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The objective of packing problems is to determine an optimal way of placing a given set of
three-dimensional (3D) rectangular cartons within a minimum volume 3D rectangular container.
Current packing optimization methods either use too many extra 0–1 variables or find it difficult
to obtain a globally optimal solution. This study proposes an efficient method for finding the global
optimum of packing problems. First the traditional packing optimization problem is converted into an
equivalent program containing many fewer 0–1 variables than contained in current methods. Then the
global optimum of the converted program is found by utilizing piecewise linearization techniques. The
numerical examples demonstrate that the proposed method is capable of finding the global optimum
of a packing problem.

Keywords: Packing; Global optimization; Piecewise linearization

1. Introduction

The objective of packing optimization problems is to seek a minimal volume container which
can contain a given set of small three-dimensional (3D) rectangular cartons. All the cartons
can be different in size and may be rotated in any orthogonal direction. The problem has many
applications in the electronic, manufacturing and distribution industries. Examples include
packing several components into a minimal case to form a device, cutting wood or foam rubber
into smaller pieces, loading pallets with goods or designing packages. A compact device with
a minimal case reduces the manufacturing costs and also increases its competitiveness in
the market. Moreover, cutting wood, foam rubber or other materials into smaller pieces with
minimal waste leads to lower production costs. An optimal design of a package for packing
some specific goods also means high economic relevance in real goods processes. Furthermore,
an optimal filling of a container decreases the transportation costs along with ‘side effects’
such as increased traffic activity and negative consequences on environmental resources.
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688 J.-F. Tsai and H.-L. Li

The packing problem appears in many related studies such as knapsack (Fayard and
Zissimopoulos 1995), assortment problems (Beasley 1985, Li and Chang 1998), pallet loading
(Liu and Hsiao 1997, Terno et al. 2000) and container loading problems (Chen et al. 1995,
Scheithauer 1999, Bortfeldt and Gehring 2001, Gehring and Bortfeldt 2002, Pisinger 2002,
Andreas et al. 2003). In addition, researchers have dealt with various approaches to the
problem. For instance, Dowsland (1991) proposed a heuristic method for solving 3D pack-
ing problems, Chen et al. (1995) formulated a mixed integer program for container loading
problems, and Li and Chang (1998) developed a method for finding the approximately global
optimum of the assortment problem. Additionally, Bortfeldt and Gehring (2001), Gehring
and Bortfeldt (2002), Pisinger (2002) and Andreas et al. (2003) presented different heuristic
algorithms such as the parallel tabu search algorithm, hybrid genetic algorithm and parallel
genetic algorithm for solving the container loading problem. Two difficulties of these current
methods are now listed. Firstly, methods that utilize bar-relaxation or layer-relaxation tech-
niques (Dowsland 1991, Liu and Hsiao 1997) and heuristic algorithms (Bortfeldt and Gehring
2001, Gehring and Bortfeldt 2002, Pisinger 2002, Andreas et al. 2003) may only find locally
optimal solutions. Secondly, too many 0–1 variables are used to formulate a packing optimiza-
tion problem. For instance, Chen et al.’s model (Chen et al. 1995) contains 3n(n − 1) + 4n

0–1 variables (n is the number of cartons), which might cause a heavy computational burden.
To overcome these difficulties, this study proposes another method to solve packing

problems. Comparing with current methods, the proposed method has the following
advantages:

(i) It can solve real packing optimization problems without bar-relaxation or layer-relaxation
techniques.

(ii) It only uses half the 0–1 variables used in Chen et al.’s method (Chen et al. 1995) to
formulate a packing problem.

(iii) It is guaranteed to find a global optimum of the packing problem within a tolerable
error. The generalization to nonlinear objective functions is achieved by the piecewise
linearization techniques.

The rest of this article is organized as follows. In the next section, a detailed description
of the packing problem is addressed. Then the reformulation problem is proposed to reduce
the number of 0–1 variables. The linearization strategy of the nonlinear objective function is
discussed in the fourth section. The fifth section presents the solution algorithm. Numerical
examples are examined in the sixth section. Finally, some concluding remarks are included.

