
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006 1175
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Abstract—This paper proposes a wavelet adaptive backstepping
control (WABC) system for a class of second-order nonlinear sys-
tems. The WABC comprises a neural backstepping controller and
a robust controller. The neural backstepping controller containing
a wavelet neural network (WNN) identifier is the principal con-
troller, and the robust controller is designed to achieveL2 tracking
performance with desired attenuation level. Since the WNN uses
wavelet functions, its learning capability is superior to the con-
ventional neural network for system identification. Moreover, the
adaptation laws of the control system are derived in the sense of
Lyapunov function and Barbalat’s lemma, thus the system can be
guaranteed to be asymptotically stable. The proposed WABC is
applied to two nonlinear systems, a chaotic system and a wing-
rock motion system to illustrate its effectiveness. Simulation results
verify that the proposed WABC can achieve favorable tracking per-
formance by incorporating of WNN identification, adaptive back-
stepping control, and L2 robust control techniques.

Index Terms—Adaptive control, backstepping control, chaotic
system, robust control, wavelet neural network (WNN), wing-rock
system.

I. INTRODUCTION

RECENTLY, the neural network-based control technique
has represented an alternative method to solve control

problems [1]–[6]. The most useful property of neural networks
is their ability to approximate arbitrary linear or nonlinear
mapping through learning. Based on their approximation
ability, the neural networks have been used for approximation
of control system dynamics or controllers. The basic issues in
neural network feedback control are to provide online learning
algorithms that do not require preliminary offline tuning.
Some of these online learning algorithms are based on the
backpropagation learning algorithm [2], and some are based
on the Lyapunov stability theorem [1], [3]–[6]. Recently, some
researchers have developed the structure of neural network
based on the wavelet functions to construct the wavelet neural
network (WNN) [7]–[10]. Unlike the sigmoidal functions
used in conventional neural networks, wavelet functions are
spatially localized, so that the learning capability of WNN is
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more efficient than the conventional sigmoidal function neural
network for system identification. The training algorithms for
WNN typically converge in a smaller number of iterations
than for the conventional neural networks [7]. There has been
considerable interest in exploring the applications of WNN
to deal with nonlinearity and uncertainties of real-time servo
control system [11]–[14]. These WNN controllers combine
the capability of artificial neural networks for learning ability
and the capability of wavelet decomposition for identification
ability. Thus, the WNN-based control systems can achieve
better control performance than NN-based control systems.

In the past decade, backstepping design procedures have been
intensively introduced [15]–[18]. The backstepping control is a
systematic and recursive design methodology for nonlinear sys-
tems to offer a choice to accommodate the unmodeled nonlinear
effects and parameter uncertainties. The essence of backstep-
ping design is to select recursively some appropriate functions
of state variables as pseudocontrol inputs for lower dimension
subsystems of the overall system. Each backstepping stage re-
sults in a new pseudocontrol design, expressed in terms of the
pseudocontrol designs from preceding design stages. When the
procedure is terminated, a feedback design for the true control
input results, which achieves the original design objective by
virtue of a final Lyapunov function, which is formed by sum-
ming up the Lyapunov functions associated with each individual
design stage [15].

Robust control techniques have been used as the system is
subject to bounded external disturbances whose upper bound is
unknown. Combing the robust control with adaptive fuzzy con-
trol, some robust adaptive fuzzy control approaches have been
proposed to attenuate the effects of approximation error to a pre-
scribed level [19]–[21].

This paper proposes a wavelet adaptive backstepping control
(WABC) system for a class of second-order nonlinear systems;
this control system combines the advantages of WNN identi-
fication, adaptive backstepping control, and robust control
techniques. The proposed WABC is comprised of a neural back-
stepping controller and a robust controller. The neural backstep-
ping controller containing a WNN identifier is designed in the
sense of the backstepping control technique, and the WNN iden-
tifier is utilized to online estimate the system dynamic function.
The robust controller is designed to achieve tracking per-
formance by attenuating the effect of the approximation error
caused by the WNN identifier. The adaptive laws of the WABC
system are derived in the sense of Lyapunov function and Bar-
balat’s lemma; thus the system can be guaranteed to be asymp-
totically stable. Finally, a chaotic system and a wing-rock mo-
tion system are provided as the simulation examples to verify
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that the proposed WABC scheme can achieve favorable tracking
performance with regard to parameter variations and unknown
dynamic function.

