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Applications
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�Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, � �Institute of Statistics,

National Chiao Tung University, Hsinchu, Taiwan, †Department of Risk Management

and Insurance, National Kaohsiung First University of Science and Technology, Taiwan

ABSTRACT To develop estimators with stronger efficiencies than the trimmed means which use
the empirical quantile, Kim (1992) and Chen & Chiang (1996), implicitly or explicitly used the
symmetric quantile, and thus introduced new trimmed means for location and linear regression
models, respectively. This study further investigates the properties of the symmetric quantile and
extends its application in several aspects. (a) The symmetric quantile is more efficient than the
empirical quantiles in asymptotic variances when quantile percentage a is either small or large.
This reveals that for any proposal involving the a th quantile of small or large a s, the
symmetric quantile is the right choice; (b) a trimmed mean based on it has asymptotic variance
achieving a Cramer-Rao lower bound in one heavy tail distribution; (c) an improvement of the
quantiles-based control chart by Grimshaw & Alt (1997) is discussed; (d) Monte Carlo
simulations of two new scale estimators based on symmetric quantiles also support this new
quantile.

KEY WORDS: Regression quantile, scale estimator, trimmed mean

Introduction

The empirical quantile has long been very popular in constructing location and scale

estimators and this quantile has been successfully generalized to the regression case by

Koenker & Bassett (1978). In order to improve the efficiency of a location estimator,

and the trimmed mean, Kim (1992) developed the metrically trimmed mean for a location

model which, through comparison of asymptotic variances, was shown to be more efficient

than the ordinary trimmed mean. Later, Chen & Chiang (1996) defined the symmetric

quantile and used it to propose the symmetric trimmed mean as an extension of Kim’s

trimmed mean to the linear regression model. They observed that this symmetric

trimmed mean of small trimming percentages can have asymptotic variances very

close to the Crammer-Rao lower bounds when regression errors obey heavy tail

distributions.
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Two questions arise from the fact that efficiency is gained by the symmetric trimmed

mean. (1) For a trimmed mean, the role of a quantile is to classify the data into a set of

good observations and a set of suspected outliers. Clearly, the efficiency of a quantile in

the estimation of a population quantile must affect the efficiency of the resulting data

classification. Therefore, could efficiency be gained by using the symmetric quantile

rather than the empirical quantile as the estimator of the population quantile? (2)

Can the efficiency of a symmetric trimmed mean carry over to other quantile-based

proposals? We deal with the first question in three ways. (a) We compare the asymp-

totic variances of the symmetric quantile and the empirical quantile to discover their

efficiencies in the role of estimating the population quantile. (b) We analyze a real

data set by computing the confidence regions of observations through the symmetric

quantile and empirical quantile separately to determine their ability for data classifi-

cation. We will find that the former is better to catch the main trend shown by the

data. (c) For studying the efficiency of the symmetric trimmed mean in advance, we

show that its asymptotic variance may achieve the Cramer-Rao lower bound when

the errors follow an extreme contaminated distribution. This result has not been

shown to hold by other robust estimators. To answer the second question above, we

propose a quantile control chart, using the symmetric quantiles, that gains efficiencies

and is different from the one of Grimshaw & Alt (1997) and two symmetric-quantile-

based scale estimators.

This work displays the symmetric quantile in a more general form and, in the next

section, studies its large sample distribution. A comparison of asymptotic variances for

the empirical quantile and the symmetric quantile is presented in the third section. The

fourth section discusses the benefits of constructing a quantile control chart as in

Grimshaw & Alt (1997) with the symmetric quantiles. In the fifth section, a data analysis

is displayed and, under an extreme contaminated normal distribution, an optimal result

performed by the trimmed mean based on symmetric quantiles is introduced. The sixth

section introduces two new scale estimators.

Symmetric Quantile Class

Unlike the way in which the empirical quantile is constructed based on the cumulative

distribution function, the so-called symmetric quantile of Chen & Chiang (1996) is formu-

lated based on a folded distribution function. However, these two quantiles are identical

when a symmetric error distribution is assumed, which makes them comparable. Here

we consider this quantile concept of Chen & Chiang (1996) in a more general setting.