2. Problem formulation

Given n rectangular cartons with fixed lengths, widths and heights, a packing optimization
problem is to allocate these n cartons within a rectangular container which has minimal volume
without the need to fix the y and z values in the nonlinear objective function xyz. Denote x, y

and z as the width, length and height of the container (x > 0, y > 0, z > 0), respectively; the
packing optimization problem is then stated as follows:

Minimize xyz

subject to

1. All of n boxes are non-overlapping.
2. All of n boxes are within the range of x, y and z.
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A global optimization method for packing problems 689

3. x ≤ x ≤ x̄, y ≤ y ≤ ȳ and z ≤ z ≤ z̄ (x, y, z, x̄, ȳ and z̄ are constants and represent the
lower and upper bounds of x, y and z, respectively).

The related terminologies used in the packing model, referring to Chen et al. (1995), are
described below:

(Pi, Qi, Ri): Parameters indicating the length, width and height of carton i.
(xi, yi, zi): Continuous variables (for location) indicating the coordinates of the

front-left-bottom corner of carton i (xi, yi and zi are integers if the
given dimensions of cartons are integers).

(lxi , lyi , lzi): Binary variables indicating whether the length of carton i is parallel to
the X-axis, Y -axis or Z-axis. For example, the value of lxi is equal to 1
if the length of carton i is parallel to the X-axis; otherwise, it is equal
to 0. It is clear that lxi + lyi + lzi = 1.

(wxi, wyi, wzi): Binary variables indicating whether the width of carton i is parallel to
the X-axis, Y -axis or Z-axis. For example, the value of wxi is equal to
1 if the width of carton i is parallel to the X-axis; otherwise, it is equal
to 0. It is clear that wxi + wyi + wzi = 1.

(hxi, hyi, hzi): Binary variables indicating whether the height of carton i is parallel to
the X-, Y - or Z-axis. For example, the value of hxi is equal to 1 if the
height of carton i is parallel to the X-axis; otherwise, it is equal to 0. It
is clear that hxi + hyi + hzi = 1.

For a pair of cartons (i, k) where i < k, there is a set of 0–1 variables
{Aik, Bik, Cik, Dik, Eik, Fik} defined as:

Aik = 1 if carton i is on the left of carton k, otherwise Aik = 0.
Bik = 1 if carton i is on the right of carton k, otherwise Bik = 0.
Cik = 1 if carton i is behind carton k, otherwise Cik = 0.
Dik = 1 if carton i is in front of carton k, otherwise Dik = 0.
Eik = 1 if carton i is below carton k, otherwise Eik = 0.
Fik = 1 if carton i is above carton k, otherwise Fik = 0.

The front-left-bottom corner of the container is fixed at the origin. The interpretation of
these variables is illustrated in figure 1. Figure 1 contains two cartons i and k, where carton i

is located with its length parallel to the X-axis and the width parallel to the Z-axis, and carton
k is located with its length parallel to the Z-axis and the width parallel to the X-axis. Then lxi ,
wzi ,hyi , lzk , wxk and hyk are equal to 1. In addition, since the carton i is located on the left-hand
side of and in front of carton k, it is clear that Aik = Dik = 1 and Bik = Cik = Eik = Fik = 0.

The packing problem can then be formulated below, referring to Chen et al. (1995):

Model 1:

Minimize xyz (1)

subject to

xi + Pilxi + Qiwxi + Rihxi ≤ xk + (1 − Aik)M for all i, k, i < k, (2)

xk + Pklxk + Qkwxk + Rkhxk ≤ xi + (1 − Bik)M for all i, k, i < k, (3)

yi + Pilyi + Qiwyi + Rihyi ≤ yk + (1 − Cik)M for all i, k, i < k, (4)

yk + Pklyk + Qkwyk + Rkhyk ≤ yi + (1 − Dik)M for all i, k, i < k, (5)
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690 J.-F. Tsai and H.-L. Li

Figure 1. Graphical illustration of variables.

zi + Pilzi + Qiwzi + Rihzi ≤ zk + (1 − Eik)M for all i, k, i < k, (6)

zk + Pklzk + Qkwzk + Rkhzk ≤ zi + (1 − Fik)M for all i, k, i < k, (7)

Aik + Bik + Cik + Dik + Eik + Fik ≥ 1 for all i, k, i < k, (8)

xi + Pilxi + Qiwxi + Rihxi ≤ x for all i, k, i < k, (9)

yi + Pilyi + Qiwyi + Rihyi ≤ y for all i, k, i < k, (10)

zi + Pilzi + Qiwzi + Rihzi ≤ z for all i, k, i < k, (11)

where lxi , lyi , lzi , wxi, wyi, wzi, hxi, hyi, hzi, Aik, Bik, Cik, Dik, Eik and Fik are 0–1 variables,
M = max{x̄, ȳ, z̄}, xi, yi, zi ≥ 0, 0 < x ≤ x ≤ x̄, 0 < y ≤ y ≤ ȳ, 0 < z ≤ z ≤ z̄, and
x, y, z, x̄, ȳ and z̄ are constants.

