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Abstract In mean-partition problems the goal is to partition a finite set of elements,
each associated with a d-vector, into p disjoint parts so as to optimize an objective,
which depends on the averages of the vectors that are assigned to each of the parts.
Each partition is then associated with a d × p matrix whose columns are the corre-
sponding averages and a useful approach in studying the problem is to explore the
mean-partition polytope, defined as the convex hull of the set of matrices associated
with feasible partitions.
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1 Introduction

Consider a finite set N = {1, . . . , n} where each element i in N is associated with a
vector Ai ∈ Rd. A partition of N is a finite ordered collection π = (π1, . . . , πp) where
π1, . . . , πp are disjoint sets whose union is N. In this case, p is called the size of π ,
π1, . . . , πp are called the parts of π and 〈π〉 ≡ (|π1|, . . . , |πp|) is called the shape of π .
A p-partition is a partition of size p. Throughout, we assume that p, n and A1, . . . , An

are given.
In a constrained-shape partition problem, one is to select a partition π of N

whose shape is in a given set � of integer p-vectors with coordinate-sum n so as
to maximize an objective function F(.) that is defined over partitions. Special cases
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include single-shape, bounded-shape and size partition problems in which the set �

consists of a single vector, is defined by lower and upper bounds and is unrestricted.
Partition problems are further classified by their objective function F(.). For a

subset S of {1, . . . , n}, let

AS =
∑

i∈S

Ai ∈ Rd (1.1)

and for a partition π = (π1, . . . , πp) , let

Aπ = (Aπ1 , . . . , Aπp) ∈ Rd×p. (1.2)

A predominant class of partition problems is the sum-partition problem in which

F(π) = f (Aπ ), (1.3)

where f (.) is a real-valued function on Rd×p. A useful approach in addressing partition
problems in this class is to study the corresponding sum-partition polytope defined to
be the convex hull of the Aπ s, with π ranging over the set of feasible partitions. The
sum-partition polytope corresponding to a set of partitions � is denoted P�. If f is
guaranteed to attain an optimum over P� at a vertex of that polytope then there must
exist an optimal partition π with Aπ being a vertex of the P� (see [10] for a sufficient
condition for the optimality of vertices, which generalizes the classic conditions of
convexity and quasi-convexity). In such cases, it is useful to identify properties of
partitions π for which Aπ is a vertex of the sum-partition polytope. For d = 1, Hwang
et al. [9] gave an explicit solution of the bounded-shape sum-partition problem when
f is Schur convex and a majorization shape exists. Chang et al. [5] extended the result
to the general case that no majorizing shape exists; see, Sect. 4.

We next introduce the mean-partition problem, which is the subject of the current
paper. For a nonempty subset S of {1, . . . , n}, let

ĀS = 1
|S|

∑

i∈S

Ai ∈ Rd (1.4)

and for a partition π = (π1, . . . , πp) (with nonempty parts) let

Āπ = (Āπ1 , . . . , Āπp). (1.5)

We next consider the mean-partition problem, which is the class of partition problems
with

F(π) = g(Āπ ), (1.6)

where g(.) is a real-valued function on Rd×p; with d = 1, this problem was first
explored by Anily and Federgruen [2]; see, Sect. 2 for details about their results. Also,
the study of the mean-partition problem motivated Chang and Hwang [4] to study the
supermodularity property of a function related to the mean-partition polytope; see,
Sect. 3.

As in the case of the sum-partition problem, given a set of p-partitions �, the
mean-partition polytope P̄� is defined as the convex hull of {Āπ : π ∈ �}. And when
g is guaranteed to attain an optimum over P̄� at a vertex, there exists an optimal
partition with Ā� being a vertex of the P̄�. It is then useful to identify properties of
partitions π for which Āπ is a vertex of the mean-partition polytope.
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The purpose of the current paper is to study the mean-partition problem. Our
first result (in Sect. 2) is the observation that the single-shape mean-partition prob-
lem can be reduced to a corresponding sum-partition problem. We use the reduction
as a tool for deducing properties of optimal partitions of mean-partition problems
from corresponding results about sum-partition problems. We also observe that every
single-shape mean-partition polytope is the image of a corresponding sum-partition
polytope under a one-to-one linear transformation with the sets of partitions corre-
sponding to the vertices of the two polytopes coinciding. Consequently, properties of
partitions π with Aπ being a vertex of P� hold for partitions with Āπ being a vertex
of P̄�. While the above tools do not extend to bounded-shape problems, the exis-
tence of properties of optimal partitions of single-shape partition problems extends
to bounded-shape problems.