Definition 1. For random variable y with cumulative distribution function Fy, consider the

folded cumulative function about constant c, known or unknown, as

Fs(a) ¼ P(jy� cj � a), a � 0

The symmetric l th quantile of Fy about c is the pair {c�s (l), cþs (l)}, where c�s (l) ¼

c� F�1
s (l) and cþs (l) ¼ cþ F�1

s (l) and where the function F�1
s (l) is the l th quantile

of cumulative function Fs.

If Fy is continuous, the symmetric quantile satisfies l ¼ P(c�s (l) � y � cþs (l)). If we

further assume that Fy is symmetric at m, it can be seen that m�s (1� 2a) ¼ F�1
y (a) and

mþs (1� 2a) ¼ F�1
y (1� a) for 0 , a , 0:5. According to Ferguson (1967), function

F�1
s (l) may be formulated as a solution of a minimization problem.

808 Y.-C. Chiang et al.
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Theorem 1. If 0 , l , 1 and if c is any constant, we have

F�1
s (l) ¼ arg mina.0 EFy

(jy� cj � a)(l� I(jy� cj � a))

which provides an identification of the symmetric quantile.

By letting 1c ¼ y 2 c, then random variable y obeys the location model y ¼ cþ 1c.

Suppose that we now have a random sample y1, . . . , yn from this location model. Let ĉ

be a statistic satisfying n1=2(ĉ� c) ¼ Op(1). We define next the sample type symmetric

quantile for the location model.

Definition 2. The sample symmetric quantile for the location model is defined as the pair

{ĉ�s (l), ĉþs (l)} with ĉ�s (l) ¼ ĉ� F̂�1
s (l) and ĉþs (l) ¼ ĉþ F̂�1

s (l) where F̂�1
s (l) is for

estimating F�1
s (l) as

F̂�1
s (l) ¼ arg mina.0

Xn

i¼1

(jyi � ĉj � a)(l� I(jyi � ĉj � a))

We now introduce the concept of the symmetric quantile for the linear regression model

y ¼ x0bþ 1 where x is a constant vector with value 1 in its first element. We assume that

regression error 1 has a cumulative distribution function F and we denote the vector

b ¼ (b0, . . . , bp)0. Koenker & Bassett (1978) defined the a th regression quantile

as b(a) ¼ bþ (F�1(a), 0, . . . , 0)0 where they defined a sample type a th regression quan-

tile as

bb (a) ¼ arg minb[R pþ1

Xn

i¼1

(yi � x0ib)(a� I(yi � x0ib))

We consider the conditional regression symmetric quantile based on a distribution at x0bc

with vector bc ¼ (c, b1, . . . , bp)0.

Definition 3. The symmetric type conditional quantile centered at x0bc is defined as the

pair {x0bc � F�1
s (l), x0bc þ F�1

s (l)} where

F�1
s (l) ¼ arg infa.0EF(jy� x0bcj � a)(l� I(jy� x0bcj � a))

We refer to the pair (b�s (l), bþs (l)) with bþs (l) ¼ bc þ
F�1

s (l)

0p

� �
and b�s (l) ¼

bc �
F�1

s (l)

0p

� �
as the symmetric regression quantiles.

It can be seen that the symmetric conditional quantile pair centered at x0bc is

{x0b�s (l), x0bþs (l)}. When F is continuous, the symmetric conditional quantile satisfies

l ¼ P(x0b�s (l) � y � x0bþs (l)). Moreover, if we further assume that F is symmetric at 0

and we let c ¼ b0 then, for 0 , a , .5, we have Fs
21(1 2 2a) ¼ F 21(1 2 a), which

also implies that bs
2(1 2 2a) ¼ b(a) and bs

þ(1 2 2a) ¼ b(1 2 a). This makes estimators

of these two regression quantiles comparable in either their large sample or small sample

properties.

Again, suppose that we have drawn a set of regression observations
y1

x1

� �
, . . . ,

yn

xn

� �
from the linear regression model and an estimator b̂ c, computed based on these

Symmetric Quantiles and their Applications 809
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observations, satisfying n1=2(b̂ c � bc) ¼ Op(1). Then to estimate the symmetric

regression quantile we need only to estimate quantity F�1
s (l).