The objective of this model is to minimize the volume of the container. Constraints (2)–(8)
are non-overlapping conditions used to ensure that none of these n boxes overlaps with each
other. Constraints (9)–(11) guarantee that all boxes are within the enveloping container.

The binary variables, lxi , lyi , lzi , wxi, wyi, wzi, hxi, hyi and hzi , are dependent and have the
following relationships:

lxi + lyi + lzi = 1 ∀i ∈ I, (12)

wxi + wyi + wzi = 1 ∀i ∈ I, (13)

hxi + hyi + hzi = 1 ∀i ∈ I, (14)

lxi + wxi + hxi = 1 ∀i ∈ I, (15)

lyi + wyi + hyi = 1 ∀i ∈ I, (16)

lzi + wzi + hzi = 1 ∀i ∈ I. (17)

Constraints (12)–(17) describe the allocation restrictions among logic variables. For
instance, (12) implies that the length of carton i is parallel to one of the axes. Constraint
(15) implies that only one of the length, the width and the height of carton i is parallel to the
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A global optimization method for packing problems 691

X-axis. Using constraints (12)–(17), the following five variables can be eliminated from the
model lyi , wxi, wzi, hxi and hyi . Model 1 is then fully converted into Model 2 below:

Model 2:

Minimize xyz (1)

subject to

xi + Pilxi + Qi(lzi − wyi + hzi) + Ri(1 − lxi − lzi + wyi − hzi) ≤ xk + (1 − Aik)M,

(2′)

xk + Pklxk + Qk(lzk − wyk + hzk) + Rk(1 − lxk − lzk + wyk − hzk) ≤ xi + (1 − Bik)M,

(3′)

yi + Pi(1 − lxi − lzi) + Qiwyi + Ri(lxi + lzi − wyi) ≤ yk + (1 − Cik)M, (4′)

yk + Pk(1 − lxk − lzk) + Qkwyk + Rk(lxk + lzk − wyk) ≤ yi + (1 − Dik)M, (5′)

zi + Pilzi + Qi(1 − lzi − hzi) + Rihzi ≤ zk + (1 − Eik)M, (6′)

zk + Pklzk + Qk(1 − lzk − hzk) + Rkhzk ≤ zi + (1 − Fik)M, (7′)

Aik + Bik + Cik + Dik + Eik + Fik ≥ 1, (8′)

xi + Pilxi + Qi(lzi − wyi + hzi) + Ri(1 − lxi − lzi + wyi − hzi) ≤ x, (9′)

yi + Pi(1 − lxi − lzi) + Qiwyi + Ri(lxi + lzi − wyi) ≤ y, (10′)

zi + Pilzi + Qi(1 − lzi − hzi) + Rihzi ≤ z, (11′)

where all variables are the same as defined in Model 1.
Chen et al. (1995) solved Model 2 by treating the nonlinear objective function as xy0z0

where y0 and z0 are fixed values specified by the user. Model 2 then becomes a linear mixed
0–1 program. The following are two disadvantages in Chen et al.’s model:

(i) Too many 0–1 variables are included in the constraints of Model 2. This number of 0–1
variables substantially increases the computational effect required to solve the problem.

(ii) Chen et al.’s method can only find a local optimum of Model 2 without fixing the y and
z values in the objective function xyz.

The next section describes a way to reduce redundant 0–1 variables in Model 2. Then an
algorithm for finding the globally optimal solution of the packing problem is developed.

3. Problem reformulation for computational improvement

This section reformulates the packing optimization problem to reduce the number of 0–1 vari-
ables contained in Model 2. Consider the set of six 0–1 variables (Aik, Bik, Cik, Dik, Eik, Fik)

in constraints (2′)–(8′), which is used to express the six types of non-overlapping conditions
of left–right, behind–front and below–above between a pair of cartons (i, k). In fact, a set of
three 0–1 variables is enough to express these six types of relationships. Consider the following
proposition:

PROPOSITION 1 The conditions of non-overlapping between cartons i and k can be reformu-
lated by introducing three binary variables αik, βik and δik with definitions given in table 1
with reference to figure 2, where 1 ≤ αik + βik + δik ≤ 2.
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692 J.-F. Tsai and H.-L. Li

Table 1. Improved non-overlapping conditions (1 ≤ αik + βik + δik ≤ 2).

