPPAC with
asymmetric process capability index Cpa, Chen
et al. (2001) introduced a process capability analy-
sis chart (PCAC) to evaluate process performance
for an entire product composed of multiple char-
acteristics with symmetric and asymmetric specifi-
cations. Pearn et al. (2002) introduced a MPPAC
to the chip resistors applications based on the inca-
pability index Cpp. Chen et al. (2003) also devel-
oped a control chart for processes with multiple
characteristics based on the generalization of yield
index Spk proposed by Boyles (1994). We should
note that the process mean l and the process var-
iance r2 are usually unknown in practice. In order
to calculate the index value, sample data must be
collected and a great degree of uncertainty may
be introduced into capability assessments due to
sampling errors. However, those existing research
works on MPPAC are restricted to assuming the
value of l and r2 are known or obtaining quality
information from one single sample of each pro-
cess ignoring sampling errors. The information
provided from the existing MPPAC, therefore, is
unreliable and misleading resulting in incorrect
decisions. In this paper, we propose a reliable
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approach to obtain the lower confidence bounds
and apply it to the modified Cpk MPPAC. A
real-world application to the dual-fiber tips manu-
facturing process is presented for illustration.
2. Capability measure for multiple characteristics

2.1. Processes with multiple dependent

characteristics

Process capability analysis often entails char-
acterizing or assessing processes or products based
on more than one engineering specification or
quality characteristic (variable). When these vari-
ables are related characteristics, the analysis should
be based on a multivariate statistical technique.
Chen (1994) and Boyles (1996) and others have
presented multivariate capability indices for
assessing capability. Wang and Chen (1998–1999)
and Wang and Du (2000) proposed multivariate
equivalents for Cp, Cpk, Cpm and Cpmk based on
the principal component analysis, which trans-
forms numbers of original related measurement
variables into a set of uncorrected linear functions.
Moreover, a comparison of three recently pro-
posed multivariate methodologies for assessing
capability are illustrated and their usefulness is dis-
cussed in Wang et al. (2000). However, those
indices and methodologies were appropriate for
products with either multiple unilateral speci-
fications or multiple bilateral specifications
exclusively. For practical applications, most mul-
ti-process products are composed of numerous
unilateral specifications and bilateral specifica-
tions, and customers are satisfied when all quality
characteristics of an entire product meet preset
specifications. Therefore, neither univariate pro-
cess capability indices nor multivariate process
capability indices can meet the needs for the
requirements.

2.2. Processes with multiple independent

characteristics

For processes with multiple characteristics,
Bothe (1992) considered a simple measure by taking
the minimum of the measure of each single
characteristic. For example, consider a m character-
istics process with m yield measures P1, P2, . . ., and
Pm, the overall process yield is measured as P =
min{P1, P2, . . . , Pm}. We note that this approach
does not reflect the real situation accurately. Sup-
pose the process has five characteristics (m = 5), with
equal characteristic yield measures P1 = P2 =
P3 = P4 = P5 = 99.73%. Using the approach con-
sidered by Bothe (1992), the overall process yield
is calculated as P = min{P1, P2, P3, P4, P5} =
99.73% (or 2700 ppm of non-conformities). Assum-
ing that the five characteristics are mutually inde-
pendent, then the actual overall process yield
should be calculated as P = P1 · P2 · � � � ·
P5 = 98.66% (or 134,000 ppm of non-conformi-
ties), which is significantly less than that calculated
by Bothe (1992). Generally, the quality characteris-
tics of a product can be classified into three types:
the-nominal-the-best, the-smaller-the-better and
the-larger-the-better types. Cpk, Cpu and Cpl are
three indices to evaluate the process capabilities
on the MPPAC. For a multi-process product, as-
sume there are nk processes of the-nominal-the-best
type evaluated by Cpkj, j = 1, 2, . . . , nk, nu the-smal-
ler-the-better processes evaluated by Cpuj,
j = 1, 2, . . . , nu, and nl processes of the-larger-
the-better type evaluated by Cplj, j = 1, 2, . . . , nl.
Thus, as described earlier, the general form of pro-
cess yield can be calculated for unilateral character-
istics as puj = U(3Cpuj), j = 1, 2, . . . , nu or plj =
U(3Cplj), j = 1, 2, . . . , nl and pkj P 2U(3Cpkj) � 1,
j = 1, 2, . . . , nk for bilateral specifications.