Definition 4. The sample type symmetric l th regression quantiles are b̂
þ

s (l) ¼ b̂ cþ

F̂�1
s (l)

0p

� �
and b̂

�

s (l) ¼ b̂ c þ
�F̂
�1

s (l)

0p

� �
. Here F̂�1

s (l) is defined by

F̂�1
s (l) ¼ arg mina.0

Xn

i¼1

(jyi � x0ib̂ cj � a)(l� I(jyi � x0ib̂ cj � a)) (1)

for estimating Fs
21(l).

The role of the symmetric regression quantile in classifying observations may be inter-

preted in the following theorem.

Theorem 2. Let U and Z þ denote the numbers, respectively, of positive and zero elements

in the set {ri ¼ yi � x0ib̂
þ

s (l)}; L and Z 2 denote the numbers, respectively, of negative and

zero elements in the set {ri ¼ yi � x0ib̂
�

s (l)}; and B denotes the number of elements in the

set {yi:x
0
ib̂
�

s (l) , yi , x0ib̂
þ

s (l)}. Then the l th sample symmetric regression quantiles for

the linear regression model satisfy

(a) nl 2 (Z þ þ Z 2) � B � nl and

(b) Uþ L � n(1 2 l) � Uþ Lþ Z þ þ Z 2

This theorem may be proved analogously to Theorem 3.4 of Koenker & Bassett (1978) and

thus it is skipped here. This specifies the numbers of observations falling in and out of the

l th quantile, denoted by 1ci ¼ yi � x0ibc and b̂ c ¼ (b̂ c0, . . . , b̂ cp)0. The main result, which

provides a representation of a symmetric regression quantile, is stated in the following

theorem.

Theorem 3. For either g denoted 2 or þ, the symmetric regression quantile has the fol-

lowing representation

n1=2(b̂
g

s (l)� bg
s (l)) ¼

g(gþ(l))�1n�1=2
Pn

i¼1½l� I(j1cij � F�1
s (l))�

0p

 !

þ n1=2

(1þ g(gþ(l))�1g�(l))(b̂ c0 � c)

b̂ c1 � b1

� � �

b̂ cp � bp

0BBBB@
1CCCCAþ op(1)

where gþ(l) ¼ fc(F�1
s (l))þ fc(� F�1

s (l)) and g�(l) ¼ fc(F�1
s (l))� fc(� F�1

s (l)) and

where fc is the p.d.f. of 1ci.

The proof of this theorem is analogous to Theorem 3.1 of Chen & Chiang (1996) and

thus is also skipped.

810 Y.-C. Chiang et al.
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Corollary 1. If F is symmetric at zero and we let bc ¼ b, then

n1=2(b̂
g

s (1� 2a)� bg
s (1� 2a)) ¼ n1=2(b̂ � b)

þ
g(2f (F�1(1� a)))�1n�1=2

Pn
i¼1 (1� 2a� I(j1ij � F�1(1� a)))

0p

 !
þ op(1):

The benefits of the symmetric quantile compared with the empirical quantile, through the

point of asymptotic variances computed from the above representation, are described in

next two sections.

Comparison of Asymptotic Variances for Location Model

For asymmetric error distribution, the symmetric regression quantile and the regression

quantile of Koenker & Bassett (1978), actually represent, respectively, estimators of

two different parameter vectors, which makes it difficult to compare their asymptotic var-

iances. We here restrict the errors with symmetric distribution to compare asymptotic var-

iances of these quantile estimators. For simplicity, we also consider only the location

model where the asymptotic variances of the a th empirical quantile and symmetric quan-

tile are a(1 2 a)f 22(F 21(a)) and, from Corollary 1 (1 2 a)(2a 2 1)f 22(F 21(1 2 a))þ

0.25f 22(0), respectively. With these formulas, we evaluate the efficiency of the symmetric

quantile defined the following

Asymptotic variance of empirical quantile

Asymptotic variance of symmetric quantile

where the quantiles are to estimate Fy
21(a) where the error variable is considered to have

the contaminated normal distribution

(1� d)N(0,1)þ dN(0,s2) (2)

Table 1 lists the efficiency defined above for the cases where d ¼ 0.1 and 0.2, s ¼ 1,3,5,10

and a ¼ 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.98, where we note that results

for a and 1 2 a are exactly the same.

