
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1077-1091 (2006)

1077

A Generic and Visual Interfacing Framework for Bridging
the Interface between Application Systems and Recognizers*

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

Department of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan

Application systems that utilize recognition technologies such as speech, gesture,

and color recognition provide human-machine interfacing to those users that are physi-
cally unable to interact with computers through traditional input devices such as mouse
or keyboard. Current solutions to interface application systems with recognizers, how-
ever, use an ad hoc approach and lack of a generic and systematic way. The common
approach used is to interface with recognizers through low-level programmed wrappers
that are application dependent and require the details of system design and programming
knowledge to perform the interfacing and to make any modifications to it. Thus, a ge-
neric and systematic approach to bridge the interface between recognizers and applica-
tion systems must be quested.

In this research work, we provide a generic and visual interfacing framework for
bridging the interface between application systems and recognizers through the applica-
tion system’s front end, applying a visual level interfacing without requiring the detailed
system design and programming knowledge, allowing for modifications to an interfacing
environment to be made on the fly and more importantly allowing the interfacing with
the 3rd party applications without requiring access to the application’s source code. Spe-
cifically, an interfacing script language for building the interfacing framework is de-
signed and implemented. The interfacing framework uses a transparent grid layout
mechanism to position the graphic user interface icons defined in the interfaced applica-
tion system. The proposed interfacing framework is then used to bridge the visual inter-
face commands defined in application systems to the voice commands trained in speech
recognizers. The proposed system can be applied to GUI based commercial software
without the need of accessing their internal code, and also allowing the composition of
macros to reduce interaction overhead to users. Examples are applied using the proposed
interfacing mechanisms to demonstrate the applicability and feasibility of the proposed
visual interfacing approach.

Keywords: interfacing environment, recognizer interfacing, see-through interface, ge-
neric interfacing framework, application interfacing, customized interfacing

1. MOTIVATION

Interfacing applications with various recognition technologies (such as speech, ges-
ture, and color recognition) will impact current methods of interaction in the area of hu-
man-machine interfacing technology. Interfacing application systems with these different
recognition technologies have opened wide possibilities to these types of users; however

Received August 16, 2005; accepted January 17, 2006.
Communicated by Jhing-Fa Wang, Pau-Choo Chung and Mark Billinghurst.
* This research was supported in part by the National Science Council of Taiwan, BestWise International

computing Co., CAISER (National Chiao Tung University, Hsinchu, Taiwan), and Ta Hwa Institute of
Technology (Hsinchu, Taiwan).

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1078

current ways of interfacing applications with recognizers are lacking of a generic and
systematic way, time consuming, and highly application systems coupled and dependent.
Particularly, current solutions that aim at bridging the interface between speech recog-
nizers and application systems usually lead to tightly coupled systems where one appli-
cation is wrapped by a specific recognizer through a low-level programming implemen-
tation that makes the future modifications very difficult. Also, without supporting
mechanisms to abstract group of actions into single reusable macro-level commands to
simplify user interaction tasks creates intense and time-consuming overheads for end
users. Applications systems, especially multimedia oriented ones deal with highly dy-
namic content, interfacing of this kind of content is not yet addressed. A generic applica-
tion-independent speech-driven interface framework that allows the generation of a
modifiable visual interfacing environment without the need of dealing with low-level
details must be quested.

In this research, we attempt to provide a generic and visual interfacing framework
for bridging the interface between application systems and recognizers through a generic
and systematic approach. Specifically, an interfacing script language is designed and
implemented that allows users to define the interfacing commands between a speech
recognizer and application software.

2. RELATED WORK AND THE PROPOSED SOLUTION

Current approaches to interface the interface of speech recognizers and the interface
of application software uses a wrapping integration approach that focuses on the integra-
tion of the recognizer’s API and the application’s components through a direct and
tightly coupled way (Fig. 1). The application is in charge of setting up the recognizer’s
environment, grammar domain, receiving recognition results and interpreting these re-
sults to perform the respective internal invocations to execute interactions on its GUI [1].
As it can be foreseen, in Fig. 1, the integration results is one application interfaced with
one speech recognizer through a interfacing layer that is in charge of directly mapping
speech commands into actions on the application’s components.