Assume the individual process yields are inde-
pendent, the entire process yield pT can be calcu-
lated as

pT ¼
Y
i2G

Yni

j¼1

pij;

where G = {k, u, l}. Furthermore, utilizing the
inequality U(x) P 2U(x) � 1, the above relations
of process yield can be rewritten as:
pij P 2U(3Cpij) � 1, i 2 {k, u, l}, j = 1, 2, . . . , ni.
Then, the overall process yield pT can be described as

pT ¼
Y
i2G

Yni

j¼1

pij P
Yni

j¼1

½2Uð3CpkjÞ � 1� �
Ynu

j¼1

Uð3CpujÞ

�
Ynl

j¼1

Uð3CpljÞP
Y
i2G

Yni

j¼1

½2Uð3CpijÞ � 1�.



Fig. 1. The modified Cpk MPPAC with capability zones for
Cpk = 1.00, 1.33, 1.67, and 2.00.
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In general, the overall process yield of a multi-
process product is lower than any individual pro-
cess yield, namely, pT 6 pij. Similarly, when the
overall process yield (or entire product capability)
is preset to satisfy the required level, the individual
process yield (or individual process capability)
should exceed the preset standard for the entire
product. Based on the above analysis, if each char-
acteristic is mutually independent and normally
distributed, the process yield can be evaluated in
terms of an integrated process capability index
CT in the following:

CT ¼
1

3
U�1

Y
i2G

Yni

j¼1

½2Uð3CpijÞ � 1� þ 1

 !,
2

" # !
.

Some minimum capability requirements have
been recommended in the manufacturing industry
(see Montgomery, 2001), for specific process types,
which must run under some more designated strin-
gent quality conditions.
3. A reliable modified MPPAC for capability

control

Process capability index measures the ability of
the process to reproduce products that meet spec-
ifications. However, the fact that process capabil-
ity indices combine information about closeness
to target and process spread, and express the capa-
bility of a process by a single number, may in some
cases also be held as one of their major drawbacks.
If, for instance, the process is found non-capable,
the operator is interested in knowing whether this
non-capability is caused by the fact that the pro-
cess output is off target or that the process spread
is too large, or if the result is a combination of
these two factors. In order to circumvent this
shortage of process capability indices, recent re-
search suggests that different graphical methods
be used to support the improvement initiative
aimed at accomplishing more capable processes
(see, e.g., Gabel, 1990; Boyles, 1991; Tang et al.,
1997; Deleryd and Vännman, 1999). The modified
Cpk MPPAC proposed by Pearn and Chen (1997)
is shown in Fig. 1, with five capability zones corre-
sponding to the five process conditions for Cpk =
1.00, 1.33, 1.67, and 2.00.
In this modified MPPAC, Cpu and Cpl represent
the X-axis and Y-axis, respectively. Whereas Cp is
the average of Cpu and Cpl, namely, Cp =
(Cpu + Cpl)/2 and Cpk is the minimum value of
the X- and Y-axes, namely, Cpk = min{Cpu, Cpl}.
Thus, based on Cpk MPPAC, the vertical and hor-
izontal axes of the chart are to evaluate the-larger-
the-better and the-smaller-the-better characteris-
tics, respectively. Furthermore, a few subsidiary
lines of Ca can be added on MPPAC for precisely
controlling the process centering. Off-diagonal
subsidiary lines are plotted when Ca are 0.500,
0.750 and 0.875 in Fig. 1. Note that we will assume
the preset target value T at the mid-point of the
specification (i.e. m = T). Ca < 0.875 indicates that
the process is not accurate; actions to shift the
process mean closer to the process target are re-
quired. Namely, Ca P 0.875 indicates a process
with good accuracy. In general, Ca cannot be too
small since a smaller Ca implies the process mean
shifts farther away from the process target and re-
sults in much process loss. Let r = jl � mj/d, then
the values of l are m + r · d and m � r · d for
each Ca. The slope of the corresponding subsidiary
line is (1 + r)/(1 � r) when the process mean is
greater than the process target, and the slope of
the corresponding subsidiary line is (1 � r)/
(1 + r) when the process mean is smaller than
the process target. Table 1 briefly displays the



