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Abstract: A supervisory intelligent control system is developed. The supervisory intelligent control
system is comprised of a neural controller and a supervisory controller. The neural controller is
investigated to mimic an ideal controller and the supervisory controller is designed to compensate
for the approximation error between the neural controller and the ideal controller. In the proposed
control scheme, an online parameter training methodology is developed based on the gradient
descent method and the Lyapunov stability theorem, so that the control system can guarantee
system stability. Finally, to investigate the effectiveness of the proposed control scheme, it is applied
to control a forward DC–DC converter. A comparison between a PI controller, a fuzzy controller,
a fuzzy neural network controller and the supervisory intelligent controller is made. Experimental
results show that the proposed control system can achieve favourable regulation performances even
for different input voltages and under load resistance variations.

1 Introduction

DC–DC converters are power electronic systems that
convert one level of electrical voltage into another level by
switching action [1, 2]. They can be used extensively in
personal computers, computer peripherals and adapters of
consumer electronic devices to provide DC voltages. From
the control viewpoint, the controller design of the DC–DC
converter is an intriguing issue owing to its intrinsic
nonlinearity, which must cope with a wide input voltage
and load resistance variations to ensure stability in any
operating condition while providing fast transient response.
For many years, the controller design was limited to PI
control [3–5]. The selection of the controller parameters is a
tradeoff between robustness and fast transient response. In
general, it induces an overshoot in output voltage as the rise
time of response is reduced. Recently, several approaches
have been addressed by using sliding-mode control
techniques [6–8] and fuzzy control techniques [7, 9, 10] for
DC–DC converters. However, most of these approaches
require time-consuming trial-and-error tuning procedures to
achieve satisfactory performance; some of them cannot
achieve satisfactory performance under change of operating
point; and some of them do not give the stability analysis.

The neural-network-based control technique has repre-
sented an alternative design method for identification and
control of these systems [11–15]. The successful key element
is the approximation ability, where the parameterised neural
network can approximate the unknown system dynamics of
the ideal controller after learning. Recently, the concept of
incorporating fuzzy logic into a neural network has grown

into a popular research topic [11]. The fuzzy neural network
possesses the advantages of both fuzzy systems and neural
networks since it combines fuzzy reasoning capability and
neural network online learning capability. The fuzzy neural
network has been widely adopted for control of complex
dynamical systems owing to its fast learning property and
good generalisation capability compared with the neural
network [16–20]. These online learning algorithms are based
on the gradient descent method [16, 18], the Lyapunov
stability theorem [17, 19], and the genetic algorithm [20]. So
the stability, convergence and robustness of the neural-
network-based control system can be improved. For real-
time applications, the basic issue of neural-network-based
control techniques is to provide an online learning
algorithm that does not require preliminary offline tuning.

The motivation of this paper is to design a supervisory
intelligent control system using the fuzzy neural network
approach and the Lyapunov stability technique for the
DC–DC converter. In the supervisory intelligent control
system, a neural controller is utilised as a main controller, in
which the interconnection weights of the fuzzy neural
network are tuned online in the sense of the gradient
descent method; and a supervisory controller is designed to
guarantee the system stability in the sense of the Lyapunov
stability theorem. Finally, to investigate the effectiveness of
the proposed supervisory intelligent control scheme, it is
applied to control a forward DC–DC converter. A
comparison between a PI controller, a fuzzy controller, a
fuzzy neural network controller and the proposed super-
visory intelligent controller is made. Experimental results
show that the proposed control algorithm can achieve
favourable responses, including fast rise time and settling
time, and small overshoot even for different input voltages
and under load resistance variations. Thus, the supervisory
intelligent control is more suitable to control forward
DC–DC converters since a self-learning scheme is applied.