In Sect. 3, we explore the single-shape mean-partition polytopes with d = 1. We
derive an explicit representation of these polytopes and review alternative approaches
to address the mean partition problem.

In Sect. 4, we continue the examination of mean-partition problems with d = 1
and establish geometric properties (reverse size-consecutiveness) for optimal parti-
tions of single-shape problems, providing more structure of optimal partitions than is
obtainable from the transformation approach. For the bounded-shape problem, we
are able to shrink the set of consecutive partitions and still preserve the existence of
an optimal partition in the shrunk set.

2 Reduction of single-shape mean-partition problems to sum-partition problems

We start by recording the observation that single-shape mean-partition problems are
reducible to corresponding sum-partition problems.

Lemma 2.1 Let n1, . . . , np be positive integers whose coordinate-sum is n. Then the
single-shape mean-partition problem with prescribed-shape (n1, . . . , np) and objective
function given by (1.6) coincides with the corresponding sum-partition problem with
objective function given by (1.3) where f satisfies

f (x1, . . . , xp) = g(
x1

n1
, . . . ,

xp

np
) for x ∈ Rp. (2.1)

��

Lemma 2.1 implies that properties of optimal solutions for single-shape mean-
partition problems are deducible from properties of optimal solutions of correspond-
ing sum-partition problems. For example, it is known that when the Ais are distinct,
every single-shape sum-partition problem with f (quasi-) convex has at least one
disjoint optimal partition, that is, an optimal partition for which the convex hulls of
the vectors Ai corresponding to distinct parts are disjoint (see [3]); further, the set
of disjoint partitions has at most O[nd(p

2)] partitions and these can be enumerated in
polynomial time (see [1] or [8]). These results establish the polynomial solvability of
the single-shape sum-partition problem when the function f is (quasi-) convex. (For
the relaxation of the assumption that the Ais are distinct see [8].) Now, as a function
g is (quasi-) convex if and only if so is the function f that is defined through (2.1), we
obtain the following corollary of Lemma 2.1.
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Corollary 2.2 Suppose the Ais are distinct. Then every single-shape mean-partition
problem with objective function given by (1.6) where g is (quasi-) convex has at least
one disjoint optimal solution, and such problems are solvable in polynomial time. ��

The following standard observation allows one to extend conclusions about the
presence of (geometric and combinatorial) properties in optimal partitions from
single-shape to constrained-shape problems [see, Lemma 1 of Golany et al. (2005,
submitted)]: Consider a cost function F over p-partitions and a property Q of p-par-
titions such that for each single-shape mean-partition problem with cost function F,
Q is satisfied by some (every) optimal partition. Then, for every constrained-shape
partition problem with cost function F, Q is satisfied by some (every) optimal partition.

The above arguments combine with Lemma 2.1 to show that any property that
is present in optimal solutions of single-shape sum-partition problem, is present in
optimal solutions of corresponding constrained-shape mean-partition problems. But,
these conclusions cannot be reached by using (2.1) to map constrained-shape mean-
partition problems onto corresponding sum-partition problems. The above observa-
tion is demonstrated in the next corollary.

Corollary 2.3 Suppose the Ais are distinct. Then every constrained-shape mean-
partition problem with objective function given by (1.6) where g is (quasi-) convex has
at least one disjoint optimal solution. Further, assuming efficient (that is, polynomial)
verifiability of the shape-constraints, such problems are solvable in polynomial time.