Fig. 1. Wrapping integration.

Most of speech-driven robots adopt such interfacing approach for its design and im-
plementation, for instance, the AT&T’s Speech-Actuated Manipulator (SAM) [2]. Under
such a tightly coupled-system, it is not surprising that any modifications on the low level
application software’s commands will result in the recoding of the speech interface, lead-

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1079

ing to the recompilation of the whole system. Other related application systems such as
Vspeech 1.0 [3] and Voxx 4.0 [4] provide interfacing by integrating a speech recognizer
with the Window OS environment that is in charge of handling the windows of applica-
tions; however they still suffer from the limitations such as low-level interface and re-
quiring detailed system design and programming knowledge.

The common interface approach used in these speech-recognition systems is to in-
terface with recognizers through low-level programmed wrappers that are application
dependent and require the details of system design and programming knowledge to per-
form the interfacing and to make any modifications to it. Thus, we proposed an applica-
tion-independent visual interfacing generator to bridge the interface of a speech recog-
nizer [5] and the interface of application systems. In the proposed approach, when in-
corporating a speech-recognizer to an application system, a user through a visual inter-
facing framework composes a visual interfacing environment by drawing reference zones
on top of the GUI’s interactive areas (buttons, menu items, links, and containers) of ap-
plication system, without the need of programming low-level code for the integration.
User-generated visual interfacing environments (Fig. 2) for applications are interacted
with by the system as it processes user’s requests to perform interaction on the environ-
ment’s zones that are graphically positioned over interaction objects of applications.

(a) Application without reference zone. (b) Application with reference zone.

Fig. 2. The interfacing visual environment.

The proposed system interacts with target applications by performing invocations to

the Operating System’s API and then controls and manipulates the original input-device
(such as mouse) defined in the target application under the window environments to per-
form interactions directly on the visual interfacing environment that lays above target
applications’ GUI.

3. INVOLVED TECHNOLOGIES

Creating a successful generic and visual interfacing system for integrating applica-
tions with recognizers required the understanding on several technologies, including the
“See-Through Interface” paradigm [6], the proposed interfacing script language, and the
localized speech-recognizer interfacing mechanisms. These technologies individually be-
long to different fields of study, however when implemented in a cooperative environ-
ment, these technologies merge to contribute towards the vision of interface interfacing.

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1080

3.1 See-Through Interface Paradigm

In our visual interfacing framework, the concept of “See-Through Interface” para-
digm [6] is employed to construct a transparent grid layout that allows application front-
end integration with recognizers through the drawing of reference zones.

In [7], the authors create an immersive environment that submerges users into a vir-
tual space, effectively transcending the boundary between the real and the virtual world.
Transparent interfacing allows this virtual 3D world to be manipulated by the user with-
out the need of relaying on traditional input devices such as the mouse or keyboard for
interaction.

In our visual interfacing framework, we use a transparent grid layout mechanism to
position the GUI icons defined in the interfaced application system. In this way, any GUI
based application systems can be interfaced using the proposed visual framework with
different recognizers.

3.2 An Interfacing Script Languages

The language specification of the designed script language for this study is simple
enough to allow programmers to quickly achieve fluency in the language. Our language
design is based on Just-In-Time compilation by compiling the code as necessary, running
it in an interpreted framework [9]. In the following subsections, we describe the proposed
interfacing script language.

3.2.1 Data types

Types limit the values that a variable can hold or that an expression can produce,
limit the operations supported on those values and determine the meaning of operations.
Strong typing helps detect errors at compile time [9, 10].

3.2.2 General static semantics

Commands in the Interfacing Script Language are separated into selection com-
mands that take care of switching the different interfacing visual environment content.
Assignment commands that take care of assigning values to system internal identifiers
and lastly action commands that focus on interacting with application system’s interfac-
ing content, performing actions that directly affect the target application.

