
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1279-1293 (2006)

1279

Short Paper___

A WAP-based, Push-enabled Mobile Internet

Application Platform*

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

Department of Computer Science

National Chiao Tung University
Hsinchu, 300 Taiwan

We propose a WAP-based, Push-enabled mobile Internet application platform,

called MAP, to provide extensive services for users in the mobile environment. The goal
of this platform is to provide a flexible, scalable and rapid-service-creation environment
for mobile Internet applications to operate in. MAP has four main components, which
have been designed and implemented: (1) a WAP micro-browser for mobile devices, (2)
a WAP simulator for desktops or notebooks, (3) a WAP Push proxy gateway, the MBL
Gateway, and (4) a distributed mobile agents server, Wagent. This platform enables mo-
bile clients to access legacy information systems, Intranets and WWW services conven-
iently. It applies the advantages of the mobile agent paradigm and WAP Push technolo-
gies to extend Internet services to wireless environments. It also makes it possible to
push critical information, such as news and stock prices, to mobile users in real time. We
have also evaluated the performance of the MBL Gateway, which is a key component of
the platform, using a realistic traffic model. Experiment results show that the MBL
Gateway is more efficient than the other two notable open source WAP gateways in
terms of average response time. The MBL Gateway reduces the average response time
by up to 25% and 87% compared to the Standalone Kannel Gateway and Original Kan-
nel Gateway, respectively, under the highest load (270 requests/sec when the session ar-
rival rate λ = 0.015).

Keywords: mobile internet application platform, WAP micro-browser, WAP simulator,
WAP push proxy gateway, distributed mobile agent server

1. INTRODUCTION

In recent years, the Internet has allowed millions of wireline users to access various
services easily. These services are always on, always available, and easy to use. They
also enrich people’s lives and reduce business costs. In the meantime, wireless voice
communication has also grown at a rapid pace and achieved wide acceptance. Cellular

Received April 30, 2004; revised August 31, 2004 & February 16, 2005; accepted April 18, 2005.
Communicated by David H. C. Du.
* This work was supported by the NCTU EECS-MediaTek Research Center under grant Q583 and the MOE

Program of Excellence Research under grant 89-E-FA04-1-4. The comments made by the reviewers and the
Editor helped improve the quality of this paper.

* A brief version of this paper was presented at the 7th Mobile Computing Workshop, Hsinchu, Taiwan, 2001,
pp. 44-50.

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1280

phones have become indispensable for mobile users. However, most of the technologies
developed for the Internet have been designed for desktops, large computers, and wired
networks with high bandwidth. Mobile devices have limited resources in terms of com-
puting power and display capabilities compared to desktop computers, and wireless net-
works also have low bandwidth. In addition, independent wireless data carriers use their
own technologies and mobile devices from different manufacturers, which makes it hard
for them to talk to each other. Therefore, we need a mobile Internet application platform
that can effectively deal with the constraints imposed by both the Internet and wireless
technologies. It must support open industry standards for mobile application develop-
ment [1, 2] and be scalable across a variety of wireless standards [28, 29].

The Wireless Application Protocol (WAP), developed by the WAP Forum [3], is a
leading global open standard for applications run on wireless networks. WAP provides a
uniform technology platform with consistent content formats for delivering Internet or
Intranet based information and services to mobile phones and other mobile devices. The
WAP standard defines the application environment, the communication protocols, a
wireless markup language (WML) [4] and a scripting language (WMLScript) [5]. The
major enhancement in WAP 1.2 over WAP 1.1 is support for delivering push contents to
mobile clients. Note that there are SMS-based message-delivery systems in place today
that resemble Push, but that the WAP-based Push model adds more interactive function-
ality to the push process.

Previous studies on the development and deployment of applications for mobile
wireless environments are reviewed in the following. In [35], WAP-based system capa-
ble of multiplexing data flows at the transport level was proposed. An architectural com-
parison between the SIM Toolkit [36] and WAP to support mobile e-commerce applica-
tions was made in [37]. A system for the development of WAP-based applications, in
which site development is automated, was proposed in [38]. In [39], a general architec-
tural framework for developing and deploying portable applications and services acces-
sible by WAP-compliant mobile terminals was presented. The main differences between
this framework and our MAP platform are that it does not incorporate a WAP Push capa-
bility to enhance user experience with active mobile services [3], and that only WWW-
based contents are provided.