2 PWM DC–DC converter

The switch-mode DC–DC converter can convert one level
of electrical voltage into another level by switching action.
Nowadays, it is very popular because of its high efficiency
and small size. In switch-mode DC–DC converters, powerE-mail: fei@cn.nctu.edu.tw
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switches cut off the load current within the turn-on and
turn-off times under switching conditions. The output
voltage is controlled by adjusting the on time of the power
switch, which in turn adjusts the width of a voltage pulse at
the output. This is known as pulse-width modulator
(PWM) control, where the switch frequency is constant
and the duty cycle, d(N), varies with load resistance
variations at the Nth sampling time. The output of the
designed controller, dd(N), is the change of the duty cycle.
Then, the duty cycle is determined by adding the change of
duty cycle dd(N) to the previous duty cycle d(N� 1), i.e.

dðNÞ ¼ dðN � 1Þ þ ddðNÞ ð1Þ
This duty cycle signal is then sent to a PWM output stage
that generates the appropriate switching pattern for the
switch in the DC–DC converter. In this paper, a widely
used forward DC–DC converter is discussed and is shown
in Fig. 1, where Vi and Vo are the input and output voltages
of the converter, respectively, and assume Vi is assumed to
be a constant voltage; D1 and D2 are the diodes; L is the
inductor, C is the output capacitor; and Q is the transistor
which controls the converter circuit operating in different
modes. When the transistor is on, Vi appears across the
primary and then generates

Vx ¼
Nm

NP
ðVi � VlostÞ ð2Þ

where Vlost is the voltage drop occurring by transistor and
diodes, and represents the unmodelled dynamics in practical
applications. The diode D1 on the secondary ensures that
only positive voltages are applied to the output circuit while
diode D2 provides a circulating path for inductor current if
the transformer voltage is zero or negative. By the averaging
method, the output voltage can be expressed as [2]

VoðNÞ ¼
Nm

NP
ðVi � VlostÞdðNÞ ð3Þ

where NP is the turns of the primary power winding and Nm

is the turns of the slave power winding. The control
problem of the forward DC–DC converter is to control the
duty cycle so that the output voltage Vo(N) can provide a
fixed voltage under the occurrence of the uncertainties such
as different input voltages and load resistance variations.
The output error voltage is defined as

eðNÞ ¼ VoðNÞ � Vref ð4Þ
where Vref is the reference output voltage. The control law
of the duty cycle is determined by the error voltage signal to
provide fast transient response and small overshoot in the
output voltage.

3 Supervisory intelligent controller design

The block diagram of the supervisory intelligent control for
the power electronic system is shown in Fig. 2, in which the
control law is taken as

ddsi ¼ ddnc þ ddsc ð5Þ
where the neural controller ddnc is investigated to mimic an
ideal controller and the supervisory controller ddsc is
designed to compensate for the approximation error. The
inputs of the neural controller are the output error voltage e
and its derivative, and the input of the supervisory
controller is the tracking index, which is defined as

s ¼ eþ l
Z t

0

edt ð6Þ

where l is a positive constant.Fig. 1 Forward DC–DC converter

ncdδ

scdδ

+

+

+

sidδ

−
+

dt

d

iV
oV

+

− −

refV
−e

driver
rampV

supervisory intelligent control

DC-DC

dt

d

)()1()( NdNdNd siδ+−=

update  laws
(26), (27), (28)

(14)

controller (34)

bound  
law (43)

tracking
index  (6)+ s

ncdδ

scdδ

+

+

+

sidδ

−
+

dt

d

iV
oV

+

− −

refV
−e

driver
rampV

supervisory intelligent control

DC-DC

dt

d

)()1()( NdNdNd siδ+−=

update  laws
(26), (27), (28)

(14)

control (34)

bound estimation
law (43)

tracking
index  (6)+ s

neural controller

supervisory

converter
system

Fig. 2 Block diagram of supervisory intelligent control for DC–DC converters
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3.1 Description of neural controller
A four-layer fuzzy neural network is shown in Fig. 3, which
comprises the input (the i layer), membership (the j layer),
rule (the k layer), and output (the o layer) layers. Layer 1
accepts the input variables. Layer 2 is used to calculate the
Gaussian membership values. The nodes of layer 3
represent the fuzzy rules. The links before layer 3 represent
the preconditions of the rules, and the links after layer 3
represent the consequences of the rule nodes. Layer 4 is
the output layer. The node in this layer is the output of the
fuzzy neural network. The interactions for the layers are
given as follows [11, 16]:

Layer 1, Input layer: For every node i in this layer, the net
input and the net output are represented as

net1i ¼ x1i ð7Þ

y1
i ¼ f 1

i ðnet1i Þ ¼ net1i ; i ¼ 1; 2 ð8Þ

where x1i represents the i-th input to the node of layer 1.