Proof The existence of disjoint optimal partitions follows from the observation pre-
ceding the statement of the corollary and Corollary 2.2, and the polynomial solv-
ability follows from the polynomial enumerability of disjoint partitions (established
in [8]). ��

Anily and Federgruen [2] studied the bounded-shape mean-partition problem for
d = 1 under the objective function f (π) = ∑p

i=1 h(Āπ , ni). They proved that if for
each ni, h(X, ni) is convex and nondecreasing in X, then there exists a disjoint optimal
partition. Their result follows from the above discussion with d = 1 and with f (π) as
a special type of (quasi-) convex function. We note that with stronger assumptions
on h(X, y), Anily and Federgruen obtained additional, tighter, results, which are not
available from our approach.

We next go back to single-shape problems and record an isomorphism between
single-shape mean-partition polytopes and the corresponding sum-partition poly-
topes. With n1, . . . , np as the given positive integers, let P� be the set of partitions
with shape (n1, . . . , np) and let Dn1,...,np be the p×p diagonal matrix whose diagonal ele-
ments are, respectively, n1, . . . , np. For every partition π ∈ �, Āπ = (Aπ1

n1
, . . . , Aπp

np
) =

(Dn1,...,np)−1Aπ , and therefore

P̄� = conv{(Dn1,...,np)−1Aπ : π ∈ �} = {(Dn1,...,np)−1X : X ∈ P�}. (2.2)

Thus, the one-to-one linear transformation

X = (X1, . . . , Xp) → (Dn1,...,np)−1X =
(

X1

n1
, . . . ,

Xp

np

)
(2.3)

maps P� onto P̄�, that is, the single-shape mean-partition polytope is the one-to-one
linear image of the corresponding single-shape sum-partition polytope. A virtue of
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this transformation is that it preserves vertices. Consequently, any bound on the num-
ber of vertices of P� is a bound on the number of vertices of P̄� and any algorithm
for generating the vertices of P� can be used to generate the vertices of P̄�.

3 Mean-partition polytopes with d = 1

In this section, we consider the mean-partition polytope with d = 1. We review known
results about single-shape sum-partition polytopes and show how these are transform-
able to mean-partition polytopes by the one-to-one transformation outlined in Sect. 2.
We also review difficulties in the direct simulation to mean-partition problems of the
approach that has been implemented successfully for the sum-partition problem. Fol-
lowing standard notation, we use the notation θ1, . . . , θn for the scalars A1, . . . , An,
respectively.

Gao et al. [6] developed an effective approach to study sum-partition polytopes
with d = 1 by deriving explicit representations for the corresponding sum-partition
polytopes through systems of linear inequalities (in fact, [6] considers only single-
shape problems and the general case is developed in Hwang and Rothblum [11]).
To present the approach, let � be a set of p-partitions and consider the real-valued
function λ�∗ on subsets of {1, . . . , p}, where for each nonempty I ⊆ {1, . . . , p}

λ�∗ (I) = min
π=(π1,...,πp)∈�

∑

j∈I

θπj (3.1)

and λ�∗ (∅) = 0; in particular, λ�∗ ({1, . . . , p}) = ∑n
j=1 θ j.

A real-valued function λ over subset of {1, . . . , p} is used to define two polytopes.
First, Cλ is defined to be the set of vectors x in Rp satisfying

∑

i∈I

xi ≥ λ(I) for all I ⊆ {1, . . . , p} (3.2)

and
p∑

i=1

xi = λ({1. . . . , p}). (3.3)

Also, for each permutation σ = (σ1, . . . , σp) of {1, . . . , p} and k ∈ {1, . . . , p}, let jσ (k)

denote the index for which σjσ (k) = k and let λσ be the vector ((λσ )1, . . . , (λσ )p) where
for each k = 1, . . . , p, (λσ )k = λ({σ1, . . . , σjσ (k)}) − λ({σ1, . . . , σjσ (k−1)}). With � as the
set of permutations of {1, . . . , p}, the second polytope corresponding to λ, denoted Hλ,
is defined as the convex hull of {λσ : σ ∈ �}. The function λ is called supermodular
if for every pair of subsets I and J of {1, . . . , p}, λ(I ∪ J) + λ(I ∩ J) ≥ λ(I) + λ(J).
Shapley [13] proved that when λ is supermodular, Hλ = Cλ and the λσ s are the
vertices of this polytope.