In this paper, we propose a WAP-based, Push-enabled mobile Internet application
platform to provide extensive services for users in mobile wireless environments. This
platform not only provides mobile connectivity to help users access WWW or Intranet
services but also works with legacy information systems. It applies the advantages of the
mobile agent paradigm and WAP Push technologies to extend versatile services to mo-
bile wireless environments.

2. PROPOSED MOBILE INTERNET APPLICATION PLATFORM
ARCHITECTURE: MAP

The proposed mobile Internet application platform (MAP) architecture, as shown in

Fig. 1, is based on the WAP model, and all the components are compliant with the WAP
1.2 specifications. There are four main components in the platform: the MBL Browser,
WAP & i-mode Simulator, MBL Gateway, and Wagent Server.

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1281

Fig. 1. MAP architecture.

Fig. 2. Architecture of the MBL browser.

2.1 MBL Browser

The MBL Browser is a WAP micro-browser that can run on a wide variety of de-

vices that incorporate the Java Kilobyte Virtual Machine (KVM) [6]. It enables mobile
users to access WAP contents and services by using mobile devices like Palm PDAs. It
also supports unconfirmed Push at default port number 2948 and Big 5 character set en-
coding. We used the J2ME (Java 2 Platform, Micro Edition) Connected Limited Device
Configuration (CLDC) [6] and its KVM to implement our browser on the Palm OS. Fig.
2 shows the architecture of the MBL Browser.

The WDP (Wireless Datagram Protocol) [7] and WSP (Wireless Session Protocol)
Engines set up a wireless connection between a mobile device and the WAP gateway by
using the standard WAP protocols. They also receive unconfirmed Push messages at port
2948. The WBXML (WAP Binary XML) [8] Decoder is responsible for decoding the
binary WML stream received from the WAP gateway and organizing it in a Document
Object Model (DOM) [9] tree that can be handled by the WML Handler or Push Handler.
If the received stream is a Push message, the Push Handler will determine whether it is
an SI (Service Indication) [10] or SL (Service Loading) [11] message and cope with it.

The Content Rendering component is responsible for displaying WML contents and
handling scrolling, clicking, or other input actions from users. The Browser Setting lets a
user edit preferences, such as a WAP gateway IP address, and enable/disable some WML
tags, WBMP (Wireless Bitmap) [12] images, etc. The Bookmark is responsible for keep-
ing track of the user’s favorite URLs (Uniform Resource Locators). The Browser Setting
and Bookmark modules are also responsible for loading and storing the user’s prefer-

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1282

ences and URLs by using persistent storage, the Settings database. The History module is
responsible for recording previously navigated URLs.

2.2 WAP & i-Mode Simulator

Our WAP & i-Mode Simulator is the first mobile Internet browser that supports
both WAP and i-Mode contents. It allows WAP or i-Mode application developers to use
regular input and navigation based PCs as mobile devices to test their applications. The
WAP & i-Mode Simulator is a complete implementation of a WAP browser. It supports
the full set of WML1.2 tags, WMLScript and WAP 1.2 Push specification.

2.3 MBL Gateway

The MBL Gateway is a Java 2-based WAP Push Proxy Gateway, which was in-
spired by the open source Kannel WAP Gateway [13]. Our goal is to develop a cross-
platform, scalable, efficient WAP gateway.

2.3.1 External interfaces of the MBL gateway

The MBL Gateway has interfaces to four external entities, as shown in Fig. 3:

� WAP-enabled mobile devices, using WAP protocols;
� WAP-enabled mobile devices, using SMS (Short Massage Service) protocols;
� HTTP servers, using HTTP to fetch WAP contents;
� PIs (Push Initiators), using the Push Access Protocol (PAP).

Fig. 3. External interfaces of the MBL gateway.

The MBL Gateway enables people to use any WAP-enabled mobile device (cellular

phone, PDA, etc.) to browse the web, send or receive e-mail, and access services on the
Internet or Intranets. The gateway is also the access point for the PI on the Internet to
push messages to Push-enabled devices. In addition, the MBL Gateway is also capable of
sending and receiving short messages. Once the GSM modem has been activated, the
gateway does not require a WAP connection when sending push messages with the GSM
modem.