Layer 2, Membership layer: In this layer, each node
performs a membership function and acts as an element
for membership degree calculation, where the Gaussian
function is adopted as the membership function. For the jth
node

net2j ¼ �
ðx2i � m2

ijÞ
2

ðs2ijÞ
2

ð9Þ

y2
j ¼ f 2

j ðnet2j Þ ¼ expðnet2j Þ; j ¼ 1; 2; . . . ; l ð10Þ

where m2
ij and s2ij are the mean and standard deviation of

the Gaussian function in the jth term of the ith input
linguistic variable x2i to the node of layer 2, respectively.

Layer 3, Rule layer: Each node k in this layer is denoted
byP, which multiplies the incoming signals and outputs the
result of the product. For the kth rule node

net3k ¼
Y

j

w3
jkx3j ð11Þ

y3
k ¼ f 3

k ðnet3kÞ ¼ net3k ; k ¼ 1; 2; . . . ; n ð12Þ

where x3j represents the jth input to the node of layer 3, and

w3
jk are the weights between the membership layer and the

rule layer, which are assumed to be unity.

Layer 4, Output layer: The single node o in this layer is
labelled as S, which computes the overall output as the
summation of all incoming signals:

net4o ¼
X

k

w4
kx4k ð13Þ

y4
o ¼ f 4

o ðnet4oÞ ¼ net4o ð14Þ

where the link weight w4
k is the output action strength

associated with the kth rule, x4k represents the kth input to

the node of layer 4, and y4
o is the output of the fuzzy neural

network.

3.2 Online learning algorithm
The central part of the learning algorithm for the neural
controller concerns how to recursively obtain a gradient
vector, which is defined as the derivative of an energy
function with respect to a parameter of the neural network
using the chain rule [10]. To describe the online learning
algorithm of the fuzzy neural network, first the energy
function E is defined as:

E ¼ 1

2
eðNÞ2 ð15Þ

Then, the learning algorithm based on the gradient descent
method is described below [11, 16].

Layer 4:

d4o ¼ �
@E
@net4o

¼ � @E
@y4

o

@y4
o

@net4o
ð16Þ

The Jacobian term of the plant, @E=@y4
o , can be

expressed as

@E
@y4

o
¼
@
1

2
ðV0ðNÞ � Vref Þ2

@ddncðNÞ

¼ eðNÞ @VoðNÞ
@ddncðNÞ

¼ Nm

NP
ðVi � VlostÞeðNÞ

@dðNÞ
@ddncðNÞ

¼ Nm

NP
ðVi � VlostÞeðNÞ

@ðdðN � 1Þ þ @dsiðNÞÞ
@ddncðNÞ

¼ Nm

NP
ðVi � VlostÞeðNÞ ð17Þ
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Fig. 3 Structure of fuzzy neural network
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and the weight is updated by an amount