3.3 Localized Recognizer Interfacing

In our visual interfacing framework, a localized recognizer interfacing by integrat-
ing a speech recognizer [5] through its API is designed and implemented. The interface is
done by a specialized component that allows the future integration of other recognizers
without performing modifications to the rest of the system. The assigned tasks to this
component are kept to a minimal in order to maintain the complexity of interfacing a new
recognizer at the lowest. These tasks include the listening of recognition content, ini-
tialization, setup and handling of the target recognizer only. A more detailed treatment on
the proposed interfacing script language can be found in [12].

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1081

4. THE DETAILS OF THE VISUAL INTERFACING FRAMEWORK

The proposed visual interfacing framework system interacts with target applications
by performing invocations to the Operating System’s API to manipulate its input-device
and windows environments to perform interactions directly on the “Transparent Inter-
face” that sits on top of the GUI of the target applications. In the proposed approach, the
interfacing of recognition devices and applications is done through two different inter-
facing layers that interact directly with the system’s kernel (Fig. 3).

Fig. 3. The proposed interface interfacing system.

4.1 Interface Input Module Processes

When the speech recognition engine recognizes spoken phrases, it outputs those
phrases as text streams in the spoken language, according to how they are defined in the
recognizer’s XML Grammar Definition. The stream of text is then passed down to a
component in charge of translating recognized text into the standard language of the sys-
tem.

The Macro Interpreter then receives the stream of text and checks if it contains
keywords that reference macros, it does so by querying the Macro Data Repository for
matches. If a match is found, the keyword inside the stream of text gets replaced with the
corresponding macro. Once a macro is loaded, it is passed down to the Wild Card Trans-
lator that checks for the presence of wildcards. Wildcards are part of the system’s design
strategy to allow the reutilization of a macro with different dynamic entities (Actors) by
allowing the user to assign values to wildcards during runtime, in this way avoiding the
redefinition of macros for every dynamic entity. When a wildcard is found, it is replaced
with the current actor that has focus applying the macro to it. Fig. 4 depicts the above
mentioned processes.

4.2 Kernel Module Processes

Translated commands that result from the Interfacing Input Module process are sent
to the Kernel so that they can be interpreted into a target program (Fig. 5) that provides

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1082

Fig. 4. Command translation process. Fig. 5. Command interpretation process.

the interaction behavior to be applied to the interfacing environment. As the stream of
text enters the kernel, the Lexical Translator splits the stream of text into token sets. Each
token set represents a single command that is fed down to the Syntactic Analyzer for
interpretation. When the Syntactic Analyzer receives a token set, it analyses it token by
token and traverses the parsing structure until a match of a valid command with a com-
patible format is found. Once the parsing is successful, the corresponding target program
is executed at the Event Delegating Component that delegates the invocations to the re-
spective system components involved in the interaction.

The Lexical Analyzer distributes its chores to four sub-programs (Fig. 6), one in
charge of getting the next stream input through an event handling function, other one in
charge of building lexemes as described above, other tokenizing sub-program to take
care of removing non-relevant characters and finally a subprogram that handles the rec-
ognition of reserved words, constants and identifier names. The later with the purpose of
validating the content of the data types of the command in question by looking them up
in their corresponding tables to make sure they exist in the system and that no reserved
word are being used.

In our syntactic analysis we trace a leftmost derivation (Fig. 7), tracing the parse
tree in preorder, beginning with the root and following branches in left-to-right order.
Expanding non-terminal symbols to get the next sentential form in the leftmost deriva-
tion, basing the expansion route on the type of the non-terminal symbol [9]. Due to the
simplicity and recursive nature of the language’s grammatical rules, our approach im-
plements a recursive descent parser rather than utilizing parsing tables to accomplish the
syntactic analysis, in this way assuring that the next token represents the left most token
of input that has not been used in the parsing, this token is compared against the first
portion of all existing right hand sides of the non-terminal symbol, selecting the right
hand sides where a match is found.

