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Abstract: Thinning is a very important operation in the pre-processing stage of fingerprint
recognition. With the availability of fast thinning hardware, real-time image processing
applications can be achieved. The authors introduce a detailed hardware architecture design of a
thinning processor used in an embedded fingerprint recognition system. The proposed thinning
algorithm has a parallel-pipelining structure suited to hardware realisation, which is implemented
and verified using FPGA. Equipped with a modification unit array, a designated operating schedule,
and an address generator based on systolic counter, this thinning processor is able to perform a
thinning operation within 0.07 s at 40 MHz for a 512 � 512 picture, which is at least 40 times
faster than software execution. Consequently, the proposed thinning processor was successfully
integrated into a real-time fingerprint recognition system.

1 Introduction

Many problems, such as fingerprint recognition [1, 2] and
remote video surveillance systems [3], have to deal with
large volumes of input image data in real time. Usually,
the original input data contains more information than is
necessary for object tracking, image pattern recognition or
personal identification purposes. Several articles have
demonstrated different ways of using thinning [1, 2, 4–10],
or other means of image pre-processing methods to reduce
the amount of input image data for real-time imaging appli-
cations. Indeed, the design architecture by Hsiao et al. [10] is
a preliminary version of the current article.

Fingerprints, along with other characteristics such as iris,
palm prints, speech sounds and DNA, are unique to each
individual human being and are often used in person identi-
fication. Fingerprint recognition is, by far, most common
and has a wide range of applications such as entrance
control, attendance management and network authorisation
as well as encryption. A full fingerprint recognition proces-
sing cycle can be roughly divided into four stages: the
image acquisition, image pre-processing, feature encoding
and feature matching. More specifically, the image pre-
processing stage involves transformation, segmentation,
binarisation and thinning.

Thinning, or skeletonisation, is a well-known image
pre-processing technique used to extract distinctive or
significant features from digital patterns. Usually, this is
done by iteratively removing black pixels, such that an
object without holes that will be eroded to a minimally

connected stroke, or an object with holes that will be eroded
to a minimally connected ring, until the skeleton, or the
stick diagram of the original image is retrieved by preserving
its connectivity.
Recently, because of the rapid progress in VLSI design,

numerous researches have demonstrated different ways on
how to improve the performance and speed of sequential
and parallel thinning algorithms. Several enhanced thinning
algorithms [4–6] were proposed for real-time image proces-
sing. However, the VLSI design [6, 8, 11] issue for thinning
operation based on the wide usage and well-known thinning
algorithm [9] still remains elusive. For example, the pipe-
lined design [6] was based on a different algorithm from
ours. The hardware used by Ranganathan and Doreswamy
[6] was very large in comparison with ours. For a
512 � 512 image, the number of processing units (PEs)
needed by Ranganathan and Doreswamy was 512 [6];
however, the proposed design requires eight PEs for any
size of the processed image. To overcome this problem,
and meet the real-time constraint in image applications,
this study proposes a faster thinning algorithm and a
novel pipelined architecture to realise this algorithm [9].
The pipelined thinning architecture is based on the well-

known frame technique and repeatedly uses a 3�3 mask to
scan the image. The same operation is performed on each
pixel, and the result is, henceforth, a simple function of
input pixel and its neighbourhood values [12, 13]. In this
study, we modify Zhang’s thinning algorithm [9] and use
FPGA hardware to implement this externally pipelined
and internally parallel thinning algorithm to achieve the
skeletonisation of a 512 � 512 binary raw image at high
clock rate. Region pixels are assumed to have a value of
1, whereas background pixels have a value of 0. The
selected algorithm is superior to other existing parallel thin-
ning algorithms, because it is capable of processing eight
pixels at once. It also has the merits of simplicity and regu-
larity to hardware realisation and is able to reuse the same
resource to process the image data in different iterations.
Another notable benefit is that, unlike many sequential
and parallel algorithms proposed in the literature, the
selected algorithm does not require random access to
image pixel, which helps us to derive an efficient pipelined
solution.
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2 Parallelism of modified thinning algorithm

To fully promote the performance of the Zhang and Suen’s
[9] thinning algorithm and migrate the algorithm to a suc-
cessful hardware realisation, we analysed the original algor-
ithm for optimising hardware parallelisation, and completed
its pipelined architectural design.