Given a set of p-partitions � and the corresponding function λ�∗ defined by (3.1),
it is immediately verified that P� ⊆ Cλ�∗ . The set of partitions � is called consistent if
for every permutation σ of {1, . . . , p} there exists a partition π in � with θπ = (λ�∗ )σ .
It follows immediately from the definition that Hλ�∗ ⊆ P� whenever � is consistent;
further, it is proved in [11] that consistency of � implies that λ�∗ is supermodular,
implying that in this case Hλ�∗ = P� = Cλ�∗ . The equality P� = Cλ�∗ provides a
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representation of the sum-partition polytope P� as the feasible set of a correspond-
ing system of linear inequalities. And the equality P� = Hλ�∗ , together with Shapley
characterization of vertices of the polytope corresponding to a supermodular function,
provide a characterization of the vertices of the sum-partition polytope P� through
the p! (λ�∗ )σ s. Examples of consistent sets of partitions include single-shape problems
and bounded-shape problems where the θ is are one-sided, that is, either nonnega-
tive or nonpositive; see [11]. We recall from [7] that for any bounded-shape set of
partitions �, λ�∗ is supermodular, implying that Hλ�∗ = Cλ�∗ (⊇ P�); but, for arbi-
trary bounded-shape problems, without the assumption that the θ is are one-sided, the
supermodularity of λ�∗ does not imply the representation P� = Cλ�∗ .

We next combine the representation of single-shape sum-partition polytopes
through (3.2)–(3.3) with the transformation (2.3) to obtain a representation of sin-
gle-shape mean-partition polytopes. We also obtain a representation of the vertices
of such polytopes. For the latter, recall that for each permutation σ = (σ1, . . . , σp) of
{1, . . . , p} and k ∈ {1, . . . , p}, jσ (k) denotes the index for which σjσ (k) = k.

Lemma 3.1 Let n1, . . . , np be positive integers whose coordinate-sum is n and let � be
the set of partitions with shape (n1, . . . , np). Then P̄� is the set of vectors y ∈ Rp that
satisfy

∑

i∈I

niyi ≥ λ(I) for all I ⊆ {1, . . . , p} (3.4)

and
p∑

i=1

niyi = λ({1, . . . , p}). (3.5)

Further, the vertices of P̄� are available from the p! permutations of {1, . . . , p} with
permutation σ corresponding to the vector vσ having

(vσ )k = 1
nk

[(λ�∗ )({σ1, . . . , σjσ (k)}) − (λ�∗ )({σ1, . . . , σjσ (k−1)})] for k = 1, . . . , p.(3.6)

Proof Let Dn1,...,np be the p×p diagonal matrix whose diagonal elements are, respec-
tively, n1, . . . , np . We observe from (2.2) that

P̄� = {(Dn1,...,np)−1x : x ∈ P�} = {y : (Dn1,...,np)y ∈ P�}. (3.7)

Using the representation of P� through (3.2)–(3.3) we get the representation of P̄�

as the set of vectors y ∈ Rp that satisfy (3.4)–(3.5). Finally, the representation of
the vertices of P̄� follows from the representation of the vertices of the single-shape
sum-partition polytope P� mentioned earlier, and that observation made in Sect. 2
that the transformation x → (Dn1,...,np)−1x (described in (2.3)) maps vertices of P�

onto vertices of P̄�. ��
Chang and Hwang [4] tried to develop a direct approach for studying the mean-

partition problem with d = 1. Given a set of partitions �, with no partition in �

having empty parts, consider the real-valued function λ̄ on subsets of {1, . . . , p} where
for each nonempty I ⊆ {1, . . . , p}

λ̄�∗ (I) = min
π=(π1,...,πp)∈�

∑

j∈I

θ̄πj (3.8)
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and λ̄�∗ (∅) = 0. Chang and Hwang [4] proved that for a single-shape set of partitions
�, λ̄�∗ is supermodular; it then follows from the result of [13] mentioned in the Intro-

duction that Hλ̄�∗ = C
¯λ�∗ . But, the following example demonstrates that this polytope

can be different from P̄�.