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1083

removeSeparators Terminators removeSpaces;

getInput;

Start Lexime Building Tokenizing

Valid Token Sets

Validating

Validate Tokens;

Fig. 6. Tokenizing transitions. Fig. 7. Leftmost derivation parsing tree of
the ‘dragSquare’ command.

Bin

Applications

Application A Application B

Grids Stages Actors

objectgrid volumegird Grid N movieeditor mainscreen Stage N Profile 1 Profile 2 Profile N
Fig. 8. Interfacing objects hierarchical organization.

The Kernel module is also in charge of storing, retrieving, and performing the object

activation on the different interfacing objects that are used for building a visual interfac-
ing environment of an application. It also handles the dynamic interfacing content and
provides the tracking mechanism to relocate dynamic interfacing object whenever a user
interacts with such content. The interfacing script language supports scripting commands
for the Kernel module to perform loading, storing, and removing of objects of type ap-
plication. These interfacing script commands include square, actor, actor profile, stage,
and grid. The Kernel module also supports the querying mechanism used by other sys-
tem internal components to retrieve specific information of objects as needed during the
interaction process of interaction. Reference interfacing objects of the system are stored-
retrieved and modified dynamically into and from a four level hierarchical directory
structure, as in Fig. 8.

4.3 Interface Output Module Processes

The main function of the Interfacing Output Module is to provide the mechanisms
to interact directly with the front-end of application system through the interfacing visual
environment by performing input-device emulation and window’s environment manipu-
lation, taking care of manipulating input devices to perform mouse or keyboard related
actions on the Interfacing Visual Environment through the Input Device Controller com-
ponent. This component takes care of emulating the following mouse actions: -Left_

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1084

Mouse_Click, -Left_Mouse_Double_Click, -Right_Mouse_Click, -Right_Mouse_Double_
Click, -Drag_and_Drop, -Move.

Target programs that result from the syntactic analysis are executed through the
Event Delegating Component. Depending on the command, the requests for each of the
involved events is sent to corresponding component that interact directly with the inter-
facing environment through the mechanisms described above, accomplishing the com-
pleteness of a command’s execution process (Fig. 9). A labeling system is also developed
to visually label each of the registered reference zones at their graphic location with their
corresponding registered identification name

Fig. 9. Visual interfacing environment interaction process.

5. INTERFACING PROCEDURES AND EXAMPLES

The procedure involved in interfacing a target application with a speech recognizer
through our proposed framework requires the fulfillment of multiple steps that are done
to ensure a successful interfacing.

5.1 Interface Interfacing Procedures

The interfacing procedure is separated into multiple steps as depicted in Fig. 10:

Step 1: Interface the Target Application.
The first step involved in interfacing an application to a speech recognizer is to reg-

ister a desired application into the proposed system. Once the target application is regis-
tered, we create the visual interfacing environment by drawing reference zones on the
transparent interface that lays on top of the application’s GUI, in this way referencing
application’s content such as buttons, containers and menus through the graphic registra-
tion of grids and squares, separating this content into stages that each represent the dif-
ferent GUIs of the application. Fig. 11 lists the detailed procedures of the target applica-
tion software registration.

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1085

Fig. 10. Interface interfacing procedure. Fig. 11. Registration target application.

Fig. 12. Recognizer interfacing steps. Fig. 12. (a) Installation of the Microsoft’s

speech-recognizer.

(b) (c)

Fig. 12. (b, c) The Microsoft’s speech-recognizer training.

Step 2: Interface the Target Recognizer.

The second step is to interface the chosen recognizer, that wanted to be integrated
into the proposed interfacing framework system, by programming the recognizer’s API
calls that are used to start, setup and handle the recognizer and as well as the calls in-
volved in retrieving recognition content in the system’s specialized recognizer interfac-
ing component. In the following, we provide an example by illustrating the interface of
the Microsoft’s Speech-Recognizer V.6.1 [5] with the proposed interfacing framework
system. Fig. 12 shows the major steps in this Speech-Recognizer integration. Procedures
to install and training the Microsoft’s Speech-Recognizer V.6.1 are listed as shown in
Figs. 12 (a-c).

