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Abstract- The response of thermoacoustic waves propagating in a 
thin plate exerted by mechanical stress is characterized by the 
phase velocity dispersion curves and attenuation spectra in this 
paper. The stressed thin plate is assumed to be insonified by an 
intensity modulated CW laser which is modeled as a Gaussian 
beam. The constitutive relations and governing equations are 
formulated within the framework of acoustoelasticity and 
thermo-elasticity. Attenuation spectra in the vicinity of folding 
frequency can be used as a significant index correlative to 
residual stress in the specimen. The amplitude and phase of 
thermoacoustic response are sensitive to the mechanical stress 
applied to specimen if loading direction is parallel to the direction 
of wave propagation. 
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I. INTRODUCTION

Determination of residual stresses in manufacturing is a 
major issue in the industries of semiconductor, flat panel 
display, steel, etc.  In most studies, acoustoelasticity theory was 
used to determine residual stresses [1-2]. Thermoacoustic 
waves become rather important in recent years [3-5]. It has 
been shown that thermoacoustic wave has great potential in the 
application of residual stress measurement. 

Laser-induced ultrasound and photoacoustics are thermal 
acoustic wave based nondestructive inspection techniques.  
Both have been received considerable attention in recent years 
because of either research interests or application purposes [6-
9]. The former technique acquires the far-field response 
generated by pulsed laser, but the latter measures the near-field 
response resulted from intensity modulated CW laser. Laser-
induced acoustic waves dissipate very fast in polycrystalline 
structures. The far-field response is too small to identify. It 
results in a need to understand the near-field, thermoacoustic 
wave response in the region close to the point-like thermal 
source. 

When an intensity modulated beam of light is launched to a 
specimen, part of energy carried by the laser beam is reflected 
from the surface of the specimen. Part of it is converted to 
thermal energy and absorbed by the medium. The remaining 
energy transmits through the specimen if the medium is 
transparent or obscure. The temperature fluctuation results in a 
static dilatation and outgoing elastodynamic waves from the 
source. 

This paper formulates the time-harmonic, thermoacoustic 
wave propagation within the framework of natural, initial, final 
coordinates provided by Pao at al [1]. It was originally used to 
establish the acoustoelasticity theory for determination of 
residual stresses in solids. The thermal waves possess inherent 
large attenuation which results in fast energy dissipation during 
propagation. Phase velocity dispersion curves and attenuation 
spectra for each mode of thermoacoustic waves in a thin copper 
plate under distinct stress states are determined numerically. 

II. THEORETICAL FORMULATION

Refer to the Cartesian coordinate system (X1, X2, X3) shown 
in Fig. 1 with the X3 axis normal to plate surface such that the 
plate occupies the region −∞ < X1, X2 < ∞, −h/2 < X3 < h/2. The 
incident laser beam is assumed to be modulated by a time-
harmonic function such that its intensity becomes a steady-state 
output coupled with a harmonic fluctuation. 

Let the width of the Gaussian profile be 2a. The heat flux 
transmitted into the medium from Gaussian beam at the top 
surface, X3 = 0, can be expressed by an amplitude modulation 
function in the form 
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where ),0,,( 213 ωkkQ  is the Fourier transform of the strength 
of incident beam at X3 = 0 and 

Figure 1. Schematic diagram of photoacoustic experiment. 
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The thermoacoustic response is represented as 

,
),(
),(

4
1

),,,(

21
)(

32

3213

2211

∞

∞−

∞

∞−

+

ω
ω

π
=

ω

dkdkeQ
kD
kN

XXXu

XkXki

I

I
     (3) 

in which kI (I = 1, 2) is wave number in the XI direction. The 
zero denominator, D(kI, ω) = 0, yields the dispersion equation 
for thermoacoustic waves propagating in the thin plate. 