Condition
number αik βik δik Meaning

1 0 0 1 Carton i is on the right side of carton k

2 0 1 0 Carton i is on the left side of carton k

3 1 0 0 Carton i is behind carton k

4 0 1 1 Carton i is in front of carton k

5 1 0 1 Carton i is below carton k

6 1 1 0 Carton i is above carton k

Figure 2. Graphical illustration of non-overlapping conditions.

From the basis of Proposition 1, constraints (2′)–(8′) can be reformulated effectively as
follows:

PROPOSITION 2 The non-overlapping constraints (2′)–(8′) are equivalent to the following
inequalities:

xi + Pilxi + Qi(lzi − wyi + hzi) + Ri(1 − lxi − lzi + wyi − hzi)

≤ xk + αikM + βikM + (1 − δik)M, (2′′)

xk + Pklxk + Qk(lzk − wyk + hzk) + Rk(1 − lxk − lzk + wyk − hzk)

≤ xi + αikM + (1 − βik)M + δikM, (3′′)

yi + Pi(1 − lxi − lzi) + Qiwyi + Ri(lxi + lzi − wyi)

≤ yk + (1 − αik)M + βikM + δikM, (4′′)

yk + Pk(1 − lxk − lzk) + Qkwyk + Rk(lxk + lzk − wyk)

≤ yi + αikM + (1 − βik)M + (1 − δik)M, (5′′)

zi + Pilzi + Qi(1 − lzi − hzi) + Rihzi ≤ zk + (1 − αik)M + βikM + (1 − δik)M, (6′′)

zk + Pklzk + Qk(1 − lzk − hzk) + Rkhzk ≤ zi + (1 − αik)M + (1 − βik)M + δikM, (7′′)

1 ≤ αik + βik + δik ≤ 2, (8′′)

where all variables are the same as defined before.

Proof Constraint (2′) means that if and only if Aik = 1 then i is on the left of k; constraint (2′′)
implies that for αik = βik = 0 and δik = 1, i is also on the left of k. Constraint (2′) therefore
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A global optimization method for packing problems 693

is equivalent to constraint (2′′). Similarly, constraints (3′)–(7′) are equivalent to constraints
(3′′)–(7′′), respectively. �

Model 2 can then be transformed into Model 3 below:

Model 3:

Minimize xyz

subject to
constraints (2′′)–(8′′), (9′)–(11′)
where αik, βik, δik, lxi , lzi , wyi and hzi are 0–1 variables.
Comparing Model 2 with Model 3 shows that Model 2 contains 3n(n − 1) + 4n 0–1

variables, while Model 3 involves 3/2n(n − 1) + 4n 0–1 variables. Model 3 is therefore
computationally less demanding than Model 2. This will be illustrated by some numerical
results presented in section 6.

4. Linearization strategy

This article is concerned with packing problems with the nonlinear objective function xyz.
Therefore, finding the global optimum of the packing problem is difficult. This section proposes
a generalized approach to piecewisely linearize the objective function xyz in Model 3 in order
to find its globally optimal solution.

Denote F as a feasible set of Model 3 in which x ≥ y ≥ z, F = {(2′′)–(8′′), (9′)–(11′),
x ≥ y ≥ z}. First, consider the following fact:

An optimization program P1: {Minimize Obj1 = xyz, subject to x ≤ x ≤ x̄, y ≤ y ≤ ȳ,
z ≤ z ≤ z̄, x, y, z ∈ F} is equivalent to the program below.

P2: {Minimize Obj2 = ln x + ln y + ln z, subject to x ≤ x ≤ x̄, y ≤ y ≤ ȳ, z ≤ z ≤ z̄,
x, y, z ∈ F}.

The following propositions discuss the proposed approach of linearizing the logarithmic
terms ln x, ln y and ln z.