Table 1. Efficiency of symmetric quantile

a 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98

d ¼ 0.1

s ¼ 1 0.87 0.84 0.84 0.84 0.87 0.92 1.01 1.21 1.47

3 0.91 0.89 0.90 0.92 .98 1.09 1.30 1.84 1.90

5 0.91 0.90 0.91 0.94 1.01 1.15 1.44 2.39 2.02

10 0.90 0.89 0.90 0.93 1.01 1.16 1.49 2.70 2.03

d ¼ 0.2

s ¼ 3 0.88 0.87 0.88 0.92 1.00 1.14 1.40 1.78 1.98

5 0.89 0.88 0.91 0.97 1.08 1.28 1.68 2.04 2.00

10 0.89 0.89 0.93 1.01 1.16 1.45 1.98 2.10 2.03

Symmetric Quantiles and their Applications 811

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
48

 2
6 

A
pr

il 
20

14
 



Based on Table 1, we have the following comments concerning the estimation of popu-

lation quantile Fy
21(a).

(a) It is relatively efficient to use the empirical quantile when the quantile percentage a is

close to 0.5 in either direction. However, it is efficient to use the symmetric quantile

when the a is either small or large.

(b) It implies that the symmetric quantile is more efficient than the empirical quantile in

detecting outliers since outliers usually lie below the lower population quantile and

above the upper population quantile. This confirms the results in Kim (1992) and

Chen & Chiang (1996) that trimmed means based on symmetric type quantiles

may be more efficient since this quantile is more capable in dividing observations

into a good subclass and a bad subclass of observations.

(c) Any proposal using quantiles of small or large percentages a will be efficient if it is

constructed by the symmetric quantiles.

What are the situations where practical statistical procedures involve quantiles of large

or small percentages a? As we have seen, the trimmed means proposed by Kim (1992) and

Chen & Chiang (1996) are just these procedures. One statistical technique that is very

powerful in improving a product’s quality is the so-called process capability index,

which is defined as

UCL� LCL

F�1
y (0:99865)� F�1

y (0:00135)

where USL and LSL are values representing, respectively, the upper and lower specifica-

tion limits. Higher values of the index indicate that the manufacturing process is more

capable. Traditionally, Fy
21(0.00135) and Fy

21(0.99865) are estimated by their correspond-

ing empirical quantiles. We now have an estimator of this index with smaller asymptotic

variance than the usual one by using symmetric quantiles as estimators of Fy
21(0.00135)

and Fy
21(0.99865). In addition to this application, in subsequent sections we introduce a

control chart and two scale estimators that all involve symmetric quantiles.

Control Chart for Quantile Function Values

The traditional �X and R charts in quality control are efficient in detecting changes in mean

and variation when the ideal assumption of normal distribution is valid. However, their

efficiencies can be remarkably reduced due to departures from normality and in the pre-

sence of outliers. Grimshaw & Alt (1997) proposed using a quantile control chart

where the control limit of the chart is estimated by a confidence band for the quantile

vector (F�1
y (a1), . . . , F�1

y (ap))0, for some ai, i ¼ 1, . . . , p. They showed that these

charts are quite effective in detecting changes in the distributional shape that are unde-

tected in �X and R charts. Moreover, they also pointed out that for effective use of a quantile

control chart we should select quantile percentages ai, i ¼ 1, . . . , p so that their corre-

sponding differences F�1
yO (ai)� F�1

yI (ai), with FyI and FyO respectively representing the

distribution functions of in-control and likely out-of-control processes, are large.

In the following, Table 2 gives the differences of a th population quantiles of standard

normal distribution N(0,1) and the contaminated normal distribution of 0.8 N(0,1)þ 0.2

N(0,s2), for several values of a, where the contaminated one represents the out-of-

control statistical process and the normal one is in control. Smaller and larger quantile

812 Y.-C. Chiang et al.
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differences between the in-control and out-of-control distributions means, respectively,

insensitivity and sensitivity in detection of distributional change by the quantile control

chart.