II. DESIGN OF IDEAL BACKSTEPPING CONTROLLER

Consider a class of second-order nonlinear systems

(1)

where is the state trajectory of the system, which is assumed
to be available for measurement, is a unknown real con-
tinuous function, and is the input of the system. The control
objective is to find a control law so that the state trajectory can
track a trajectory command closely. Assuming that the pa-
rameters of the system (1) are known, the design of ideal back-
stepping controller is described step-by-step as follows.

Step 1) Define the tracking error

(2)

and the derivative of tracking error is defined as

(3)

The can be viewed as a virtual control in the equa-
tion. Define the following stabilizing function

(4)

where is a positive constant.
Step 2) Define

(5)

then the derivative of is expressed as

(6)

Step 3) If the system dynamic function is known, the ideal
backstepping controller can be obtained as

(7)

where is a positive constant. Substitution of (7)
into (1) yields

(8)

Step 4) Define a Lyapunov function as

(9)

Differentiating (9) with respect to time and using
(3), (6), and (8), it is obtained that

(10)

Fig. 1. Network structure of a WNN.

Since , that is , it implies that
and are bounded. Now define the following

term:

(11)

then

(12)

Because is bounded and is nonin-
creasing and bounded, the following result can be
obtained:

(13)

Also is bounded, so by Barbalat’s Lemma [22], it
can be shown that . This implies that

and converge to zero as . Therefore, the
ideal backstepping controller in (7) will asymptoti-
cally stabilize the system.

III. DESIGN OF WAVELET ADAPTIVE

BACKSTEPPING CONTROLLER

Since the system dynamic function may be unknown
or perturbed in practical application, the ideal backstepping con-
troller (7) cannot be precisely obtained. To solve this problem,
a WNN identifier is utilized to approximate the system dynamic
function. The descriptions of the WNN identifier and the design
steps of the control system are described as follows.

A. WNN Identifier

The network structure of the WNN identifier is shown in
Fig. 1, which can be considered as “1”-layer feedforward neural
network with input preprocessing element. The WNN output
with wavelet basis functions can perform the mapping ac-
cording to [7]

(14)

where is the input vector,
, are the wavelet
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functions, and
are the dilation and translation

parameters, respectively, is the output layer weight,
and is the number of units (also called nodes and neurons)
in the translation layer. Each wavelet network’s neuron in the
translation layer can be represented by

(15)

where the “Mexican hat” mother wavelet function is defined
as . For ease of notation, (14) can be

expressed in a compact vector form as

(16)

where ,
, , and

. By the universal approximation
theorem, there exists an ideal WNN identifier such that [7]

(17)

where denotes the approximation error and is assumed to be
bounded by , in which is a positive constant;
and , , and are the optimal parameter vectors of , ,
and , respectively. In fact, the optimal parameter vectors that
are needed to best approximate a given nonlinear function are
difficult to determine. Thus, an estimate function is defined as

(18)

where , , and are the estimation of , , and , respec-
tively. For notational convenience, denote
and . Define the estimated error as

(19)

where and . In the following, some
tuning laws will be derived to online tune the parameters of the
WNN identifier to achieve favorable estimation of the system
dynamic function. To achieve this goal, the Taylor expansion
linearization technique is employed to transform the nonlinear
function into a partially linear form [5], i.e.,

...
...

...
(20)

or

(21)

where ; ; is a vector of higher
order terms; ;

; and
and are defined as

(22)

(23)

Substitution of (21) into (19) yields

(24)

where the uncertain term .