PROPOSITION 3 A logarithm function ln x, 0 < a1 ≤ x ≤ am, as shown in figure 3, can
piecewise linearly be approximated

ln x
.= ln x̂ = ln a1 + s1(x − a1) +

m−1∑
j=2

sj − sj−1

2
(|x − aj | + x − aj ), (18)

where aj , j = 1, 2, . . . , m, are the break points of ln x, aj < aj+1; and sj are the slopes
of line segments between aj and aj+1, sj = (ln aj+1 − ln aj )/(aj+1 − aj ), for j = 1, 2, . . . ,

m − 1.

Figure 3. Graphical illustration of piecewise linear approximation of ln x.
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694 J.-F. Tsai and H.-L. Li

This proposition can be examined as follows:

If x = a1 then ln x = ln a1 (exact).
If x ≤ a2 then ln x̂ = ln a1 + s1(x − a1).
If x ≤ a3 then

ln x̂ = ln a1 + s1(x − a1) + s2 − s1

2
(|x − a2| + x − a2).

Similarly, logarithm functions ln y and ln z, can be approximately linearized as

ln y
.= ln ŷ = ln b1 + t1(y − b1) +

m−1∑
j=2

tj − tj−1

2
(|y − bj | + y − bj ), (19)

where tj = (ln bj+1 − ln bj )/(bj+1 − bj ), 0 < b1 ≤ y ≤ bm and b1, b2, . . . , bm are its break
points, bj < bj+1, for j= 1, 2, . . . ,m − 1;

ln z
.= ln ẑ = ln c1 + r1(z − c1) +

m−1∑
j=2

rj − rj−1

2
(|z − cj | + z − cj ), (20)

where rj = (ln cj+1 − ln cj )/(cj+1 − cj ), 0 < c1 ≤ z ≤ cm and c1, c2, . . . , cm are its break
points, cj < cj+1, for j= 1, 2, . . . ,m − 1.

Remark 1 Since ln x, ln y and ln z are concave functions, it is clear that the approximations
bound ln x, ln y and ln z from below; ln x ≥ ln x̂, ln y ≥ ln ŷ and ln z ≥ ln ẑ.

The following results are then obtained.

Remark 2 (lower bound) Consider the following program:

P 3 : {Minimize Obj3 = ln x̂ + ln ŷ + ln ẑ, subject to x ≤ x ≤ x̄, y ≤ y ≤ ȳ,

z ≤ z ≤ z̄, x, y, z ∈ F }.
Program P3 provides a lower bound on Program P2 due to Remark 1.
Consider the following proposition of how to linearize ln x̂:

PROPOSITION 4 (linearization) ln x̂ in (18) can be re-expressed in a linearized form as follows:

ln x̂ = ln a1 + s1(x − a1) +
m−1∑
j=2

(sj − sj−1)(ajuj + x − aj − gj ), (21)

(i) −amuj ≤ x − aj ≤ am(1 − uj ) for j = 2, 3, . . . , m − 1
(ii) −amuj ≤ gj ≤ amuj for j = 2, 3, . . . , m − 1

(iii) am(uj − 1) + x ≤ gj ≤ am(1 − uj ) + x for j = 2, 3, . . . , m − 1
(iv) uj ≥ uj−1 for j = 2, 3, . . . , m − 1 where uj = 0 or 1, and gj = 1 or x, respectively.

Proof If x − aj ≥ 0 then uj = 0 and gj = 0 based on (i) and (ii); which results in

ajuj + x − aj − gj = (|x − aj | + x − aj )/2.

If x − aj < 0 then uj = 1 and gj = x based on (i) and (iii); which results in

ajuj + x − aj − gj = |x − aj | + x − aj .

Therefore, ln x̂ in (18) is equivalent to (21). Now consider condition (iv). �

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
44

 2
6 

A
pr

il 
20

14
 



A global optimization method for packing problems 695

Since aj−1 < aj , if x < aj (i.e. uj = 1) then x < aj+1 and uj+1 = 1.
If x > aj+1 (i.e. uj+1 = 0) then x > aj and uj = 0.
Therefore, it is true that uj ≥ uj−1.
Condition (iv) is used to accelerate the computational speed of solving the problem.
Similarly, ln ŷ and ln ẑ can be re-expressed in a piecewise linearized form in the same way.

PROPOSITION 5 (range reduction) Let (x∗, y∗, z∗) be the global optimum of Model 3, the range
of the objective function xyz is bounded as

n∑
i=1

PiQiRi ≤ x∗y∗z∗ ≤
(

x� + y� + z�

3

)3

for any (x�, y�, z�) ∈ F.