Example 3.1 Let n = 3, θ1 = 1, θ2 = 2, θ3 = 3, p = 2 and consider the mean-
partition problem corresponding to the set � of partitions with shape (1, 2). The
set � contains the three partitions ({1}, {2, 3}), ({2}, {1, 3}) and ({3}, {1, 2}) whose cor-
responding vectors are, respectively, (1, 2.5), (2, 2) and (3, 1.5). The mean-partition
polytope is then the line-segment connecting (1, 2.5) and (3, 1.5). Also, we have that
λ̄�∗ ({1}) = 1/1 = 1, λ̄�∗ ({2}) = 1 + 2/2 = 1.5 and λ̄�∗ ({1, 2}) = min{1/1 + 2 + 3/2 =
3.5, 2/1 + 1 + 3/2 = 4, 3/1 + 1 + 2/2 = 4.5} = 3.5. So, Cλ̄�∗ is the polytope defined by
the inequalities x1 ≥ 1 , x2 ≥ 1.5 , x1+x2 = 3.5, that is, it is the line-segment connecting
(1, 2.5) and (2, 1.5). Finally, the two permutations (1, 2) and (2, 1) of {1, 2} correspond,
respectively, to the vectors (λ̄�∗ )(1,2) = (λ̄�∗ ({1}), λ̄�∗ ({1, 2}) − λ̄�∗ ({1}) = (1, 2.5) and
(λ̄�∗ )(2,1) = (λ̄�∗ ({1, 2}) − λ̄�∗ ({2}), λ̄�∗ ({2})) = (2, 1.5), and Hλ̄�∗ is the line-segment
connecting these points (see Fig. 1 for an example of P̄�, Cλ̄�∗ and Hλ̄�∗ ). Notice that
the equality Cλ̄�∗ = Hλ̄�∗ is consistent with the conclusion of [4].

One explanation for Cλ̄�∗ being different from P̄� is the fact that the coordinate-
sums of the points in the mean-partition polytope need not be constant, hence, it seems
natural to relax the equality constraint (3.3) in the definition of Cλ̄�∗ . But, such a relax-
ation will typically result in an unbounded polyhedron (consider Example 3.1). With
the goal of augmenting the constraints of (3.2) with upper bounds on the variables,
consider the real-valued function on subsets of {1, . . . , p} defined by

(λ̄∗)�(I) = max
π=(π1,...,πp)∈�

∑

j∈I

θ̄πj for each I ⊆ {1, . . . , p} (3.9)

(with (λ̄∗)�(∅) = 0). Further, let K� be the set of vectors x in Rp that satisfy

(λ̄∗)�(I) ≤
∑

i∈I

xi ≤ (λ̄∗)�(I) for all I ⊆ {1, . . . , p}. (3.10)

Evidently, K� contains the corresponding mean-partition polytope P̄�. But, the fol-
lowing continuation of Example 3.1 demostrates that the inclusion may be strict.

Example 3.1 (Continued) Reconsider the data of Example 3.1. The modification of
Cλ̄�∗ obtained through the relaxation of (3.3) is the (unbounded) polyhedron, which

Fig. 1 P̄� and Cλ̄�∗ = Hλ̄�∗
in Example 3.1
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is defined by the constraints x1 ≥ 1, x2 ≥ 1.5 and x1 + x2 ≥ 3.5; see Fig. 2. Also,
(λ̄∗)�({1}) = 3

1 = 3, (λ̄∗)�({2}) = 2 + 3/2 = 2.5 and (λ̄∗)�({1, 2}) = 3/1 + 1 + 2/2 =
4.5. So, K� is the polytope defined by the inequalities 1 ≤ x1 ≤ 3, 1.5 ≤ x2 ≤ 2.5 and
3.5 ≤ x1 + x2 ≤ 4.5 , which equals the convex hull of {1, 2.5}, {2, 1.5}, {3, 1.5}, {2, 2.5};
see Fig. 2. As is always the case, the polytope K� includes the mean-partition
polytope P̄�. ��

We next consider the variant of K� that corresponds to the sum-partition problem
and show that it coincides with C�. Specifically, let (λ∗)�(I) be defined by the right-
hand side of (3.9) with θ replacing θ̄ , and consider the system of linear inequalities
given by