Dw4
k ¼� Zw

@E
@w4

k

¼ �Zw
@E
@y4

o

@y4
o

@net4o

� �
@net4o
@w4

k

� �

¼� Zwd
4
ox4k ð18Þ

where Zw is the learning rate of the connecting weights of the
fuzzy neural network. The weights of the output layer are
updated according to the following:

w4
kðN þ 1Þ ¼ w4

kðNÞ þ Dw4
k ð19Þ

Layer 3: Since the weights in this layer are unities, only the
error term needs to be calculated and propagated:

d3k ¼ �
@E
@net3k

¼ � @E
@y4

o

@y4
o

@net4o

� �
� @net4o
@y3

k

@y3
k

@net3k

� �

¼ d4ow4
k ð20Þ

Layer 2: The multiplication operation is done in this layer.
The error term is computed as follows:

d2j ¼�
@E
@net2j

¼ � @E
@y4

o

@y4
o

@net4o

@net4o
@y3

k

@y3
k

@net3k

� �

� @net3k
@y2

i

@y2
j

@net2j

" #
¼ d4o

X
k

w4
ky3

k ð21Þ

and the update law of m2
ij is

Dm2
ij ¼� Zm

@E
@m2

ij

¼ �Zm
@E
@y4

o

@y4
o

@net4o

@net4o
@y3

k

@y3
k

@net3k

@net3k
@y2

j

@y3
j

@net2j

@net2j
@m2

ij

" #

¼� Zmd
4
o

X
k

w4
ky3

k

2ðx2i � m2
ijÞ

ðs2ijÞ
2 ð22Þ

where Zm is the learning rate of the mean. The update law of
s2ij is

Ds2ij ¼� Zs
@E
@s2ij

¼ �Zs
@E
@y4

o

@y4
o

@net4o

@net4o
@y3

k

@y3
k

@net3k

@net3k
@y2

j

@y2
j

@net2j

@net2j
@s2ij

" #

¼� Zsd
4
o

X
k

w4
ky3

k

2ðx2i � m2
ijÞ

2

ðs2ijÞ
3 ð23Þ

where Zs is the learning rate of the standard deviation. The
mean and standard deviation of the hidden layer are
updated as follows:

m2
ijðN þ 1Þ ¼ m2

ijðNÞ þ Dm2
ij ð24Þ

s2ijðN þ 1Þ ¼ s2ijðNÞ þ Ds2ij ð25Þ

Since NP, Nm, Vi and Vlost in (17) are unavailable, these
parameters in the learning algorithms can be reorganised as
positive constants in practical applications. Therefore, the
update laws (18), (22), and (23) can be reconstructed as
follows:

Dw4
k ¼ �Z0wex4k ð26Þ

Dm4
ij ¼ �Z0me

X
k

w4
ky3

k

2ðx2i � m2
ijÞ

ðs2ijÞ
2

ð27Þ

Ds2ij ¼ �Z0se
X

k

w4
ky3

k

2ðx2i � m2
ijÞ

2

ðs2ijÞ
3

ð28Þ

where Z0w ¼ Zw
Nm
NP
ðVi � VlostÞ, Z0m ¼ Zm

Nm
NP
ðVi � VlostÞ and

Z0s ¼ Zs
Nm
NP
ðVi � VlostÞ. Z0w, Z0m and Z0s can be taken as the

new learning rates.

3.3 Supervisory controller
Differentiating both sides of (3) with respect to time yields

_Vo ¼
Nm

NP
ðVi � VlostÞdd ð29Þ

If the parameters of the converter are well known and the
external disturbance is measurable, an ideal controller can
be obtained as [21]

dd� ¼ NP

NmðVi � VlostÞ
ð _Vref � leÞ ð30Þ

Substituting (30) into (29), gives

_eþ le ¼ 0 ð31Þ
Since l is a positive constant, it implies that lim

t!1
e ¼ 0.

However, since the system parameters and the voltage drop
may be unknown or perturbed, the ideal controller cannot
be implemented. To tackle this problem, a neural network is
utilised to approximate this ideal controller. By the universal
approximation theorem, there exists an optimal fuzzy
neural network such that [22]

ddncðw�Þ � dd� ¼ e ð32Þ

where w� ¼ ½w4�

k m2�

ij s2
�

ij �
T is the ideal weight vector of

the neural controller, and e denotes the approximation error
and is assumed to be bounded by 0 � jej � E, where E is a
positive constant. The error bound is assumed to be a
constant during the observation; however, it is difficult to
measure it in practical applications. Therefore, a bound
estimation is developed to observe the bound of the
approximation error. Define the estimation error of the
bound