2.1 Review of Zhang and Suen’s thinning
algorithm

In Zhang and Suen’s original algorithm, the object pixels
were defined to have a value of 1 and the background
pixels have a value of 0. The algorithm consists of succes-
sive passes of two loops to the centre pixel of a given 3 � 3
region. Consulting the 8-neighbour pixel definition as
shown in Fig. 1, the first loop flags a contour pixel P1 for
deletion while the following conditions were satisfied

ðaÞ 2 � N ðP1Þ � 6

ðbÞ SðP1Þ ¼ 1

ðcÞ P2 � P4 � P6 ¼ 0

ðdÞ P4 � P6 � P8 ¼ 0

ð1Þ

where N(P1) is the number of non-zero neighbours of P1;
that is, N(P1) ¼ P2þ P3þ P4þ P5þ P6þ P7þ P8þ P9

and S(P1), the number of 0–1 transitions in the ordered
sequence of P2, P3, . . . , P9. In the second loop, conditions
(a) and (b) remain the same, whereas conditions (c) and (d)
were changed to

ðc0Þ P2 � P4 � P8 ¼ 0

ðd0Þ P2 � P6 � P8 ¼ 0
ð2Þ

After applying the first loop operations to all object
pixels, those pixels that were flagged for removal are
deleted immediately. The second loop operations are then
applied to the object pixels of the resulting data in a
similar manner. Under repeated iterations of both loops,
the final thinned skeleton can be obtained.
For software implementation, before applying the con-

dition checks to all encountered pixel, we need to make
sure that the current processing pixel is an object pixel. If
it is an object pixel, in the first step we need to perform
eight memory fetches and eight load operations to retrieve
data for the current 3 � 3 region, and accumulate the
8-neighbour-pixel values to check whether condition (a) is
satisfied. In the second step, we need to further check
whether there is only one 0–1 transition in the 8-neighbour
pixel data. The third step is to check if any of the three

pixels P2, P4 and P8 is a background pixel, and similarly,
the fourth step is to check the other three pixels P4, P6

and P8 for the existence of background pixel. If all the
four conditions in the first loop are satisfied, the centre
pixel of the current 3 � 3 region will be flagged for
removal. When all pixels are processed, those flagged
pixels would be removed and enter the second loop oper-
ations, which are performed similar to those in the first loop.

In the original algorithm of Zhang and Suen, the
operation starts with checking of the image frame from
upper-left to lower-right corner, pixel-by-pixel. For each
encountered object pixels, its 8-neighbour pixel must
be identified and then used to decide whether the centre
pixel is a contour pixel. Therefore processing of a centre
pixel in sequential approach requires one plus eight
memory fetch cycles and one plus eight operand load
cycles. Moreover, six memory fetch cycles and six load
cycles are wasted during the transition between processing
the current 3 � 3 region and the next 3 � 3 region.
Therefore complete thinning operation for an image size
of 512 � 512 will take at most 512 � 512 � 9 fetch
cycles and 512 � 512 � 9 load cycles.

2.2 Design of our modified thinning algorithm

From the analysis mentioned in the previous subsection,
when processing an object pixel, a lot of clock cycles are
wasted during the evaluation stage. Yet, even more clock
cycles are wasted while fetching its 8-neighbour pixel. It
is also quite easy to observe that some of the currently
fetched data might have already been fetched by the pre-
vious fetch operation, and are ready to be reused by the
current evaluation stage, which leads to our improved thin-
ning algorithm.

In order to follow the rule of stable execution cycle in a
von Neumann machine, and develop a pipelined dataflow
machine to speed up execution rate, we make the following
assumptions.

Assume that in our machine, there are:

(a) Three individual on-chip RAM modules grouped as a
RAM bank.
(b) Three register sets H, M, L, used to hold the subsequent
data of 3 � 3 image regions.
(c) Each register set has 10 bits and is divided into three
subgroups l (1-bit), m (8-bit), and r (1-bit) as shown in
Fig. 2. Both subgroups l (1-bit) and m (8-bit) are designed
as temporary registers and used to produce the first bit
and the last bit of the subgroup register m (8-bit), respect-
ively. In each execution cycle, the register set is allowed
to compute and shift out 8-bits in parallel.

Accordingly, we modify the thinning algorithm as
follows:

(a) Shift the least significant bit of the m subgroups to l sub-
groups, and store previous processed data to the temporal
register. Also fetch the data from the main memory to the
RAM bank.