2.3.2 Internal structure of the MBL gateway

The internal structure of the MBL Gateway is shown in Fig. 4. We have implemented

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1283

Fig. 4. Structure of the MBL gateway.

the entire WAP protocol stack with multiple WAP layer threads. Once the gateway starts,
the main process creates an instance of each layer thread according to the administrator’s
configuration. The communication between the adjacent WAP layer threads occurs via
WAP EventHolders. To support WAP Push in the MBL Gateway, we have implemented
the PAP and OTA (Over the Air) layer threads. The PAP layer thread communicates with
the PI by using PAP over HTTP, and the OTA layer thread is responsible for pushing the
messages to the mobile device through the lower WAP protocol stack. The HTTP Proxy
thread handles each HTTP request and caches WAP pages that are accessed by WAP
clients. When the HTTP Proxy thread receives WAP pages from content servers, it asks
the WML Encoder or WMLScript Compiler to transform the textual data into an appro-
priate binary form. The Resource Manager manages the resource usage in the MBL
Gateway. It collects unused objects for later use and asks the Java virtual machine to
recycle the garbage memory when the gateway is idle. The Administration & Utilities
module provides a graphical user interface that the administrator can use to reconfigure
the gateway at runtime.

2.4 Wagent Server

Even though the MBL Browser and MBL Gateway are capable of enabling WAP
clients to access WAP applications on the Internet, we still need an application server to
provide a flexible, platform-independent, rapid-service-creation environment for applica-
tions to dwell in.

2.4.1 Structure of a wagent server

A Wagent Server, as shown in Fig. 5, consists of four major components: the Web
Server Engine, Appliances, Agents, and Push Initiator (PI). To provide the functionalities
of a web server, we have modified the packages of the W3C Jigsaw Web Server [14] to
serve as the Web Server Engine in the Wagent Server.

Moreover, a Wagent Server can serve not only as a web server but also as a distrib-
uted mobile agents system. Each server contains a set of local appliances that encapsulate
resources or capabilities such as peripheral device drivers or database connections. It also
hosts a population of agents: mobile computational objects that use local appliances and
communicate with each other. In order to provide Push services for mobile WAP clients,
we enable the PI to run on each server and accept Push requests from the Web Server

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1284

Fig. 5. Structure of a Wagent server.

Engine or agents. The PI communicates with the MBL Gateway by using PAP over the
Internet.

2.4.2 System services of a Wagent server

A Wagent Server provides five necessary system services:

� It provides an environment in which agents can live.
� It provides facilities for the life-cycles and mobility of agents.
� It provides services which are local to the server and a mechanism to which agents can

make requests in order to access services.
� It provides a set of services that allow agents and appliances to discover and interact

meaningfully with each other.
� It provides a security scheme to protect a host from its agents.

Each Wagent Server typically has a server manager agent that contains a registry
that maintains the membership of a server in the global Wagent network. A set of
Wagent servers forms an ad-hoc Wagent network.

3. DESIGN AND IMPLEMENTATION

In this section, we will address design and implementation issues, and problems that
we encountered when we designed and implemented the platform.

3.1 Issues Related to the MBL Browser

Most of the problems encountered when developing the MBL Browser were caused
by the resource constraints imposed on mobile devices. Although J2ME CLDC provides
core class libraries covering the user interfaces, networking, and persistent storage that
can be used in PDAs, it still has some limitations, mainly due to insufficient network
handling. Thus, the networking functions of the MBL Browser were written so as to
solve these problems.

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1285

Fig. 6. Communications between different WAP layers.

3.1.1 Avoid using third party libraries

In the early stage of the implementation, we used kAWT [16], which is a simplified
version of AWT [17] for KVM, to develop the user interface of the browser. However,
we found that the program size and memory requirement both imposed tremendous de-
mands because of the use of the kAWT library. Later, we avoided using third party li-
braries so to keep the program size and memory usage as small as possible. Another
good practice was using a user database to store large tables or data rather than keeping
them in memory.

3.1.2 Use it or dispose of it

When objects, databases, or network connections are no longer being used, we dis-
pose of them or close them as soon as possible. Some user interface components use
much memory, so we have tried not to make the user interface too complicated. We have
also carefully designed the database structures, such as index, linkage, or fixed size re-
cords, so that only necessary records (not the whole database) are loaded into the pro-
gram memory.

3.2 Issues Related to the MBL Gateway

We have focused much effort on enhancing the performance of the gateway. Most
of these efforts involved the use of programming techniques, such as object reuse, thread
pooling, selecting an efficient algorithm and appropriate data structures for different
situations, and using buffering to maximize I/O performance [18-20].