Table 1
The values of Ca with the corresponding l, r, and slope of lines

Ca l r Slope

1.000 m 0.000 1.000

0.875 m + 0.125 · d 0.125 1.286
m � 0.125 · d 0.125 0.778

0.750 m + 0.250 · d 0.250 1.667
m � 0.250 · d 0.250 0.600

0.500 m + 0.500 · d 0.500 3.000
m � 0.500 · d 0.500 0.333

0.250 m + 0.750 · d 0.750 7.000
m � 0.750 · d 0.750 0.143

0.000 USL 1.000 1
LSL 1.000 0.000
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values of Ca with the corresponding l, r, and slope
of the subsidiary lines.

In quality improvement, reduction of variation
from the target is as important as increasing the
process yield and reduction process spread. A
modified Cpk MPPAC put the two concepts: close-
ness to target and small spread in more efficient
way than by using a process capability index alone.
If the exact values of l and r are known, then the
modified Cpk MPPAC can easily be used. That is,
if the corresponding value of (Cpu, Cpl) is inside the
capability region, then the process is defined to be
capable, and if the value is outside, the process is
defined as non-capable. In practice, though, we
never know the true values of capability indices.
In the next section we will develop the procedure
to construct the lower confidence bounds of indi-
ces Cpk, Ca, Cpu, and Cpl for each characteristic
type. These lower confidence bounds can be simul-
taneously plotted on a single chart to check if the
process output is off target or that the process
spread is too large, or if the result is a combination
of these two.
4. Lower confidence bounds for production yield

assurance

As noted before, several MPPACs have been
developed for monitoring processes with multiple
characteristics. In current practice of implement-
ing those charts, practitioners simply plot the esti-
mated index values on the chart then make
conclusions on whether processes meet the capa-
bility requirement and directions need to be taken
for further capability improvement. Such ap-
proach is highly unreliable since the estimated in-
dex values are random variables and sampling
errors are ignored. A reliable approach is to first
convert the estimated index values to the lower
confidence bounds then plot the corresponding
lower confidence bounds on the MPPAC. Using
lower confidence bounds, the MPPAC applica-
tions become more efficient and the results are
not misleading.

4.1. Lower confidence bounds on Cpk

Construction of the exact lower confidence
bounds on Cpk is complicated since the distribu-
tion of bCpk involves the joint distribution of two
non-central t distributed random variables, or
alternatively, the joint distribution of the folded-
normal and the chi-square random variables, with
an unknown process parameter even when the
samples are given (Pearn et al., 1992). Numerous
methods for obtaining approximate confidence
bounds of Cpk have been proposed, including Bis-
sell (1990), Chou et al. (1990), Zhang et al. (1990),
Porter and Oakland (1991), Kushler and Hurley
(1992), Rodriguez (1992), Nagata and Nagahata
(1994), Tang et al. (1997) and many others. Under
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the assumption of normality, Pearn and Lin (2004)
obtain an exactly explicit form of the cumulative
distribution function of the natural estimator bCpk

as

F bC pk
ðyÞ ¼ 1�

Z b
ffiffi
n
p

0

G
ðn� 1Þðb ffiffiffi

n
p � tÞ2

9ny2

 !
� /ðt þ n

ffiffiffi
n
p
Þ þ /ðt � n

ffiffiffi
n
p
Þ

� �
dt;

for y > 0, where b = d/r, n = (l � m)/r, G(Æ) is the
cumulative distribution function of the chi-square
distribution with n � 1 degrees of freedom, v2

n�1,
and /(Æ) is the probability density function of the
standard normal distribution. Hence, given the
sample of size n, the confidence level 1 � a, the esti-
mated value bCpk and the parameter n, using
numerical integration technique with iterations,
the 100(1 � a)% lower confidence bounds for
Cpk, LC, and bL = 3LC + jnj, can be obtained by
solving the following equation,