(λ∗)�(I) ≤
∑

i∈I

xi ≤ (λ∗)�(I) for all I ⊆ {1, . . . , p}. (3.11)

Evidently, (λ∗)�({1, . . . , p}) = (λ∗)�({1, . . . , p}) = ∑n
j=1 θ j and the pair of constraints

of (3.11) corresponding to I = {1, . . . , p}, together, coincide with the constraint∑p
i=1 xi = ∑n

j=1 θ j, that is, with (3.3). Also, for each I ⊂ {1, . . . , p}, (λ∗)�(I) =
∑n

j=1 θ j − (λ∗)�(Ic), implying that the constraint
∑

i∈I xi ≤ (λ∗)�(I) coincides with
the constraint

∑
i∈Ic xi ≥ (λ∗)�(Ic). Thus, indeed, the set of vectors in Rp that satisfy

(3.11) coincides with C�.

4 Mean-partition problems with d = 1

In this section, we give some results about single-, bounded- and constrained-shape
mean-partition problems with d = 1 that are not obtainable through the techniques
described in Sect. 2 and 3.

Throughout this section we continue to let d = 1 and use the notation θ1, . . . , θn for
the scalars A1, . . . , An, respectively. Further, for simplicity, we assume that these sca-
lars are distinct and that (by possibly reindexing them) θ1 < θ2 < · · · < θn. Also, let
n1, . . . , np be positive integers, which sum to n and consider the single-shape partition
problems with prescribed shape (n1, . . . , np) . A reverse-size-consecutive partition is
a consecutive partition with the smallest elements being assigned to the larger parts.
Henceforth, we assume that the parts are labelled so that n1 ≤ n2 ≤ · · · ≤ np, in
this case, up to index-permutation of parts having the same size, there is a unique

Fig. 2 The Modification of
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K� in Example 3.1
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reverse-size-consecutive partition π∗ with shape (n1, . . . , np) and it is given by π∗
p =

{1, . . . , np}, π∗
p−1 = {np + 1, . . . , np + np−1}, . . . , π∗

1 = {n − n1 + 1, . . . , n} .
For a vector a in Rp and i = 1, . . . , p, let a[i] be the ith largest member of {a1, . . . , ap}.

Given vectors a and b in Rp, we say that a weakly submajorizes b, written a �w b if

k∑

i=1

a[i] ≥
k∑

i=1

b[i] for k = 1, . . . , p − 1. (4.1)

If further
p∑

i=1

ai =
p∑

i=1

bi , (4.2)

then a is said to majorize b, written a � b.
A real-valued function f on Rp is Schur convex if f (a) ≥ f (b) whenever a major-

izes b. A Schur convex function is known to be symmetric (that is, invariant under
coordinate-premutation); see [12] for further details about majorization and Schur
convexity. In particular, the following result is well-known

Proposition 4.1 If f is nondecreasing Schur convex on Rp and a and b are vectors in
Rp satisfying a �w b, then f (a) ≥ f (b). ��

The next lemma establishes an important property of reverse size-consecutive par-
titions.

Lemma 4.2 Consider the case with p = 2. Then for every partition π = (π1, π2),
(θ̄π∗

1
, θ̄π∗

2
) �w (θ̄π1 , θ̄π2).