From this table and with the symmetric property of the distribution, it is clear that the

largest difference values occurred only on the larger (close to 1) and smaller (close to 0)

values of a. This observation indicates the following things that we may be concerned with

in constructing a quantile control chart: (a) the quantile control chart should choose ai,

i ¼ 1, . . . , p, small or large values; (b) these quantiles, F 21(ai), of small and large

values of a, should be estimated by symmetric quantiles for efficiency in estimation of

control limits.

An Example of Quantile Confidence Region and Asymptotic Efficiency for a

Trimmed Mean based on Symmetric Quantiles

In addition to being an estimator of its population version, one important function of the

quantile function is to identify a region that covers a subset of observations with a prede-

termined proportion g. One application of this coverage region includes constructing

robust-type location and scale estimators based on observations in this region, for

example, the trimmed mean, Winsorized mean and trimmed variance. Another application

is that some estimators are constructed based on the width (area, etc) of the region, for

example, the interquartile range and the process capability index presented in the third

section of this paper.

Among the available coverage regions constructed by the existing quantile functions,

how can we determine one to use? Criteria may be set by comparing the asymptotic var-

iances or mean square errors of the estimators constructed by these coverage regions. We

do this later, after comparing them through the sizes of the regions’ areas or volumes.

First we consider an example of real data with outliers and asymmetric errors in order to

compare the coverage regions constructed by, respectively, Koenker & Bassett’s and sym-

metric regression quantiles. The example we now consider is a data set of international

phone calls that appeared in the Belgian Statistical Survey, as presented in Rousseeuw &

Leroy (1987). The plot of the phone calls (in tens of millions) in Rousseeuw & Leroy

shows an upward trend over years. However, the tendency contains heavy contamination

from year 64 to 69 (1964–1969). We let A(KB) and A(SQ) denote the two areas for the

coverage regions: one covered by two Koenker & Bassett’s regression quantiles b̂ (a)

and b̂ (1� a) and the other covered by two symmetric quantiles b̂
�

s (1� 2a) and

b̂
þ

s (1� 2a). The efficiency of coverage region by quantile Q, Q ¼ KB or SQ, is defined as

EQ ¼
min {A(CSQ), A(CKB)}

A(CQ)

Table 2. Differences of population quantiles for standard normal and contaminated normal distri-

butions of d ¼ 0.2

a 0.55 0.60 0.70 0.75 0.80 0.85 0.90 0.95

s ¼ 3 0.024 0.041 0.089 0.119 0.163 0.182 0.348 0.729

5 0.024 0.051 0.114 0.154 0.163 0.312 0.528 1.749

10 0.029 0.061 0.129 0.184 0.258 0.392 0.768 5.134

20 0.034 0.061 0.139 0.199 0.283 0.442 0.998 11.854

Symmetric Quantiles and their Applications 813
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In Table 3, we display the computed efficiencies EKB and ESQ for the international phone

calls data.

In this example, the efficiencies of the coverage regions based on Koenker & Bassett’s

regression quantiles at confidence coefficients, g ¼ 0.8 and 0.9, are relatively larger than

those based on symmetric quantiles; however, the discrepancies are not significant. On the

other hand, the efficiencies of the coverage regions based on symmetric quantiles for con-

fidence coefficients less than or equal to 0.7 are all significantly larger than those based on

Koenker & Bassett’s quantiles.

In estimating regression parameters, Chen & Chiang (1996) and Chen (1997) applied

the symmetric quantile in constructing a trimmed mean. They also showed that this

trimmed mean has asymptotic variance closer to the C-R bounds than the usual robust esti-

mators when there is a heavy tail error distribution such as a contaminated normal. We will

further prove here a theory for the attainment of C-R bound by this trimmed mean when

the contaminated variance goes to infinity.

The l th symmetric trimmed mean in Chen & Chiang (1996) is

b̂ s(l) ¼
Xn

i¼1

xix
0
ic(yi)

 !�1Xn

i¼1

xiyic(yi)

where c(yi) ¼ I(x0ib̂
�

s (l) � yi � x0ib̂
þ

s (l)). This leads to the following, which is the main

result in this section.