Z bL
ffiffi
n
p

0

G
ðn� 1ÞðbL

ffiffiffi
n
p � tÞ2

9nbC2

pk

0@ 1A
� /ðt þ n

ffiffiffi
n
p
Þ þ /ðt � n

ffiffiffi
n
p
Þ

� �
dt ¼ a.
4.2. Lower confidence bounds on Ca

On the assumption of normality, Pearn et al.
(1998) showed that the natural estimator bCa ¼
1� j�x� mj=d of the process accuracy index Ca, is
the maximum likelihood estimator, consistent,
asymptotically efficient and

ffiffiffi
n
p ðbCa � CaÞ con-

verges to Nð0; 1=ð3C2
pÞÞ in distribution. And the

statistic
ffiffiffi
n
p j�x� mj=r has a folded normal distribu-

tion as defined by Leone et al. (1961). Therefore,
owing to

ffiffiffi
n
p
ðbCa � CaÞ converging to Nð0; 1=

ð3C2
pÞÞ, 3

ffiffiffi
n
p eCpðbCa � CaÞ converges to N(0,1) in

distribution, An approximate 100(1 � a)% confi-
dence interval of Ca can be established as

bCa �
za=2

3
ffiffiffi
n
p eCp

; bCa þ
za=2

3
ffiffiffi
n
p eCp

" #
;

where eCp ¼ bn�1
bCp, bn�1 = (2/(n � 1))1/2 ·

C[(n � 1)/2]/C[(n � 2)/2], and za is the upper ath
quantile for the standard normal distribution.
While a 100(1 � a)% lower confidence bound of
Ca, LCa , can be constructed using only the lower
limit as bCa � za=ð3

ffiffiffi
n
p eCpÞ.
4.3. Lower confidence bounds on Cpu and Cpl

Chou and Owen (1989) showed that under nor-
mality assumption the estimators bCpu and bCpl are
distributed as ð3 ffiffiffi

n
p Þ�1tn�1ðdÞ, where tn�1(d) is dis-

tributed as the non-central t distribution with
n � 1 degrees of freedom and the non-centrality
parameter d ¼ 3

ffiffiffi
n
p

Cpu and d ¼ 3
ffiffiffi
n
p

Cpl, respec-
tively. A 100(1 � a)% lower confidence bound LC

for Cpu satisfies Pr (Cpu P LC) = 1 � a. It can be
written as

Pr
USL� l

3r
P LC

� �
¼ Pr tn�1ðd1Þ 6 t1ð Þ ¼ 1� a;

where t1 ¼ 3bCpu
ffiffiffi
n
p

and d1 ¼ 3
ffiffiffi
n
p

LC. Thus, LC can
be obtained by solving the above cumulative distri-
bution function of tn�1(d1). Similarly, a 100
(1 �a)% lower confidence bound for Cpl can be
obtained by solving Pr(Cpl P LC) = 1 � a.
5. Bootstrap confidence bound for overall capability

testing

Statistical hypothesis testing used for examining
whether the process capability meets the custom-
ers� demands, can be stated as follows: H0: CT 6 C

versus H1: CT > C. The null hypothesis states that
the overall process capability is no greater than the
minimum capability level C. We conclude that the
entire product capability satisfies the required level
if the sample statistic bCT is greater than the critical
value (or p-value < a) or the lower confidence
bound of CT is greater than the capability require-
ment C. Otherwise, we reverse the conclusion.
Unfortunately, the exact sampling distribution ofbCT is intractable. Efron (1979, 1982) introduced
a non-parametric, computational intensive but
effective estimation method called the ‘‘Boot-
strap’’, which is a data based simulation technique
for statistical inference. Efron and Tibshirani
(1986) developed three types of bootstrap confi-
dence interval, including the standard bootstrap
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(SB) confidence interval, the percentile bootstrap
(PB) confidence interval, and the biased corrected
percentile bootstrap (BCPB) confidence interval.
Efron and Tibshirani (1986) indicated that a rough
minimum of 1000 bootstrap resamples is usually
sufficient to compute reasonably accurate confi-
dence interval estimates. We apply these three
bootstrap methods to the entire product capability
measure CT to obtain the confidence bounds. In
order to obtain more reliable results, B = 10,000
bootstrap resamples are taken and these 10,000
bootstrap estimates of CT are calculated and or-
dered in ascending order. The notations bCT andbC�T ðiÞ will be used to denote the estimator of CT