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1086

<RULE NAME="sqrs">
<l> <P>save</P> <P>player</P> <P>new</P> <P>normal</P> <P>duplicate</P>
Continues …

Fig. 12. (d) Recognition vocabulary preparation.

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE"> <P>dragsquare</P> <o>
<RULEREF NAME = "sqrs" / > <o> <p>to</p>
<l> <P>save</P> <P>player</P> <P>new</P> <P>normal</P> <P>duplicate</P>
Continues …

Fig. 12. (e) Composed rule definition that uses references to other lower-level rules.

<grammar>
<word NAME="Actor">Actor</word>
<word NAME="Profile">Profile</word>
Continues …

Fig. 12. (f) Translation repository.

Whenever an application is interfaced with the system, a copy of this generic gram-

mar definition is customized by adding the corresponding vocabulary that was used to
create the interfacing environment of the application in question (Fig. 12 (d)). The script
program will be generated automatically.

The grammar definition consists of a set of rules that are defined through extensible
markup language (Fig. 12 (e)). These set of rules are used by the speech-recognizer to
validate recognized words, restricting the possible words or sentences chosen during the
speech recognition process.

Not in all cases the grammar defined for the recognizer’s will match the exact syn-
tax of the system’s language (perhaps a recognizer that does not support speech is inte-
grated to the system, such as a motion recognizer), to tackle this problem the definition
of a translation XML resource file is made (Fig. 12 (f)).

Step 3: Macro Composition.

Once an application is properly interfaced with a speech recognizer, we compose a
set of macro commands to simplify user interaction with the interfaced environment by
wrapping complex and repetitive tasks into short, reusable context free commands.

The registration of macro commands (Fig. 13) takes place through a macro com-
poser where the user composes the macros by writing their execution content in the sys-
tem’s defined language and writing a “keyword” that is used to reference the macro dur-
ing the invocation process.

5.2 Interface Interfacing Objects

When referencing a target application, an interfacing environment is created where
different objects are used to reference interaction areas of the application. Squares are
referencing objects used to interface buttons or zones of applications, each square has a
name given by the user and they are registered by drawing them on top of the interaction

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1087

Fig. 13. Registering a macro. Fig. 14. Registering squares.

zone to interface. To register a square one must first select the desired stage to associate
the square with. Objects known as stages are created for organizing and separating the
different squares that are registered, separating them based on the different GUIs that the
application presents. Each stage has a name given by the user. Fig. 14 lists the detailed
procedures of registering a square named ‘mountain’.

More complex referencing objects such as grid, are built and composed of auto-
generated square objects and are used to reference panes and containers of the target
application, allowing for a localized referencing through coordinates. Each grid has a
name given by the user, and they are registered through drawing on the desired interac-
tion zone. Figs. 15 (a-c) lists the detailed procedures of registering grids command
named ‘grids’.

(a) Choose Draw Grid. (b) Give grids a file name. (c) Procedure of drawing grids.

Fig. 15. Registering grids.

Fig. 16 lists the detailed procedure of registering an actor profile named ‘TVactor’.

P1) Press Add Actor Profile (labeled as 1-0) in Fig. 16 and the system will generate a
profile name automatically. P2) Select an actor (labeled as 2). P3) Choose an actor con-
trol function (labeled as 3). P4) Draw a moving path of actor (labeled as 4). The ‘TVac-
tor’ will move around as specified by the created moving path when a voice command is
given during the run time environment.

5.3 Examples with Interfacing Applications

The proposed interfacing framework has been used for interfacing several commer-
cialized applications with the Microsoft Speech-Recognizer. Figs. 17 (a-f) depicts some
snapshots for the interface with Bestwise’s Visual Authoring Tool (2004 version). A
completed example can be found in [13].

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1088

Fig. 16. Registering dynamic content actors and actor profiles.