Fig. 1 Neighbourhood arrangement for the thinning algorithm

Fig. 2 Register sets
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(b) Feed the data fetched from the three on-chip RAM
modules to the three m subgroups.
(c) Feed the third RAMmodule with the main memory data
fetched at step (a), while the first and second RAM modules
with the data stored on the second and third RAM modules.
(d) While fetching data to the RAM bank, store the pro-
cessed result in previous execution cycle back to main
memory.
(e) Feed the r subgroups with the data fetched from the
RAM bank directly.
(f ) Execute parallel operations in the modification unit
array.

The dataflow inside the three RAM modules as well as
its relation with the main memory and the three register
sets are shown in Fig. 3. The dataflow block diagram
based on our modification is shown in Fig. 4. In our modi-
fied thinning algorithm, we combine the checking step and
the deletion step into one single step. It only takes
six clock cycles to complete one parallel pipelined
execution cycle.

2.3 Hardware realisation of the proposed
pipelined dataflow

The three register sets shown in Fig. 2 are used to hold the
current eight image pixels and their eight neighbourhoods.
Moreover, each register set has 10-bit data and is divided
into three subgroups, l (1-bit), m (8-bit) and r (1-bit),
respectively. During every execution cycle, the 8-bit data
are processed simultaneously.

In order to implement the pipelining and parallel archi-
tecture, to avoid the long latency of the two sequences of
eight image pixels, the RAM bank is organised as a pipeline
operation to increase the throughput. In Fig. 3, the shaded
columns in the RAM bank indicate the overwritten part
by the previously fetched image data from the lower part
of the RAM bank. The input data of the third RAM
module in the RAM bank comes from external memory.
The data pair (x, y) in Fig. 3 indicates the xth image line
and the yth image pixel.

In Zhang and Suen’s thinning algorithm, it takes four
steps in sequence to check whether all the four conditions

are satisfied, whereas each step may take two or more
clock cycles. However, because of the fact that the four
check conditions are independent of each other, we
propose four block modules in the modification unit. Each
module works for one check condition so that our design
can execute these four checking steps simultaneously.
Therefore the number of execution cycles in our work can
be reduced from eight or more clocks to one clock.
According to the aforementioned improvement, the
proposed modification unit array will be in charge of the
arithmetic checking operations for the four conditions.
More details about the modification unit array are discussed
in the following section.

3 Proposed function units

In this section, we present the proposed modularised
hardware scheme for our faster thinning algorithm. The
overall proposed pipelined thinning hardware architecture
is shown in Fig. 5, which comprises a modification unit
array, a storage unit, a controller and an address generator.
The continue register produces an enable flag to the control-
ler and the temporal register is used as a buffer between the
modification unit array and the main memory. These units
are linked together in a pipelined structure. The systolic
counter [14] used in the address generator is better than
the conventional counter or dynamic counter in terms of
delay time, signal sharpness and cost-effectiveness. From
Fig. 5, it is not hard to find that the register sets receive
their data from the RAM bank. Each register set acts as a
queue, while the RAM bank pushes the data to one end of
the register set and causes the register line to eject equival-
ent data from the other end.
In the following subsections, we will introduce each of

these function units. Moreover, at the end of this section,
we will describe the dataflow and the operating schedule
that makes all these units work together in a pipelined
manner.

3.1 Storage units

The storage unit comprises three register sets and the
on-chip RAM bank organised as three independent
memory modules. Because of the fact that the default
image size is 512 � 512, each of the RAM modules has
the capability of holding 512 bits for buffering one horizon-
tal image line. We divide each memory module into 64
columns with each column filled with eight adjacent
image pixels, as shown in Fig. 6. These column data are
mutually exclusive. As mentioned earlier, each register set
is divided into three subgroups l, m and r. The detailed
scheme of the register sets and their dataflow is illustrated
in Fig. 7.