A. Constitutive Relations 
Consider a material body has undergone a deformation 

from natural state through initial state to final state as shown in 
Fig. 2. The natural state indicates the original state free of 
stress and strain. The initial state is a pre-deformed state in 
which residual stresses remain. When a thermal induced 
acoustic wave is superposed on the body in the initial state, the 
body is further deformed to the final state. Assume that there is 
no temperature change between the natural state and the initial 
state. The stress components TIJ and the increment of entropy Ξ
satisfy the following constitutive equations: 

∆Θλ−= IJLKIJKLIJ ucT , ,    ∆Θα+λ=Ξ LKKLu , ,      (4) 

where the subscripts I, J, K, L = 1, 2, 3; uK,L and ∆Θ indicates the 
strain changes and temperature rise caused by the external 
disturbance applied to the initial state. IJKLc , IJλ  and α  denote 
the elastic constants, thermal modulus and thermal constant 
influenced by initial strains, respectively. They are of the form 
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where iiii
NN uuue 3,32,21,1 ++=  denotes cubic dilatation; cIJKL,

cIJKLMN, λIJ and α are the second-order and third-order elastic 
constants, thermal modulus and thermal constant measured in 
the natural state, respectively. Both cIJKL and cIJKLMN possess 
symmetry property. The effective elastic constants involving 
residual stress effect are usually expressed in Voigt’s notation. 
The correspondence between the initial strains i

LKu ,  and the 
initial (residual) stresses i

IJT  is in the form of i
LKIJKL

i
IJ ucT ,= .

B. Governing Equations 
Based on the theory of acoustoeleasticity, the elastic wave 

propagation in a medium under residual stress must satisfy the 
equations of motion in the initial state of the form 
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where the mass density in the initial state is described by 
0)1( ρ−=ρ i

NNi e . Further, the balance of entropy and Fourier 
heat transfer equation in the initial state are of the form 

tX i
J

J

∂
Ξ∂Θ−=

∂
∂q ,

K
JKJ X∂

∆Θ∂−= )(kq ,      (7) 

Figure 2. The coordinates at the natural, initial, and final states. 

where iΘ  is the temperature in initial state, Jq  the heat flux, 
JKk  the thermal conductivity effected by the initial strains 

i
LKu , . In the case of isotropic medium, they are in the form of 
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in which k  is the thermal conductivity measured in the natural 
state. 

Substitution of the constitutive equations (4) of a 
thermoelastic state with residual stress into (7) yields the 
differential equations of thermoelastic wave propagation as 
follows: 
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C. Dispersion of Thermoelastic Waves 
Consider that the displacements and temperature of a 

thermoelastic wave possess time-harmonic dependence in the 
form: 
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Substituting (11) back into (9)-(10) results in a thermoelastic 
Christoffel equation as follows: 
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where )( IK
i
JLIJKLLJIK Tcnn δ+=Γ , IJJI n λ=Λ , JKKJ nn kK = .

The non-trivial solution of (12) provides a characteristic 
equation, in which the phase velocity c along a prescribed 
propagating direction ],,[ 321 nnn=n  are an implicit function of 
the angular frequency ω.

Consider a thin isotropic plate structure as an example. A 
thermoelastic wave is assumed to propagate along the X1-axis. 
Therefore (12) can be decomposed into an individual equation 
for SH wave as well as a set of coupled equations for P-SV 
waves and thermal wave. The coupled Christoffel equations for 
P-SV waves and thermal wave are given by 
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The products of wave number k and the components of wave 
normal n1, n3 in (13) will be replaced by k, ζ, respectively. 

The characteristic equation is a cubic polynomial in terms 
of the square of wave number ζ2. It should be noted that the 
roots ζi may be real or complex and for definiteness we assume 
Im(ζi) ≥ 0 (j = 1, 3, 4). Let the eigenvalues be expressed as ± ζ1,
± ζ2, ± ζ3, respectively. The term with 0)(Re >ζ  corresponds 
to the down-going waves propagating along the positive X3
direction. On the other hand, the term with 0)(Re <ζ  denotes 
those up-going waves traveling toward the negative 3X
direction. The eigenvector components, ±

1U , ±
3U , ±

4U , are 
proportional to the parameters ±

jip  as follows: 
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where ±±±
jjj ppp 431 ,,  denote the determinants of corresponding 

submatrices in (13). 

The thermoelastic waves propagating in a thin plate are 
dispersive because of geometric constraints on the upper and 
the bottom boundaries.  The surface traction and surface heat 
flux are assumed to be free on both boundary surfaces (X3 = ±
h), i.e., T13 = T33 = q3 = 0. The dispersion equations for 
symmetric and anti-symmetric modes are derived as follows: 
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III. RESULTS AND DISCUSSION

The dispersion relation is a complex equation in terms of 
complex roots η+ω= ick , in which the imaginary part is 
named the attenuation. A wave does not propagate far away if 
the attenuation η is large. The complex roots were determined 
through a numerical scheme using the simplex method to find 
the minimum magnitudes of the dispersion function.  