~E ¼ E � Ê ð33Þ

where Ê is the estimated error bound. The supervisory
controller is designed to compensate for the effect of
approximation error and is chosen as

ddsc ¼ �ÊsgnðsÞ ð34Þ
in which sgn(.) is a sign function. By substituting (5) into
(29), it is can be shown that

_Vo ¼
Nm

NP
ðVi � VlostÞðddnc þ ddscÞ ð35Þ

After some straightforward manipulations, the error
equation governing the system can be obtained through
(6), (30) and (35) as follows:

_eþ le ¼ Nm

NP
ðVi � VlostÞðddnc þ ddsc � dd�Þ ¼ _s ð36Þ

Define a Lyapunov function as

V ðs; ~EÞ ¼ s2

2
þ

~E2

2ZE
ð37Þ

where the positive constant ZE is a learning rate.
Differentiating (37) with respect to time and using (32),
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(34) and (36), we obtain

_V ðs; ~EÞ ¼ s
Nm

NP
ðVi � VlostÞðeþ ddscÞ þ

~E _~E
ZE

¼ Nm

NP
ðVi � VlostÞðesþ ÊjsjÞ þ

~E _~E
ZE

ð38Þ

If the bound estimation law is chosen as

_~E ¼ � _̂E ¼ �ZE
Nm

NP
ðVi � VlostÞjsj ð39Þ

then (38) becomes

_V ðs; ~EÞ ¼ Nm

NP
ðVi � VlostÞðes� EjsjÞ

� Nm

NP
ðVi � VlostÞðjejjsj � EjsjÞ

¼ �Nm

NP
ðVi � VlostÞðE � jejÞjsj � 0 ð40Þ

Since _V ðs; ~EÞ is negative semi-definite, that is

V ðsðtÞ; ~EðtÞÞ � V ðsð0Þ; ~Eð0ÞÞ, it implies that s and ~E
are bounded. Let function O � Nm

NP
ðVi � VlostÞ ðE � jejÞs �

Nm
NP
ðVi � VlostÞ ðE � jejÞjsj � � _V ðs; ~EÞ, and integrate O with

respect to time, then we obtainZ t

0

OðtÞdt � V ðsð0Þ; ~Eð0ÞÞ � V ðsðtÞ; ~EðtÞÞ ð41Þ

Because V ðsð0Þ; ~Eð0ÞÞ is bounded, and V ðsðtÞ; ~EðtÞÞ is
nonincreasing and bounded, the following result can be
obtained:

lim
t!1

Z t

0

OðtÞdto1 ð42Þ

Also, _OðtÞ is bounded, so by Barbalat’s Lemma [22],
lim
t!1

O ¼ 0. That is, s-0 as t-N. Hence, the supervisory

intelligent control of power electronic systems is asympto-
tically stable. Similarly, since NP, Nm, Vi and Vlost in (39) are
unavailable in practical applications, the bound estimation
law (39) can be reconstructed as follows:

_̂E ¼ Z0Ejsj ð43Þ
where Z0E ¼ ZE

Nm
NP
ðVi � VlostÞ. The design algorithms of the

supervisory intelligent control are summarised as follows:

Step 1: The output error voltage e and the tracking index s
are given in (4) and (6), respectively.

Step 2: The value of neural controller ddnc is the output of
the fuzzy neural network as given in (14).

Step 3: The supervisory controller ddsc is given in (34) with

the parameter Ê adapted by (43).

Step 4: The duty cycle is determined by adding the change
of duty cycle to the previous duty cycle as shown in (1).

Step 5: The duty cycle signal is then sent to a PWM output
stage. Then, go back to Step 1.