B. WABC System

The proposed WABC system is shown in Fig. 2, which is
comprised of a neural backstepping controller and a robust
controller . The tracking error is defined in (2), a stabi-
lizing function in (4), and in (5). The control law of the
WABC is developed as follows:

(25)

The neural backstepping controller is chosen as

(26)

where the WNN identifier is designed to online estimate the
system dynamic function . Substitution of (25) and (26) into
(1) yields

(27)

By substituting (24) into (27), we obtain

(28)

Then, Theorem 1 shows the properties of the proposed WABC
control system.
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Fig. 2. WABC for nonlinear systems.

Theorem 1: Consider a nonlinear system represented by (1).
The control system is designed as (25) where the neural back-
stepping controller is designed as (26), in which the adaptation
laws of the WNN identifier are designed as

(29)

(30)

(31)

where , , and are the learning rates with positive con-
stants, and the robust controller is designed as

(32)

where is a prescribed attenuation constant. Then, the overall
control scheme guarantees the following properties:

1)

(33)

where .
2) If is squared integrable, that is , then

.

Proof: Define a Lyapunov function as

(34)

Differentiating (34) with respect to time and using (2) and
(28)–(32)

(35)

Integrating (35) from to , yields

(36)

Since , (36) implies the following:

(37)

Using (34), (37) is equivalent to (33). Since is finite, if the
approximation error , that is , using the
Barbalat’s lemma [22], it implies that .



HSU et al.: WAVELET ADAPTIVE BACKSTEPPING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS 1179

Remark 1: The inequality (33) reveals that the integrated
squared error of is less than or equal to the sum of some initial
squared errors, some parameter initial squared value and the in-
tegrated squared error of . Since the initial squared errors and
parameter initial squared value are finite, if is squared inte-
grable then we can conclude that will approach to zero.

Remark 2: If the system starts with initial conditions
, , , , and , then the

performance in (33) can be rewritten as

(38)

where the -gain from to the must be equal to or less than
a level [19]–[21].

IV. SIMULATION RESULTS

In this section, the proposed WABC technique is applied to
control two nonlinear systems: a chaotic system (Example 1)
and a wing-rock motion system (Example 2). It should be em-
phasized that development of the WABC does not require the
knowledge of the system dynamic function.

1) Example 1 (Chaotic System): Chaotic systems have been
known to exhibit complex dynamical behavior. Several control
techniques have been proposed for the chaotic systems [23], ;
however, some of them cannot achieve favorable control per-
formance and some of them require system dynamic function.
Consider a second-order chaotic system such as well known
Duffing’s equation describing a special nonlinear circuit or a
pendulum moving in a viscous medium under control [23]

(39)

where , , , and are real constants; is the time variable;
is the frequency; is the
system dynamic function; and is the control effort. Depending
on the choice of these constants, it is known that the solutions of
system (39) may exhibit periodic, almost periodic, and chaotic
behavior. For observing the chaotic unpredictable behavior, the
open-loop system behavior with was simulated with

, , , and . The phase plane plots
from an initial condition point (1,1) are shown in Fig. 3(a)–(c)
for , , and , respectively. It is shown
that the uncontrolled chaotic system has different trajectories for
different values.

The system dynamic function would be online estimated by
the WNN identifier. A WNN identifier with five hidden nodes is
utilized to approach the system dynamic function of the chaotic
system. In addition, the control parameters are selected as

, , and for .
These parameters are chosen through some trials to achieve fa-
vorable transient control performance. The trajectory command
is set as . The simulation results of the WABC for

, , and are shown in Figs. 4–6, re-
spectively. For the attenuation level , the tracking re-
sponses of state are shown in Figs. 4(a)–6(a); the tracking
responses of state are shown in Figs. 4(b)–6(b); and the as-
sociated control efforts are shown in Figs. 4(c)–6(c), respec-
tively. Moreover, to achieve smaller attenuation level, the case

Fig. 3. Phase plane of uncontrolled chaotic system.

for is reconsidered. In this case, the tracking responses
of state are shown in Figs. 4(d)–6(d); the tracking responses of
state are shown in Figs. 4(e)–6(e); and the associated control
efforts are shown Figs. 4(f)–6(f), respectively. A performance
index is defined as . The performance index

is shown in Figs. 4(g)–6(g), respectively. It is shown that the
proposed WABC can achieve favorable tracking performance;
moreover, the better tracking performance can be achieved as
specified attenuation level is chosen smaller.