Proof Since
∑n

i=1 PiQiRi ≤ xyz for any (x, y, z) ∈ F and

3
√

x∗y∗z∗ ≤ 3
√

x�y�z� ≤ x� + y� + z�

3
,

the proposition is true. �

Note that (Pi, Qi, Ri) is the length, width and height of carton i.

5. Solution algorithm

From the above discussion, the proposed solution algorithm is as follows.
Let Sτ , Tτ and Uτ be respectively a set of break points of ln x, ln y and ln z at the τ th

iteration. Denote ε as a tolerable error (specified later).

Step 1 Range reduction
Solving a linear 0–1 program: {Minimize x + y + z, subject to x, y, z ∈ F}.
Let the solution be (x�, y�, z�) and the objective value be Obj = x� + y� + z�.
According to Proposition 5, the range of finding the global optimum of xyz is

n∑
i=1

PiQiRi ≤ x∗y∗z∗ ≤
(

Obj

3

)3

and

ln
n∑

i=1

PiQiRi ≤ ln x∗ + ln y∗ + ln z∗ ≤ 3 ln Obj − 3 ln 3. (22)

Step 2 Linearization
Let iteration τ = 1, S1 = {x, x̄}, T1 = {y, ȳ}, U1 = {z, z̄}, x > 0, y > 0, z > 0.
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696 J.-F. Tsai and H.-L. Li

Consider the linear program

Min
(x,y,z)

Obj (x(2)) + Obj (y(2)) + Obj (z(2))

where

Obj (x(2)) + Obj (y(2)) + Obj (z(2)) = ln x + ln x̄ − ln x

x̄ − x
(x − x) + ln y

+ ln ȳ − ln y

ȳ − y
(y − y) + ln z + ln z̄ − ln z

z̄ − z
(z − z)

and variable x(2) denotes the approximation variable of x∗ in the current iteration, similarly
for y(2) and z(2).

Subject to (22), (x, y, z) ∈ F , x ≤ x ≤ x̄, y ≤ y ≤ ȳ, z ≤ z ≤ z̄.
Let the solution be denoted by the specific values of (x, y, z), namely, (x(2), y(2), z(2)),

the approximation to (x∗, y∗, z∗) in the current iteration.
If |(Obj (x(2)) − ln x(2))/ ln x(2)| < ε, |(Obj (y(2)) − ln y(2))/ ln y(2)| < ε and

|(Obj (z(2)) − ln z(2))/ ln z(2)| < ε then terminate the process. The optimal solution is
(x(2), y(2), z(2)).

Otherwise, go to Step 3.

Step 3
Iteration τ = τ + 1.
Let Sτ = Sτ−1 ∪ {x(τ)}, Tτ = Tτ−1 ∪ {y(τ)} and Uτ = Uτ−1 ∪ {z(τ )}, where ‘∪’ means

union of sets.
Denote the number of elements (break points) in Sτ , Tτ and Uτ as mτ . Consider the following

linear mixed 0–1 program:

Min
(x,y,z)

Obj (x(τ + 1)) + Obj (y(τ + 1)) + Obj (z(τ + 1))

where

Obj (x(τ + 1)) + Obj (y(τ + 1)) + Obj (z(τ + 1))

= ln a1 + s1(x − a1) +
mτ −1∑
j=2

(sj − sj−1)(ajuj + x − aj − gj ) + ln b1 + t1(y − b1)

+
mτ −1∑
j=2

(tj − tj−1)(bjvj + y − bj − qj ) + ln c1 + r1(z − c1) +
mτ −1∑
j=2

(rj − rj−1)

× (cjoj + z − cj − pj ).

Subject to (22), (x, y, z) ∈ F , for all j , the following constraints should be satisfied:

− x̄uj ≤ x − aj ≤ x̄(1 − uj ), −x̄uj ≤ gj ≤ x̄uj ,

x̄(uj − 1) + x ≤ gj ≤ x̄(1 − uj ) + x, uj ≥ uj−1,

− ȳvj ≤ y − bj ≤ ȳ(1 − vj ), −ȳvj ≤ qj ≤ ȳvj ,

ȳ(vj − 1) + y ≤ qj ≤ ȳ(1 − vj ) + y, vj ≥ vj−1,

− z̄oj ≤ z − cj ≤ z̄(1 − oj ), −z̄oj ≤ pj ≤ z̄oj ,

z̄(oj − 1) + z ≤ pj ≤ z̄(1 − oj ) + z, oj ≥ oj−1,

where uj , vj and oj are 0–1 variables, gj , qj and pj are 1 or, respectively, x, y