4 Experimental results

The computer control experimental system for the forward
DC–DC converter is shown in Fig. 4. A servo control card
is installed in the control computer, which includes multi-
channels of D/A, A/D, PIO and encoder interface circuits.
The control problem is to control the duty cycle so that the
output voltage can provide a fixed voltage (Vref ¼ 10V)

under the occurrence of uncertainties such as different input
voltages and load resistance variations. The proposed
control algorithm is realised on a Pentium processor using
the ‘Turbo C’ language. Two experimental cases are
addressed: (a) Case 1 (the input voltage is set as Vi¼ 20V);
(b) Case 2 (the input voltage is set as Vi¼ 25V). In both
cases, some load resistance variations with step changes are
tested: (i) from 20 to 4O at 300ms, (ii) from 4 to 20O at
500ms, and (iii) from 20 to 4O at 700ms. The circuit
parameter values of the forward DC–DC converter are
chosen as NP :Nm¼ 4 : 3, R¼ 20O, L¼ 500mH and
C¼ 2200mF. The converter runs at a switching frequency
of 20kHz and the controller runs at a sampling frequency
of 1kHz. The duty cycle is generated by a PWM IC
SG1825. The generated duty cycle is directly proportional
to the analogue output of the controller. To illustrate the
effectiveness of the proposed design method, a comparison
between a PI controller, a fuzzy controller, a fuzzy neural
network controller and the proposed supervisory intelligent
controller is made.

4.1 Comparison of different control method
To compare the regulation efficiency, first a PI controller
proposed in [4] is applied to the forward DC–DC converter.
The PI controller is given as

ddpi ¼ �0:01e� 0:2 _e ð44Þ
It is a PD type for the change of duty cycle ddpi, therefore it
is a PI type for the duty cycle dpi. The experimental results
for the PI controller are shown in Fig. 5. For Case 1 and
Case 2, the converter responses are shown in Figs. 5a and c;
and the associated control efforts are shown in Figs. 5b and
d, respectively. From the experimental results, the PI
controller can achieve fast tracking performances; however,
there exists 5% overshoot and the PI gains are determined
through a lot of trials. Next, a fuzzy controller proposed in
[9] is applied to the forward DC–DC converter. The fuzzy
control rules are given in the following form:

Rule i: IF e is F i
e and _e is F i

_e ; THEN ddfc is ri ð45Þ
where ri, i¼ 1, 2,y,n are the singleton control actions and
F i

e and F i
_e are the labels of the fuzzy sets. The defuzzification

of the controller output is accomplished by the method of
centre-of-gravity:

ddfcðNÞ ¼

Pn
i¼1

vi � ri

Pn
i¼1

vi

ð46Þ

Fig. 4 Experimental setup
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where vi is the firing weight of the ith rule. The fuzzy rules in
(45) can be constructed by the sense that e and _e will
approach zero with fast rise time and without large
overshoot. Generally, the determination of these rules
comes from human knowledge and via some trial-and-
error processes. In this sense, a 25 fuzzy rule system is
summarised in Table 1, where the fuzzy labels are negative
big (NB), negative small (NS), zero (ZO), positive small
(PS), and positive big (PB). The experimental results of the

fuzzy controller for Case 1 and Case 2 are shown in Fig. 6.
From the experimental results, the fuzzy controller can
achieve fast tracking performance; however, the fuzzy rules
base is constructed through much trial-and-error to ensure
proper behaviour in the operating conditions. In the
following, a fuzzy neural network controller proposed
in [16] is applied to the forward DC–DC converter.
The parameters of the fuzzy neural network controller are
selected as Z0w ¼ Z0m ¼ Z0s ¼ 0:001. These parameters are

Fig. 5 Experimental results of PI controller
a, b Case 1
c, d Case 2
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Fig. 6 Experimental results of fuzzy controller
a, b Case 1
c, d Case 2

Table 1: Fuzzy rules of fuzzy controller for power electronic system

_e e

NB NS ZO PS PB

NB 1.000 1.000 1.000 0.400 0.000

NS 1.000 1.000 0.400 0.000 � 0.400

ZO 1.000 0.400 0.000 �0.400 � 1.000

PS 0.400 0.000 �0.400 �1.000 � 1.000

PB 0.000 � 0.400 �1.000 �1.000 � 1.000
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chosen to achieve good transient control performance
considering the requirement of stability. The experimental
results of the fuzzy neural network controller for Case 1 and
Case 2 are shown in Fig. 7. From the experimental results,
the robust tracking performance of the fuzzy neural
network controller is obvious under the occurrence of the
load resistance variations after training. However, the initial
transient response is not good.