Proof Consider a partition π = (π1, π2). We first prove that

max
{
θ̄π∗

1
, θ̄π∗

2

}
≥ max

{
θ̄π1 , θ̄π2

}
,

by proving that θ̄π∗
1

≥ max
{
θ̄π1 , θ̄π2

}
. It is trivial that θ̄π1 ≤ θ̄π∗

1
. Similarly, with π ′

2 as
the set of the n2 largest indices, θ̄π2 ≤ θ̄π ′

2
. Further, θπ ′

2
= θπ∗

1
+ a where a is the sum

of (n2 − n1) θ i’s, each of which is smaller then θ̄π∗
1
. Consequently,

θ̄π2 ≤ θ̄π ′
2

= θπ∗
1

+ a

n1 + (n2 − n1)
≤ max

{
θπ∗

1

n1
,

a
n2 − n1

}
= θ̄π∗

1

and therefore max{θ̄π∗
1
, θ̄π∗

2
} ≥ θ̄π∗

1
≥ max

{
θ̄π1 , θ̄π2

}
,

We next consider the single-shape sum-partition problem with prescribed shape
(n1, n2) and objective given by (1.3) with the function f being the linear function
mapping x ∈ R2 into x1/n1 + x2/n2. As 1/n1 ≥ 1/n2, it follows from Theorem 2.1 of [9]
that the consecutive partition under which the n1 indices associated with the smallest
θ is are assigned to the second part and the n2 indices associated with the larget θ is
are assigned to the first part, that is, the reverse size-consecutive partition is opti-
mal. This proves that θ̄π∗

1
+ θ̄π∗

2
≥ θ̄π1 + θ̄π2 , completing the proof that (θ̄π∗

1
, θ̄π∗

2
) �w

(θ̄π1 , θ̄π2) . ��
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From Proposition 4.1 and Lemma 4.2 we have.

Theorem 4.3 Every single-shape mean-partition problem with objective function given
by (1.6) where g is nondecreasing and Schur convex has a reverse size-consecutive
optimal partition.

Proof By [5], (reverse) size-consecutiveness is strongly 2-shape-sortable, which
implies that in order to prove that the property exists in some optimal partition,
it suffices to consider the case where p = 2. For that case, Lemma 4.2 implies that
for every partition π = (π1, π2), (θ̄π∗

1
, θ̄π∗

2
) �w (θ̄π1 , θ̄π2), and therefore Proposition 4.1

assures that F(π∗) = g(θ̄π∗) ≥ g(θ̄π ) = F(π), establishing the optimality of π∗. ��
As there is essentially a unique reverse size-consecutive partition for each shape,

the constrained-shape mean-partition problem corresponding to a set � of shapes we
need to compare only |�| partitions, one for each shape in �. For bounded-shape
problems, |�| is available through lower and upper bounds on the part-sizes. One can
then use recent results of Chang et al. (2005, submitted) to observe that it suffices to
consider only those shapes in �, which are not majorized by any other shape in �.
Further a bound of 2p−1 has been established on the number of such unmajorized
shapes of bounded-shape problem along with enumeration scheme. Thus we get the
following result

Proposition 4.4 For every bounded-shape mean-partition problem with objective func-
tion given by (1.6) where g is nondecreasing and Schur convex it is possible to construct
efficiently a set of 2p−1 reverse size-consecutive partitions that contain an optimal
partition. ��

Although we do not know how to efficiently describe constrained-shape mean-
partition polytopes, we can bound the number of vertices of such polytopes by the
sum of the number of vertices of the corresponding single-shape polytopes for each
shape in �. Since there is a one-to-one mapping between the vertices of the single-
shape mean-partition polytopes and the vertices of the corresponding single-shape
sum-partition polyotpes which are generated by the disjoint partitons and correspond
to the p! permutations of {1, . . . , p} (see Sect. 3), we obtain a bound of |�|p! on the
number of vertices of the constrained-shape mean-partition polytope corresponding
to �. Further, if objective function is given by (1.6) where g is (quasi-) convex, one
can enumerate a list of |�|p! (disjoint) partitions which contains an optimal one.

Theorem 4.5 Suppose the Ai’s are distinct. Then the constrained-shape mean-partition
problem corresponding to a set � of shapes with objective function given by (1.6)

where g is (quasi-) convex can be solved with effort that is proportional to |�|, with p
considered fixed.

The upper bound on the number of vertices of constrained-shape mean-partition
polytopes, derived in the paragraph preceding Theorem 4.5, is not tight, as the follow-
ing example demonstrates.

Example 4.1 Let n = 4, θ i = i for i = 1, . . . , 4, p = 2 and � = {(1, 3), (2, 2), (3, 1)}.
Each shape defines two disjoint partitions with two associated vectors—the three
shapes, contribute respectively the vectors (1, 3), (4, 2), (1.5, 3.5), (3.5, 1.5) and (3, 1),
(2, 4). The mean-partition polytope is then the convex hull of the above 6 points, but
only (1, 3), (4, 2), (3, 1) and (1, 4) are vertices. ��
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