Theorem 4. Suppose that error variable 1 has a contaminated normal distribution as

(1� d)N(0, s2)þ d N(0, gs2) (3)

where 0 , d , l, g . 0. Also, we assume that bc ¼ b, and b̂ c has a representation with

bounded influence function. Then, as g! 1, b̂ s(1� d) has an asymptotic covariance

matrix achieving the C-R lower bound as

n�1(1� d)�1s2Q�1 (4)

Table 3. Efficiencies of coverage regions

1-2a SQ KB

0.90 0.714 1.000

0.80 0.983 1.000

0.70 1.000 0.063

0.60 1.000 0.071

0.50 1.000 0.056

0.40 1.000 0.045

0.30 1.000 0.052

0.20 1.000 0.214
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Proof

Denote by ~gg the contaminated distribution (3). The C-R bound for b is

n�1(E~gg(@ ln ~gg(1)=@1)2)�1Q�1 which can be seen is convergent to the quantity of equation

(4) as g! 1. On the other hand, the contaminated normal distribution of equation (3)

satisfies 1 f (1)! 0 as 1! 1. Since, b̂ c has a bounded influence function, the asympto-

tic covariance matrix of b̂ s(1� d) is n�1Q�1(1� d)�2Egs1
2I(j1j � F�1

s (1� d=2)) where

gs is the distribution of N(0, s2). The above result is induced from a representation of the

symmetric trimmed mean in Chen & Chiang (1996) as

n1=2(b̂ s(1� 2a)� b) ¼ l�1Q�1½2F�1
s (1� a)fc(F�1

s (1� a))Qn1=2(b̂ c � b)

þ n�1=2
Xn

i¼1

xi1iI(j1ij � F�1
s (1� a))� þ op(1):

However, as g! 1, then F�1
s (1� d=2)! 1. Thus, the above variance is also the quan-

tity of equation (4), which proves the theorem.

This result improves the theory in Chen & Chiang (1996) in two aspects. (1) A theory

where a trimmed mean under a heavy tail distribution attains the C-R bound is developed.

This property has not been seen for usual robust estimators. (2) The best trimming percen-

tage is specified in this extreme distribution.

Two Scale Estimators Based on Symmetric Quantile

Developing robust-type scale estimators is also an interesting topic in the statistical

literature. Welsh (1986) studied the Bahadur representations for median deviation and

interquartile range. Welsh & Morrison (1990) introduced an interesting class of scale

L-estimators with trimmed variance as a special case. Moreover, Staudte & Sheather

(1990) provided a comprehensive review of scale estimators and Monte Carlo simulation.

Here we introduce two easily computed alternative scale estimators based on a symmetric

quantile.

One simple robust scale estimator of dispersion, popular in the literature, is the ‘quantile

range’ t̂(1� 2a) ¼ F�1
n (1� a)� F�1

n (a), where Fn is the empirical distribution, that

measures the width, denoted by t(1� 2a), of 100(1 2 2a)% center interval

(F 21(1 2 a) 2 F 21(a)). As a special case, the interquartile range t(0:5) is purely used

as a robust-type scale parameter. Another example using the quantile range is the

process capability index. An alternative approach measuring the distance of a sample sub-

space with probability l is

ts(l) ¼ cþs (l)� c�s (l) ¼ 2F�1
s (l):

For convenience, we call this the symmetric quantile range. It is clear that ts(l) ¼ t(l)

when the distribution F is symmetric and c is the central point. The following theorem

is a representation of t̂ s ¼ ĉþs (l)� ĉ�s (l) that is induced from Theorem 3.
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Theorem 5. If 0 ,l , 1, then

n1=2(t̂ s(l)� ts(l)) ¼ 2(fc(F�1
s (l))þ fc(� F�1

s (l)))�1Ën�1=2
Xn

i¼1

½l� I(j1ij � F�1
s (l))�

þ (fc(F�1
s (l))� fc(� F�1

s (l)))n�1=2(ĉ� c)Ëþ op(1):

We now consider the second alternative choice of robust scale estimator. Trimming var-

iance has been introduced by Staudte & Sheather (1990, p. 124) as

dt ¼ (a2 � a1)�1

ðF�1
y (a2)

F�1
y (a1)

y� (a2 � a1)�1

ðF�1
y (a2)