and z, a1, a2, . . . , amτ
∈ Sτ , a1 = x < a2 < · · · < amτ

= x̄, b1, b2, . . . , bmτ
∈ Tτ , b1 = y <
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A global optimization method for packing problems 697

b2 < · · · < bmτ
= ȳ, c1, c2, . . . , cmτ

∈ Uτ , c1 = z < c2 < · · · < cmτ
= z̄, sj , tj and rj are the

slopes in the piecewise linearization of ln x, ln y and ln z, respectively, for j = 2, 3, . . . ,

mτ − 1.
Let the solution be (x(τ + 1), y(τ + 1), z(τ + 1)).
If |(Obj (x(τ + 1)) − ln x(τ + 1))/ ln x(τ + 1)| < ε, |(Obj (y(τ + 1)) − ln y(τ + 1))/

ln y(τ + 1)| < ε and |(Obj (z(τ + 1)) − ln z(τ + 1))/ ln z(τ + 1)| < ε then terminate the
process, and (x(τ + 1), y(τ + 1), z(τ + 1)) is the optimal solution.

Otherwise, repeat Step 3.

Development (convergence). The above algorithm (run with ε
.= 0) terminates with the

incumbent solution (x̂∗, ŷ∗, ẑ∗) being optimum to Model 3 when τ → ∞.

Explanation. For iteration τ , let {[lτx , uτ
x]} express the sequence [aτ

1 , aτ
2 ], [aτ

2 , aτ
3 ], . . . ,

[aτ
mτ −1, a

τ
mτ

], {[lτy , uτ
y]} express the sequence [bτ

1 , b
τ
2 ], [bτ

2 , b
τ
3 ], . . . , [bτ

mτ −1, b
τ
mτ

] and {[lτz , uτ
z ]}

express the sequence [cτ
1 , c

τ
2 ], [cτ

2 , c
τ
3 ], . . . , [cτ

mτ −1, c
τ
mτ

] where aτ
1 < aτ

2 < · · · < aτ
mτ

, bτ
1 <

bτ
2 < · · · < bτ

mτ
and cτ

1 < cτ
2 < · · · < cτ

mτ
.

Since sequences {aτ
κ }, {bτ

κ } and {cτ
κ } are monotone and bounded, where κ = 1, . . . , mτ

and τ → ∞, it is obvious that {[lτx , uτ
x]}, {[lτy , uτ

y]} and {[lτz , uτ
z ]} converge to some intervals

[lτx , uτ
x], [lτy , uτ

y] and [lτz , uτ
z ]. Also, when τ → ∞, by the concavity of ln x̂, ln ŷ and ln ẑ in (18)

and the Mean Value Theorem, x̂∗ = l∗x = u∗
x , ŷ∗ = l∗y = u∗

y and ẑ∗ = l∗z = u∗
z . Which means

ln x̂∗ = ln x∗, ln ŷ∗ = ln y∗ and ln ẑ∗ = ln z∗. By referring to Remark 2, ln x̂∗, ln ŷ∗ and ln ẑ∗
are the lower bounds of Program P2; (x̂∗, ŷ∗, ẑ∗) is then the optimal solution to Model 3.

6. Numerical examples

To validate the proposed method, two tests are performed. Test 1 is used to demonstrate that
the reformulation of packing problems can substantially improve the computational efficiency
of Chen et al.’s model. Test 2 comprises packing problems with cubes in which the problem
model is simpler than Model 3; carton rotation is not considered. All test problems are solved
by LINGO (2002) on a Pentium III 1000 personal computer.

Test 1: The test problems taken from Chen et al. (1995) are solved and the CPU times
are compared with those of the proposed method. Table 2 indicates that, compared with

Table 2. Comparison of computation results.

CPU time (hh:mm:ss) Objective value
Problem Carton
number number i Pi Qi Ri Chen et al. Proposed method Chen et al. Proposed method

1 1 25 8 6 00:04:43 00:00:18 4368 4368
2 20 10 5
3 16 7 3
4 15 12 6

2 1 25 8 6 03:12:07 00:02:19 5040 5040
2 20 10 5
3 16 7 3
4 15 12 6
5 22 8 3

3 1 25 8 6 46:38:29 00:45:02 5880 5880
2 20 10 5
3 16 7 3
4 15 12 6
5 22 8 3
6 20 10 4
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698 J.-F. Tsai and H.-L. Li

Table 3. Optimal solutions obtained by the proposed method.