Fig. 3 Dataflow of the RAM bank

Fig. 5 Block diagram of the proposed pipelined architecture

Fig. 4 Dataflow block diagram
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3.2 Modification unit array

As far as we know, the four condition checks of Zhang and
Suen’s thinning algorithm are independent of each other.
The modification unit and its operations have been proposed
in accordance with the four condition checks, as shown in
Fig. 8. As we have to process eight adjacent pixels in paral-
lel, the sequential procedural characteristics used to check
whether the current pixel is an object pixel is removed
from our design. In order to give the correct status of the
centre pixel P1 of the current 3�3 region, we use the
proposed modification unit to perform the corresponding
operations in combinational logic circuits. In the original
thinning algorithm, we need to perform two loops consecu-
tively, and the different operations employed in these two
loops are conditions (c), (d) and (c0), (d0), separately. In
our work, we perform conditions (c), (d), and (c0), (d0) sim-
ultaneously using the modification unit and apply a multi-
plexer to select the correct outcome. The signal ‘Step’
shown in Fig. 8 is designed for selecting conditions (c)
and (d), whereas it is low or otherwise for conditions (c0)
and (d0).
The modification unit array shown in Fig. 9 consists of

eight single modification units. Each modification unit per-
forms arithmetic calculation on a 3�3 region data, and has
its own arithmetic logic unit. However, all units share the
same three 10-bit input data from the register sets.

3.3 Dataflow

Consider the data flow of our pipelined thinning architecture
as illustrated in Fig. 10. The image data flow from the main

memory, through the three RAM modules, the three register
sets and then the modification unit array. Finally, they are
fed back to the main memory.

In the RAM bank, the first RAM module receives data
stored in the second RAM module, and the second RAM
module receives data stored in the third RAM module.
The third RAM module data are sourced from the main
memory. Meanwhile, each register set, which works as a
queue, gets input data from the corresponding RAM
module and ejects output data to the modification unit
array, in which we have the four condition checks to be exe-
cuted in parallel. The processed outcome pixels from the
modification unit array are stored back to their original
location in the main memory.

3.4 Address generator and operating schedule

In order to generate the required address to fetch the data
from the main memory, it is necessary to incorporate an
address generator in our design. The conventional ripple
counter failed to satisfy the real-time requirement owing
to the fact that a long latency exists for the signal to
travel from LSB to HSB. We adopted the long binary
counter proposed by Pekmestzi and Thanasouras [14].
This counter is based on systolic frequency, which has a
pipelined architecture differing from the conventional

Fig. 7 Detailed register sets scheme

Fig. 8 Single modification unit

Fig. 9 Modification unit array

Fig. 10 Dataflow path of our pipelined architecture

Table 1: One parallel pipelined execution cycle

Step 1 2 3 4 5 6

Register sets Load Load Load Execute

RAM bank Fetch Load Fetch

Main memory Fetch Fetch Store Store

Fig. 6 RAM module format
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binary counter. The main advantages of using such a
counter are: (i) simple iterative circuit; (ii) very fast oper-
ation because of the local interconnections, the minimum
propagation delay time for the count enable signal and the
low level fan-in requirements; and (iii) operation frequency
is independent of the counter size.

For achieving a high-speed thinning architecture, the
proposed functional pipelining is a key to obtain the
impressive performance. Before starting to schedule
the pipelining, we have to first review the operations of
the improved thinning algorithm as mentioned in Section
2. The six clock steps for one pipelined execution cycle
of our proposed thinning algorithm are listed in Table 1. In
the first clock step, the loaded data are to the left 1-bit register
in each register set and the data are fetched from the RAM
bank and from the main memory in parallel. In the second
step, the data fetched from the RAM bank in the first clock
step are loaded to the middle 8-bit register in each register
set. The third step is to load main memory data to the
RAM bank. Subsequently, the fourth step is to fetch the
RAM bank data and store previous cycle data in the main
memory. The fifth step is to feed the right 1-bit register in
each register set with the data obtained from the RAM
bank. Finally, the last step is to execute the deleting operation
and feed the RAM bank with the required data.

A pipelined scheme is not allowed to perform, fetch and
store operations on the same memory at the same time.
Although the main memory and the RAM bank have dis-
tinct input and output data buses, there is only one

address bus existing for read and write. Thus, our scheme
normally is able to fetch data from the main memory and
store values to the third RAM module simultaneously.
The internal parallel execution schedule is shown in
Table 2, and the external pipelined schedule is also provided
in Table 3. Note that the internal execution schedule is
based on a conventional sequential method with shorter
steps in which we use three on-chip RAM modules to sim-
plify the fetch operations.
Generally, in the proposed pipelined operating schedule,

the operator fetches instruction for the next execution cycle
before the previous execution cycle. The memory fetch
instruction is replaced by the operand fetch operation
because of being in accordance with the data-flow design.
Moreover, the main memory operand fetch operation will
not be processed for the successive execution cycle. It
should be fetched for the next two image lines.