and the associated ordered bootstrap estimates.
For instance, bC�T ð1Þ is the smallest of the 10,000
bootstrap estimates of CT. For each single charac-
teristic, the Cpu, Cpl, and Cpk values can be esti-
mated by their estimators bCpuj ¼ ðUSLj � �xjÞ=sj,
j = 1, 2, . . . , nu, bCplj ¼ ð�xj � LSLjÞ=sj, j = 1, 2,
. . . , nl, and bCpkj ¼ ðdj � j�xj � mjjÞ=ð3� sjÞ, j =
1, 2, . . . , nk, where �xj and sj are the sample mean
and standard deviation of the j-th characteristic.
Thus, the bootstrap estimates of CT are defined as

bCT ¼
1

3
U�1

Y
i2S

Yni

j¼1

2Uð3bCpijÞ�1
h i

þ1

 !" ,
2

 #!
.

Based on the SB method, the 100(1 � a)%
lower confidence bound for CT is bCT � za � SbC T

,
where SbC T

is the sample standard deviation ofbCT . From the ordered collection of bC�T ðiÞ, the a
percentage and the (1 � a) percentage points are
used to obtain 100(1 � 2a)% PB confidence inter-
val for CT is ½bC�T ðaBÞ, bC�T ðð1� aÞBÞ�. While a
100(1 � a)% lower confidence bound can be con-
structed by using only the lower limit bC�T ðaBÞ.
Table 2
Specifications of characteristics for the dual-fiber tips

Characteristic Type LSL

Capillary diameter Nominal-the-best 1.795 m
Capillary length Nominal-the-best 6.00 m
Wedge Nominal-the-best 7.5�
Core diameter Nominal-the-best 126 lm
Return loss Larger-the-better 60 dB
Polishing direction Smaller-the-better –
That is, for a 95% lower confidence bound for
CT based on the PB method with B = 10,000
would be obtained as bC�T ð500Þ. For the BCPB
method, it calculates the probability p0 ¼
PðbC�T 6 bCT Þ and computes the inverse of the
cumulative distribution of a standard normal
based on p0 as z0 = U�1(p0), pL = U(2z0 � za).
The 100(1 � a)% BCPB lower confidence bound
can be obtained as bC�T ðpLBÞ. Therefore, to
determine whether the total product capability
is capable or not, the minimum requirement
level C and the significant level a-risk are first
decided. And if the lower confidence bound of
CT, is greater than the capability requirement C,
we conclude that the entire product capability sat-
isfies the required level. Otherwise, we reverse the
conclusion.
6. A case study

In the following, we consider a case study to
demonstrate how the modified Cpk MPPAC and
the lower confidence bound can be used in analyz-
ing processes with multiple characteristics. The
case we investigate involves a process manufactur-
ing the dual-fiber tips, which is used in making
fiber optic cables. For a particular model of the
dual-fiber tips, the specifications of characteristics
are presented in Table 2, which is taken form a
optical communication manufacturing factory lo-
cated on Science-based Industrial Park in Taiwan,
devoted to the optical fiber component module
products, such as single-fiber tips for collimators,
isolators, switches, WDM, circulators, etc., and
dual-fiber tips for WDM, hybrid isolators, com-
pact circulators, etc. The applications of these fiber
Target USL

m 1.800 mm 1.805 mm
m 6.25 mm 6.50 mm

8� 8.5�
127 lm 128 lm
– –
– 5�



Fig. 2. A sample of the dual-fiber tips.