2) Example 2 (Wing-Rock Motion System): Some combat air-
crafts often operate at subsonic speeds and high angles of attack.
These aircrafts may become unstable due to oscillation, mainly
a rolling motion known as wing-rock motion [24], [25]. A dy-
namic system of the wing-rock motion system can be written in
a state variable form as

(40)

where is the roll angle and the parameters ,
are nonlinear functions of the angle of attack. The aerodynamic
parameters are given by , ,
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Fig. 4. Simulation results of chaotic system for q = 0:62.

, , , and
. The open-loop system time response with

Fig. 5. Simulation results of chaotic system for q = 1:95.

was simulated for two initial conditions: a small initial condition
( , s ) and a large initial condition ( ,
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Fig. 6. Simulation results of chaotic system for q = 7:00.

s ). The phase-plane plot is shown in Fig. 7. For the
small initial condition, a limit cycle oscillation is obtained, and

Fig. 7. Phase-plane portrait of uncontrolled wing-rock motion system.

for the large initial condition, the roll angle is divergent. Thus,
it is shown that the uncontrolled nonlinear wing-rock motion
system will be unstable for some initial conditions.

The system dynamic function would be online estimated by
the WNN identifier. A WNN identifier with five hidden nodes is
utilized to approach the system dynamic function of the wing-
rock motion system. In addition, the control parameters are se-
lected as , , and
for . These parameters are chosen through some
trials to achieve favorable transient control performance. The
simulation results of the WABC for small and large initial con-
ditions are shown in Figs. 8 and 9, respectively. For the attenua-
tion level , the tracking responses of state are shown in
Figs. 8(a) and 9(a); and the associated control efforts are shown
Figs. 8(b) and 9(b), respectively. Moreover, to achieve smaller
attenuation level, the case for is reconsidered. In this
case, the tracking responses of state are shown in Figs. 8(c)
and 9(c); and the associated control efforts are shown Figs. 8(d)
and 9(d), respectively. A performance index is defined as

. The performance index is shown in Figs. 8(e)
and 9(e), respectively. It is shown that the proposed WABC can
achieve favorable tracking performance. Similar to the chaotic
system (Example 1), the better tracking performance can be
achieved as specified attenuation level is chosen smaller.

V. CONCLUSION

For some systems, since the dynamic characteristics of the
control system are nonlinear and the precise models are diffi-
cult to obtain, the model-based control approaches are difficult
to be implemented. To overcome this drawback, a novel WABC
system has been proposed. The developed WABC system is
comprised of a neural backstepping controller and a robust con-
troller. In the neural backstepping controller, a WNN identifier
is utilized to online estimate the system dynamic function. The
adaptive laws of the WABC system are synthesized using the
Lyapunov function and Barbalat’s lemma so that the asymptotic
stability of the control system can be guaranteed. The contri-
butions of the proposed design method are the use of WNN to
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Fig. 8. Simulation results of wing-rock motion system for small initial
condition.

achieve favorable identification performance, the use of adap-
tive backstepping control to achieve favorable control perfor-
mance, and the use of robust control to achieve tracking
performance with desired attenuation level. Finally, a chaotic
system and a wing-rock motion system are simulated to illus-
trate the effectiveness of the proposed design method. Simula-
tion results verified that the proposed WABC system can achieve
favorable tracking performance of these nonlinear systems.

Fig. 9. Simulation results of wing-rock motion system for large initial
condition.
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