F�1
y (a1)

ydFy

 !2

dFy

where its estimator, called the sample trimmed variance, is simply replacing the popu-

lation quantile Fy
21(ai) by the empirical quantile Fn

21(ai) for i ¼ 1 and 2. An analogue

of trimming variance for interpreting the dispersion is denoted as

dst ¼ l�1

ðcþ(l)

c�(l)

y� l�1

ðcþ(l)

c�(l)

ydFy

 !2

dFy

We call this version the symmetric trimmed variance. When Fy is symmetric at c, and if we

let l ¼ 1 2 2a and a ¼ a1 ¼ 1 2 a2, then we have dt ¼ dst. Thus, the sample symmetric

type trimmed variance is

d̂st ¼ (nl)�1
X

ĉ�(l)�yi�ĉþ(l)

yi � (nl)�1
X

ĉ�(l)�yi�ĉþ(l)

yi

 !2

This provides an alternative version of the trimmed scale estimator.

We do not further study their large sample properties, although a Monte Carlo study for

these two robust scale estimators is performed. We consider a simulation study with

sample size n ¼ 40 and replication 1000 where the location model

y ¼ uþ 1

with error 1 being assumed to be the contaminated normal of equation (2) with d ¼ 0.1,

0.2. In estimation, we compute the quantile range and symmetric quantile range of

l ¼ 0.7, 0.8, 0.9 and in Table 4, we display the efficiency of the symmetric type quantile

Table 4. Efficiency of symmetric quantile range

d ¼ 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2

l s ¼ 3 5 10 25 3 5 10 25

0.7 0.116 0.119 0.124 0.105 0.133 0.131 0.122 0.104

0.8 0.604 0.576 0.581 0.627 0.593 0.577 0.646 0.957

0.9 0.327 0.650 2.997 9.945 0.410 1.306 4.540 28.52
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range as

Mean squares error of quantile range

Mean squares error of symmetric quantile range

Larger values of this ratio indicate that better efficiency is obtained by the symmetric

quantile range.

Basically, this table reveals that symmetric quantile ranges are relatively more efficient

when contaminated variances are large and quantile percentages are also large. For com-

parison, we display the simulation result of truncated variance estimators in Table 5, where

the efficiency is defined as

Mean squares error of sample trimmed variance

Mean squares error of symmetric sample trimmed variance

As shown in this table, it is surprising that the symmetric-type sample truncated variance

estimators are uniformly better than the sample truncated variance estimators.

References

Chen, L.A. & Chiang, Y.C. (1996) Symmetric type quantile and trimmed means for location and linear regression

model, Journal of Nonparametric Statistics, 7, pp. 171–185.

Chen, L.-A. (1997) An efficient class of weighted trimmed means for linear regression models. Statistica Sinica,

7, pp. 669–686.

Ferguson, T.S. (1967) Mathematical Statistics: A Decision Approach (New York: Academic Press).

Grimshaw, S.D. & Alt, F.B. (1997) Control charts for quantile function values, Journal of Quality Technology,

29, pp. 1–7.

Kim, S.J. (1992) The metrically trimmed means as a robust estimator of location, Annals of Statistics, 20,

pp. 1534–1547.

Koenker, R. & Bassett, G.J. (1978) Regression quantiles, Econometrica, 46, pp. 33–50.

Rousseeuw, P.J. & Leroy, A.M. (1987) Robust Regression and Outlier Detection (New York: Wiley).

Staudte, R.G. & Sheather, S.J. (1990) Robust Estimation and Testing (New York: Wiley).

Welsh, A.H. (1986) Bahadur representations for robust scale estimators based on regression residuals, The Annals

of Statistics, 14, pp. 1246–1251.

Welsh, A.H. & Morrison, H.L. (1990) Robust L estimation of scale with an application in astronomy, Journal of

the American Statistical Association, 85, pp. 729–743.

Table 5. Efficiency of symmetric trimmed variance

d ¼ 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2

l s ¼ 3 5 10 25 3 5 10 25

0.7 1.986 1.745 1.846 1.787 1.871 1.704 1.699 1.815

0.8 1.673 1.669 1.649 1.499 1.643 1.955 2.161 16.72

0.9 1.620 2.217 8.499 90.65 2.128 3.373 8.234 12.95

0.95 2.319 5.078 7.368 12.27 3.016 3.977 4.069 4.522

Symmetric Quantiles and their Applications 817

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
48

 2
6 

A
pr

il 
20

14
 