Fig. 3. The modified Cpk MPPAC for estimated index.
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tips are fabricated with high performance optical
fiber ends and precise glass capillary.

The key quality characteristics of a dual-fiber
tip include (1) capillary diameter, length, wedge
and core diameter, which are nominal-the-best
specifications, (2) return loss, which is the-larger-
the-better specification, (3) polishing direction,
which is the-smaller-the-better specification. Cus-
tomers expect all of the quality characteristics of
a dual-fiber tip to meet or exceed expected levels.
Fig. 2 shows a sample of the dual-fiber tips. We
take a random sample of size 60, for the dual-fiber
tips from a stable (under statistical control) pro-
cess in the factory, and measure the six product
quality characteristics, the capillary diameter (I),
length (II), wedge (III), core diameter (IV), return
loss (V), and polishing direction (VI). For these 60
measurements of each characteristics, under the
Shapiro–Wilk test for normality, the result con-
firms that all the p-value >0.1. That is, it is reason-
able to assume that the process data collected from
the factory are normally distributed. The calcu-
lated sample mean, sample standard deviation,
the estimated PCIs, bCpu, bCpl, bCp, bCa, bCpk , a 95%
lower confidence bound of Ca, and lower confi-
dence bound of Cpk (Cpu or Cpl), LC, are summa-
rized in Table 3.

The modified Cpk MPPAC for the six processes
based on the estimated PCI values and the lower
confidence bound listed in Table 3, are displayed
in Figs. 3 and 4, respectively. Table 4 displays
the manufacturing quality and capability group-
ings for the six dual-fiber tips processes using the
estimated values (unreliable) and the lower confi-
dence bounds (reliable) associated with the corre-
sponding non-conformities (NC) expressed in
ppm (with asterisks * indicating incorrect group-
ings). Therefore, from these figures and tables, an
Table 3
The calculated sample mean, sample standard deviation, the estimate

Code Characteristic �x s bCpu bC
I Capillary diameter 1.8009 0.00097 1.412 2
II Capillary length 6.255 0.04035 2.024 2
III Wedge 7.99� 0.0959 1.773 1
IV Core diameter 126.8 0.2458 1.627 1
V Return loss 63.6 0.9547 – 1
VI Polishing direction 4.2� 0.3027 0.881 –
approach widely used in current industrial applica-
tions based on the estimated PCI values only, we
note that such MPPAC obviously conveys unreli-
able information and is misleading, which should
be avoided in real applications.

Hence, based on the analysis of this chart as
Fig. 4, it provides directions and priority for pro-
cesses important to mining process defect. We
can make some conclusions and recommendations
to these six processes in the following:
d capability indices and lower confidence bound

pl bCp bCa LCa
bCpk LC

.032 1.722 0.820 0.748 1.412 1.184

.107 2.065 0.980 0.908 2.024 1.706

.703 1.738 0.980 0.908 1.703 1.433

.085 1.356 0.800 0.728 1.085 0.904

.257 – – – 1.257 1.051
– – – 0.881 0.728



Fig. 4. The modified Cpk MPPAC for the LCB.
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(a) The plotted points IV and VI are not located
within the contour of Cpk = 1.00. It indicates
that the process has a very low capability.
For the point IV, since the lower confidence
bound of Ca is 0.728, that is, the process of
core diameter represents that the process
mean is towards the lower specification limit
(process mean is smaller than target value),
and the poor capabilities are mainly
contributed by the significant process depar-
ture from target. Thus, both characteristics
core diameter and polishing direction
are candidates for high-priority quality
improvement effort focus. Under the six-
sigma program, the quality improvement
effort could focus on the reduction of process
variability and the decrease of the process
mean from the target to improve the
process quality.
Table 4
Estimated value and lower confidence bound (LCB) of capability ind

Code Characteristic Estimated index NC

I Capillary diameter 1.412 22.75
II Capillary length 2.024 0.0013
III Wedge 1.703 0.324
IV Core diameter 1.085 1133.9
V Return loss 1.257 81.30
VI Polishing direction 0.881 4108.8
(b) The plotted points I and V lie within the con-
tours of 1.00 6 Cpk < 1.33. The point I lies
inside the area, which is to the left of the
45� target line (slope = 1) represents pro-
cesses where the process mean is towards
the upper specification limit (process mean
is greater than the target value). On the other
hand, for the point V, the lower confidence
bound of Cpu is 1.051, the process is capable
and the corresponding non-conformities are
about 800 ppm. Thus, quality improvement
effort for these processes should be first
focused on reducing their process departure
from the target value T for the process of
capillary diameter, then the reduction of
the process variance.