Figs. 3-6 show the phase velocity dispersion curves and 
attenuation spectra for antisymmetric and symmetric modes of 
thermoacoustic waves propagating along the X1 direction in a 
copper foil. With increase of frequency, the phase velocities of 
A0 and S0 modes converge to a constant speed corresponding to 
Rayleigh wave speed. The attenuations of both fundamental 
modes also merge together. The convergent value is about −12 

dB/mm at 100 MHz. Four stress states, including initial state, 
biaxial stress state, and uniaxial stress states loaded in X1 and 
X2 directions, were considered. The physical constants for 
copper foil [10] used in numerical computation are listed below. 

mm1.0=h ,  K3000 =Θ , 3
0 kg/m920,8=ρ ,

GPa1.18811 =c ,    GPa894,1111 −=c , GPa401144 −=c ,
GPa9.10812 =c ,    GPa745112 −=c , GPa287155 −=c ,

GPa6.3944 =c , GPa56123 =c , GPa75456 =c ,
K/1019 6

3
−×=γ , 344123 )23( γ+=λ cc ,

KJ/kg385E =C ,  KW/m3983 =k .

The phase velocity variations caused by biaxial or uniaxial 
stress applied in the X1 or X2 direction are distinguishable in 
higher order modes. Except A0 mode, the attenuation spectrum 
of each mode has its own minimum at a specific frequency, 
which is called the folding frequency. Thermoacoustic waves 
can propagate farther away at folding frequency because of 
smaller attenuation. The value is correlative to the magnitude 
of residual stress in the frequency range lower than folding 
frequency. Beyond the folding frequency, attenuation of each 
mode reaches to a large value, thereafter slowly decreases with 
increase of frequency. Mechanical tensile stress applied to the 
specimen in any direction increases the value of minimum 
attenuation for thermoacoustic waves traveling along the same 
direction. The effect diminishes in the transverse direction. 

The amplitude of thermoacoustic response is dominated by 
the attenuation spectra. The differences among the attenuation 
spectra for distinct mechanical stress states are clear around the 
folding frequency. The amplitude measured in the vicinity of 
folding frequency can be used as an index for residual stress. 
Further, the phase velocity variation of S0 mode is really 
distinguishable for different mechanical stress applied to the 
specimen as contrasted with A0 mode. The S0 mode is superior 
to other modes in determining residual stress using amplitude 
and phase of the response of thermoacoustic waves. 

The computation of frequency response can be carried out 
by wave-number integration such as the modified Clenshaw-
Curtis numerical scheme [11]. The transient response due to 
pulsed laser source are further determined from frequency 
responses through the inverse fast Fourier transform. Before 
executing lengthy computation, the attenuation spectra provide 
us the detailed characteristics of the thermoacoustic waves.  

IV. CONCLUSION

The response of thermoacoustic waves propagating in a 
thin plate subjected to mechanical stress is characterized by the 
phase velocity dispersion curves and attenuation spectra. 
Except A0 mode, the attenuation spectrum of each mode has a 
minimum at its own folding frequency. The attenuation spectra 
for distinct mechanical stress states have distinguishable 
changes in the vicinity of folding frequency. Amplitude change 
of thermoacoustic response corresponds to the magnitude of 
attenuation. Amplitude spectra around folding frequency can 
be used as an index correlative to residual stress. The S0 mode 
has better potential than other modes in determining residual 
stress in low frequency range. 
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Figure 3. Phase velocity dispersion curves of antisymmetric modes. 

Figure 4. Attenuation spectra of antisymmetric modes. 

Figure 5. Phase velocity dispersion curves of symmetric modes. 

Figure 6. Attenuation spectra of symmetric modes. 

A copper foil under four stress states, including initial state, 
biaxial stress state, and uniaxial stress states loaded in the X1
and X2 directions, were considered in numerical investigation. 
Computational results show that variations in amplitude and 
phase of thermoacoustic response are sensitive to mechanical 
stress applied to the specimen if loading direction is parallel to 
the direction of wave propagation. 
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