4.2 Supervisory intelligent control
The proposed supervisory intelligent controller is applied to
the forward DC–DC converter. The parameters of the
proposed controller are selected as l¼ 1000, Z0w ¼ Z0m ¼
Z0s ¼ 0:001 and Z0e ¼ 0:00001; the choice of these para-
meters is through some trials. If the learning rates are
chosen too small, then the parameter convergence of the
supervisory intelligent controller will be easily achieved;

Fig. 7 Experimental results of fuzzy neural network controller
a, b Case 1
c, d Case 2
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however, this will result in slow learning speed. On the
other hand, if the learning rates are chosen too large,
then the learning speed will be fast; however, the super-
visory intelligent controller system may become more
unstable for the parameter convergence. The experimental
results of the supervisory intelligent controller for Case 1
and Case 2 are shown in Fig. 8. Since the controller
parameters are initialised from zero, the supervisory

intelligent controller has the drawback of large overshoot
responses and control efforts at the initial learning
phase. After training, the trained supervisory intelligent
controller is applied to control the forward DC–DC
converter system again. The experimental results of the
trained supervisory intelligent controller for Case 1 and
Case 2 are shown in Fig. 9. It is seen that the regulation
performance of the trained supervisory intelligent controller

Fig. 8 Experimental results of supervisory intelligent controller
a, b Case 1
c, d Case 2
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is further improved when the initial values of the controller
parameters are trained. The comparisons of control
performance and control characteristics for PI control,
fuzzy control, fuzzy neural network control and supervisory
intelligent control are summarised in Tables 2 and 3,
respectively. It is seen that the supervisory intelligent
control system has robust characteristics and fast
transient response even for different input voltages and

under load resistance variations since the online
learning scheme is applied. From the view point of
computation time, the supervisory intelligent control
and fuzzy neural network control will pay the price of
more computation time than the fuzzy control and PI
control for achieving better control performance. However,
the increase of computation time is acceptable for real
applications.

Fig. 9 Experimental results of trained supervisory intelligent controller
a, b Case 1
c, d Case 2
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5 Conclusions

A PI control, a fuzzy control, a fuzzy neural network
control and a supervisory intelligent control have been
adopted to control a forward type DC–DC converter. The
proposed supervisory intelligent control system comprises a
neural controller and a supervisory controller, in which the
controller parameters can be tuned online based on the
gradient descent method and the Lyapunov stability
theorem to achieve system stability and satisfactory
performance. To illustrate the effectiveness of the proposed
design method, several experiments have been performed.
The experimental results demonstrate the efficiency of the
proposed control method. Therefore, the proposed super-
visory intelligent controller is suitable for DC–DC converter
control.
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Table 2: Performance comparison

Controller Case 1 Case 2

Over-
shoot (%)

Settling
time (ms)

Over-
shoot (%)

Settling
time (ms)

PI controller 5 24 5 19

Fuzzy controller 0 38 0 34

Fuzzy neural
network controller

25 54 30 56

Supervisory
intelligent controller

20 48 22 44

Trained supervisory
intelligent controller

0 21 0 19

Table 3: Characteristics comparison

Controller Controller
parameters

Load
variation
regulation
ability

Stability
proof

Computa-
tion time
(ms)

PI controller trial and
error

middle yes 0.180

Fuzzy
controller

trial and
error

good no 0.260

Fuzzy neural
network
controller

online
learning

excellent no 0.295

Supervisory
intelligent
controller

online
learning

excellent yes 0.298

Trained
supervisory
intelligent
controller

online
learning

excellent yes 0.298
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