(c) Process wedge (III) lies inside the contours of
1.33 6 Cpk < 1.67, the process is ‘‘Satisfac-
tory’’. And the lower confidence bound of
Ca is close to the 45� target line (Ca = 1).
Thus, the quality improvement effort for pro-
cess wedge could be focused on the reduction
of the process variation.

(d) The plotted point II lies inside the contours
of 1.67 6 Cpk < 2.00, and the lower confi-
dence bound of Ca is greater than 0.875.
The corresponding non-conformities of pro-
cess are 0.309 ppm only. Thus, stringent con-
trol for characteristic capillary length could
be reduced since the process is ‘‘Excellent’’.

6.1. Overall process yield analysis

The sample estimates of CT and three bootstrap
lower confidence bounds of CT for the dual-fiber
tips can be calculated from the sample. Table 5
ices with their groupings for the six characteristics

Grouping LCB NC Grouping

Satisfactory* 1.184 383.32 Capable
Super* 1.706 0.309 Excellent
Excellent* 1.433 17.16 Satisfactory
Capable* 0.904 6687.9 Incapable
Capable 1.051 799.74 Capable
Incapable 0.728 14481 Incapable



Table 5
Calculations for overall yield index (bCT ) and three lower confidence bounds based on bootstrap technique and the corresponding non-
conformities

Dual-fiber tips bCT Bootstrap lower confidence bound of CT

SB method PB method BCPB method

Index value 0.864 0.756 0.763 0.755
Non-conformities 9526 ppm 23317 ppm 22079 ppm 23452 ppm
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displays the manufacturing quality and its
corresponding ppm of non-conformities for the
dual-fiber tips processes using the estimated bCT

values and the lower confidence bounds of CT

based on the three bootstrap methods.
Based on the analysis of Table 5, we could find

that the modified product capability obtained
using three bootstrap methods are certainly more
reliable than the estimated bCT index values, since
the sampling errors are considered in the LCB ap-
proach. In fact, as the sample estimate bCT may
overestimate the true capability (overall process
yield), it conveys unreliable and misleading infor-
mation, which should be avoided in factory appli-
cations. The lower confidence bound not only
gives us a clue on the minimal actual performance
of the process which is tightly related to the frac-
tion of non-conforming units, but is also useful
in making decisions for capability testing.
7. Conclusions

Process capability indices establish the relation-
ship between the actual process performance and
the manufacturing specifications, which quantify
process potential and process performance, are
essential to any successful quality improvement
activities and quality program implementation.
Capability measure for processes with single char-
acteristic has been investigated extensively, but is
comparatively neglected for processes with multi-
ple characteristics. In real applications, a process
often has multiple characteristics with each having
different specifications. MPPAC can be used for
evaluating the performance of a multi-process
product, sets the priorities among multiple pro-
cesses for capability improvement and indicates if
reducing the variability, or the departure of the
process mean should be the focus of improvement.
However, existing applications on MPPAC con-
trol charts simply look at the estimated indices val-
ues and then make a conclusion on which the given
process is classified, is highly unreliable and mis-
leading since they didn�t considered sampling
errors. We proposed a reliable approach to con-
vert the estimated index values into the lower con-
fidence bounds, then plot the corresponding lower
confidence bounds on the MPPAC. The lower
confidence bound obtained by analytical method
gives us reliable performance measure for each sin-
gle characteristic and overall production yield.
Based on the proposed approach, the practitioners
can make reliable decisions for capability testing
and monitoring the performance of all process
characteristics simultaneously.
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