Problem number Carton number i xi yi zi (x, y, z)

1 1 0 0 0 (28, 26, 6)
2 8 0 0
3 8 10 2
4 16 11 0

2 1 0 3 0 (30, 28, 6)
2 20 8 0
3 14 0 0
4 8 8 0
5 8 0 3

3 1 10 20 0 (35, 28, 6)
2 25 0 0
3 0 0 3
4 10 8 0
5 5 0 0
6 0 8 0

Chen et al.’s method, the proposed method uses much less CPU time to reach the same objective
values. This implies that the reformulation of packing optimization problems improves the
computational efficiency. The optimal packing solutions for Problems 1, 2 and 3 of table 2 are
listed in table 3.

Test 2: Packing problems with cubes are tested by the proposed method and the results of
four problems are presented in table 4. For Problem 4, with eight cubes, the proposed method
spends 8 seconds finding the optimal solution. For Problem 5, with 10 cubes, it takes about
2.5 minutes to get the global solution. The other two problems are also solved to obtain the
global optima with the tolerable error ε = 0.01.

Taking the test Problem 1 for instance, the detailed results obtained by the developed
algorithm are listed in table 5. The globally optimal solution is found in the sixth iteration
with six break points. From the sixth iteration to the ninth iteration, one of the break points
(28, 26, 6) is also the obtained optimal solution. Accordingly, the values of ε(x), ε(y) and
ε(z), which represent the errors of ln (x), ln (y) and ln (z), respectively, are 0. The convergence

Table 4. Computational results; all cartons are cubes.

Problem Number Cube side CPU time Objective
number of cubes length (x, y, z) (hh:mm:ss) value

4 3 1 (8, 5, 5) 00:00:08 200
3 2 Global optimum
1 3
1 5

5 4 1 (8, 6, 5) 00:02:26 240
3 2 Global optimum
2 3
1 5

6 4 1 (8, 6, 3) 00:04:44 144
3 2 Global optimum
4 3

7 4 1 (9, 8, 5) 00:56:38 360
3 2 Global optimum
3 3
1 4
1 5
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A global optimization method for packing problems 699

Table 5. Detailed results of Problem 1.

Number of Objective
break points value (x, y, z) ε(x) ε(y) ε(z)

1 6.4738 (25, 18, 11) 0.034 0.1129 0.3383
2 7.3158 (41, 12, 10) 0.1144 0.2373 0.2851
3 7.6211 (41, 12, 10) 0.1144 0.2373 0.2851
4 7.8335 (41, 12, 10) 0.1144 0.2373 0.2851
5 8.0188 (60, 12, 7) 0.2287 0.2373 0.086
6 8.0925 (28, 26, 6) 0 0 0
7 8.1208 (28, 26, 6) 0 0 0
8 8.1626 (28, 26, 6) 0 0 0
9 8.1832 (28, 26, 6) 0 0 0

Figure 4. Convergence graph of objective value against number of break points.

Figure 5. Sensitivity analysis of ε(·) to number of break points.
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700 J.-F. Tsai and H.-L. Li

graph of objective value against the number of break points is shown in figure 4. Figure 4
reveals that the objective value increases stably and converges to the globally optimal solution
while the number of break points increases. The sensitivity analysis of the errors of ln(x),
ln(y) and ln(z) against the number of break points is also depicted in figure 5.

7. Conclusions

This article proposes a new method to solve packing problems. First the computational
efficiency is improved by reducing the number of 0–1 variables of the problem model and by
finding the minimal range of the objective function. Then a piecewise linearization technique
is applied to linearize the nonlinear objective function xyz. By solving the linear mixed 0–1
program iteratively the proposed method can find a global optimum within the tolerable error.
Numerical examples demonstrate that the proposed method can obtain the global optimum of
a packing problem. To further improve the computational efficiency a direction for future
development is to implement the proposed method in a distributed computation system.
Another direction of development is to use a heuristic method such as tabu search, simu-
lated annealing or genetic algorithm to find a sub-optimal solution which is treated as a lower
bound of the objective. Based on this solution, the search region of the global optimum can
be reduced and the computational time decreased.
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