4 Experimental results

The presented pipelined thinning architecture for embedded
real-time fingerprint recognition has been implemented in
VHDL using the Xilinx Spartan-II series Logic Cell Array
family. The architecture of Xilinx Spartan-II FPGA is an
SRAM-based symmetrical array. Table 4 summarises the
slices and IOBs hardware utilisation in our design. The
delays are estimated from the maximal modular timing
delay of the critical path in each functional module. The
calculation unit is composed of register sets and the

Table 3: External pipelined execution schedule

Time T Tþ 1 Tþ 2 Tþ 3 Tþ 4 Tþ 5

Column k21 S(n, k21) S(n, k21)

Column k F(nþ 2, k) F(nþ 2, k)

Column kþ 1

Tþ 6 Tþ 7 Tþ 8 Tþ 9 Tþ 10 Tþ 11

Column k21

Column k S(n, k) S(n, k)

Column kþ 1 F(nþ 2, kþ 1) F(nþ 2, kþ 1)

F(n, k): Fetch the kth column data of the nth image line in the main memory
S(n, k): Restore data to the kth column of the nth image line in the main memory

Table 2: Internal execution schedule

Time T Tþ 1 Tþ 2 Tþ 3 Tþ 4 Tþ 5

Register sets L(l) L(m) L(r) E

RAM bank F(n, k) L(k) F(n, kþ 1)

Main memory F(nþ 2, k) F(nþ 2, k) S(n, k21) S(n, k21)

Tþ 6 Tþ 7 Tþ 8 Tþ 9 Tþ 10 Tþ 11

Register sets L(l) L(m) L(r) E

RAM bank F(n, kþ 1) L(k) F(n, kþ 2)

Main memory F(nþ 2, kþ 1) F(nþ 2, kþ 1) S(n, k) S(n, k)

Register sets L(l): Load data to left 1-bit register
L(m): Load data to middle 8-bit register
L(r): Load data to right 1-bit register
E: Execute deletion
RAM Bank F(n, k): Fetch the kth column data
L(k): Load data to kth column
Main memory F(n, k): Fetch the kth column data in the nth image line
S(n, k): Store the kth column in the nth image line
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modification unit array. The post-layout timing simulation
reports a maximum operation frequency of 42.7 MHz and
the operation frequency working on the FPGA is 40 MHz.
The thinning architecture occupies a total of 637 slices,
which is about 53% utilisation of the XC2S100 FPGA
chip. The processing time for a 512 � 512 image is about
0.07 s.
Fig. 11 shows the input binary image of a fingerprint

pattern, the software thinning output image and the
FPGA thinning outcome from our fingerprint verification

platform shown in Fig. 12. The results from Fig. 11 illus-
trate the 100% consistency of our proposed FPGA proto-
typing with respect to our improved thinning algorithm.
The comparative results of execution time based on soft-
ware in C language and FPGA hardware are listed in
Table 5.

In Table 5, the proposed hardware architecture based on
our improved algorithm performs thinning operation at
clock rate of 20 times less than the software clock rate.
The overall outcome reveals that the hardware is able to
achieve thinning operation at least 40 times faster than soft-
ware execution.

This design has been successfully integrated into our fin-
gerprint recognition system. The system contains a
fingerprint reader, and an embedded SOC platform that
provides a real-time function of fingerprint verification
and the communication modules for system integration.
We also developed a monitor software executed in host
PC. Fig. 12 shows the prototype photo view of our finger-
print recognition system.

5 Conclusion

This investigation presented an improved thinning algor-
ithm and its real-time FPGA architectural design and
implementation. We modified Zhang and Suen’s thinning
algorithm into fully parallel operations through the pro-
posed modification unit array. Moreover, the proposed
pipelined dataflow successfully promoted the efficiency
of execution clock rate. This thinning architecture
achieved good performance for realistic binary fingerprint
patterns, which can be used to establish a real-time
compact fingerprint verifier for widespread applications.
The experimental results revealed that the hardware
scheme completely matched with the software-thinning
algorithm, and the hardware operation was able to
produce the same results at least 40 times faster than
that from software execution. The proposed design has
also been realised as an embedded fingerprint recognition
system, which provides real-time fingerprint capturing and
verification capabilities.
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