(a) Choose recognizer language. (b) Install interfacing environment. (c) Registering macro command.

(d) Choose stage and grids. (e) Speech a macro to control (f) Speech a macro to control

system. system.

Fig. 17. Snapshots for the interface with Bestwise’s visual authoring tool.

6. ASSESEMENTS AND CONCLUSION

For the evaluation of the proposed approaches, we use both the BestWise’s visual
authoring software [11] and Solitary game to interface with the speech recognizer
through the proposed visual interfacing framework system [5]. The interfacing of the
target application was done by drawing reference zones of its interaction objects on a
transparent interface to then create a grammar definition for the speech engine to recog-
nize these interfacing environment’s zones. Once a visual interfacing visual environment
was made for the target application, several macro commands were composed, and fi-
nally some interaction scenarios were executed. The details of the interface procedures
can be found in [13].

6.1 Evaluation Results

Based on the interfacing applied to the target application, we evaluate the process
involved in integrating it with a speech recognizer through our framework and provide a

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1089

comparison on what advantages where experienced. Table 1 summarizes how current
challenges and limitations of current interfacing methods are tackled through our pro-
posed interfacing framework.

Table 1. A comparison on the proposed approach against current application challenges.

Challenge Our proposed interfacing approach Current interfacing approaches

Generic

It can be used to interface one recognizer
with multiple applications currently and
will be expanded to multiple recognizers
with multiple applications.

They focus on only programming a
direct interfacing of one application
with one speech recognizer.

Complexity

Allows interfacing a recognizer with the
3rd party applications through a visual envi-
ronment without the need of accessing their
source code.

Recognizer integration through the
back-end of applications and requiring
low-level programming and system
design knowledge.

Customizable

Allow modifications under a visual inter-
facing environment to be done at run-time,
without the need of re-compilation of any
source code.

Highly coupled system design. Any
modifications on application’s interfac-
ing environment will require the
re-compilation of source code.

Efficiency

Integrates a script language for users to in-
teract directly with the system in real-time
and allows the composition of context-free
reusable macros to simplify user interaction.

Lack of a post-interfacing mechanism to
abstract a group of actions into single
composed commands to minimize and
simplify user interaction tasks.

6.2 Conclusion

This research overcomes some common problems suffered by developers when
bridging an application system to the interface of a recognizer. The proposed approach
presents a more flexible and efficient interfacing. To design and implement the proposed
interface interfacing framework, we addressed a number of challenges and limitations
imposed by current approaches, by employing several techniques such as the “See-
Through Interface”, object oriented design patterns, and incorporate a script language
definition together with a parsing technique. As a result, the proposed interface interfac-
ing framework enhances the interfacing of applications to recognizers by making it an
easy, generic and flexible process.

The major contributions of this study include:

1) Offers a simplistic and personalized way to interface applications with recognizers

through the front-end, without the need of dealing with low-level issues such as sys-
tem design and programming.

2) Allows modifications to a recognition interfacing environment of an application with-
out requiring the access to source code of applications and re-compilation of it.

3) Offers a generic and custom interface interfacing environment that allows the coexis-
tence of multiple applications that hold different interfacing requirements.

4) Tackles the challenges and limitations imposed by current solutions that focus on
wrapping a single application with a single recognizer in a highly coupled manner.

SHIH-JUNG PENG, JAN KAREL RUZICKA AND DENG-JYI CHEN

1090

REFERENCES

1. B. Balentine, D. Morgan, and W. Meisel, How to Build a Speech Recognition Ap-
plication, Enterprise Integration Group, 1999.

2. Speech-Actuated Manipulator, http://www.research.att.com/history/89robot.
3. VSpeech 1.0, Team BK02 product, http://vspeech.sourceforge.net.
4. Voxx 4.0, Voxx Team product, http://voxxopensource.sourceforge.net.
5. Microsoft’s Speech Recognizer V.6.1, Microsoft product, http://www.microsoft.com.
6. E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Toolglass and

magic lenses: the see-through interface,” Xerox PARC, 3333 Coyote Hill Road, Palo
Alto, CA 94304.

7. Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, and J. R. Cooperstock, “A
framework for 3D visualization and manipulation in an immersive space using an
untethered bimanual gestural interface,” Centre For Intelligent Machines 3480 Uni-
versity Street Montreal, Quebec, Canada.

8. S. K. Huang, “Objected-oriented program behavior analysis based on control pat-
terns,” Ph.D. Dissertation, Department of Computer Science and Information Engi-
neering, National Chiao Tung University, Taiwan, 2002.

9. R. W. Sebesta, Concepts of Programming Languages, 5th ed., Addison-Wesley Pub-
lishing Company, 2002.

10. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 2nd
ed., Sun Microsystems, Inc., 2000.

11. BestWise International Computing Company, http://www.caidiy.com.tw.
12. J. K. Ruzicka, “The design and implementation of an interfacing framework for

bridging speech recognizer to application system,” Master Dissertation, Department
of Computer Science and Information Engineering, National Chiao Tung University,
Taiwan, 2005.

13. S. J. Peng, “Bridging the interface between application systems and recognizers,”
Technical Report No. NCTU-CSIE-SE-TR-001, Department of Computer Science
and Information Engineering, National Chiao Tung University, Taiwan, 2005.

14. WinBatch Macro Scripting Language, http://www.winbatch.com/.
15. B. P. Douglas, Real-Time Design Patterns: Robust Scalable Architecture for Real-

Time Systems, Addison-Wesley Publishing Company, 2003.
16. Microsoft Speech SDK, Version 5.1 Documentation, Microsoft Corporation, 2001.

Shih-Jung Peng (彭士榮) received the B.S. degree in
Electronic Engineering from the National Taiwan University of
Science and Technology, Taipei, Taiwan, and M.S. degree in
Computer Science and Information Engineering from National
Central University, Taoyuan, Taiwan, in 1990 and 1994, re-
spectively. He is now a Ph.D. student at Computer Science and
Information Engineering Department of National Chiao Tung
University, Hsinchu, Taiwan, and he is also a Teacher at Infor-
mation Management of Ta Hwa Institute of Technology, Hsinchu,
Taiwan. His research interests include e-learning, window’s
application, performance and reliability modeling.

BRIDGING THE INTERFACE BETWEEN APPLICATION SYSTEMS AND RECOGNIZERS

1091

Jan Karel Ruzicka Gonzalez (蔣加洛) received the B.S.
degree in Computer Science from the Institute of Information and
Technology Formation, San Jose, Costa Rica, and M.S. degree in
Computer Science and Information Engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 2001 and 2005, re-
spectively. He has been involved in the field of software engi-
neering as a project leader in the various developments of reus-
able object oriented technologies utilized in web applications
(automatization of customized context generation), console gamm-
ing (reusable videogame engines) and window’s applications.

Deng-Jyi Chen (陳登吉) received the B.S. degree in Com-
puter Science from Missouri State University (cape Girardeau),
U.S.A., and M.S. and Ph.D. degrees in Computer Science from
the University of Texas, Arlington, U.S.A. in 1983, 1985, 1988,
respectively. He is now a professor at Computer Science and In-
formation Engineering Department of National Chiao Tung Uni-
versity, Hsinchu, Taiwan. Prior to joining the faculty of National
Chiao Tung University, he was with National Cheng Kung Uni-
versity, Tainan, Taiwan. So far, he has been publishing more than
130 referred papers in the area of software engineering (software

reuse, object-oriented systems, visual requirement representation), multimedia applica-
tion systems (visual authoring tools), e-learning and e-testing system, performance and
reliability modeling and evaluation of distributed systems, computer networks. Some of
his research results have been technology transferred to industrial sectors and used in
product design. So far, he has been a chief project leader of more than 10 commercial
products. Some of these products are widely used around the world. He has been re-
ceived both research awards and teaching awards from various organizations in Taiwan
and serves as a committee member in several academic and industrial organizations.