3.2.1 Layer-to-layer communications

Communication between different WAP layer threads and between entities within a
layer is accomplished by means of WAP events. A WAP event corresponds to a particular
service primitive defined in the WAP specifications. There is an EventHolder, as shown
in Fig. 6, between two adjacent layers threads. The events stored in queues are scheduled
according to their levels of priority. The earlier they are created, the higher their priority.

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1286

3.2.2 Encoding WML and compiling WMLScript

To encode a WML document, we need an XML parser that will take a WML docu-
ment as input and make its elements and attributes available for processing. We use the
Java™ API for XML Processing [21], version 1.1, to process WML documents. Once
the WML Encoder gets the textual content of a WML page, the encoder parses it and
generates a DOM document. Then, the encoder converts it into binary form according to
the public identifier of the document. The WML Encoder converts the strings in the
WML page using a proper character set that the cellular phone accepts. To compile the
WMLScript source code, we utilize the Java CUP (Java based Constructor of Useful
Parsers) [22] package to implement the WMLScript Compiler.

3.2.3 Accessing the internet efficiently

To enhance the performance of the WAP gateway, an efficient means of accessing
the Internet is necessary. In the MBL Gateway, we have implemented an HTTP proxy to
cache WAP pages that are frequently accessed by WAP clients.

3.3 Implementation of the WAP Push Architecture

Fig. 7 shows the push architecture of MAP. The Push Initiator (PI) in the Wagent
Server has two modules. The Request Listener listens for push requests from other ap-
plications and passes the requests to the PAP Client. The PAP Client then interacts with
the MBL Gateway (WAP Push Proxy Gateway) and sends the information required by
the MBL Gateway for push message delivery. To support WAP Push in the MBL Gate-
way, we implement the PAP and OTA layers in addition to the WSP layer. The PAP layer
thread listens to port 8080 and communicates with the PI by using PAP over HTTP. For
each request, there is a corresponding response. Once the PAP layer thread accepts a
Push message submitted by the PI, it passes the Push content to the OTA layer thread.

Fig. 7. The push architecture in MAP.

If it is a connectionless Push, the OTA layer thread pushes the message directly to

the non-secure WDP port in the client. If it is a connection-oriented Push, the OTA layer
thread asks the Session Initiation Application (SIA) in the client to set up a new WSP

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1287

session with the gateway. To support connection-oriented Push at the client-side, an SIA
and an Application Dispatcher (AD) must be present in the client device. Since no mo-
bile devices support WAP Push at present, the MBL Gateway uses SMS to send text
messages for the purpose of notification.

The difference in the SMS implementation between the MBL Gateway and Kannel
Gateway is that our gateway connects to a GSM mobile station (MS) instead of the short
message service center (SMSC) [24]. We treat an MS as a GSM modem that enables the
the MBL Gateway to access the GSM network directly. Once the PAP layer thread has
received a push message sent from the PI, the PAP layer thread may choose to package
the push message into one or several short messages and transmit them to the mobile
device.

3.4 Issues Related to the Wagent Server

3.4.1 RMI and object serialization

To facilitate the creation and manipulation of distributed objects for a rapid-service-
creation environment, the Wagent server makes extensive use of remote method invoca-
tion (RMI) [25] and object serialization. The type safe nature of Java prevents an object
from being cast into types that are not specifically implemented. This design provides
security for objects. Thus, remote objects cannot call methods that are not exposed
through a remote interface.

3.4.2 Agent mobility

Although Java provides support for moving codes between virtual machines, sup-
porting agent mobility is still inconvenient. When codes move from one virtual machine
to another, the new virtual machine needs a copy of the class definitions that the agent
might require. In many uses of mobile codes this is not a problem, because various vir-
tual machines can share a common, centralized code repository. Since Wagent is de-
signed to avoid centralization, no such strategy is possible. We have implemented a
Wagent Server that depends on the class definitions to support an agent that can migrate
from server to server.

Because Java is late-binding, one cannot statically enumerate all the classes upon
which an agent depends. There is always a possibility that an agent will suddenly attempt
to load a new class that is no longer available locally and the server that the agent came
from has disappeared. Since servers are long-lived entities, this problem should not occur
too often. Another problem is versioning. Given agents' mobility, it is possible that when
an agent is revised, older versions will remain within the Wagent. Java does not differen-
tiate well between two versions of the same class. One way to solve this problem is to
modify the agent names to reflect the version of a particular agent.

4. PERFORMANCE EVALUATION

The WAP gateway performs two main operations: protocol translation and content
conversion. Since these operations are computationally intensive, the WAP gateway,

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1288

which is a key component, may become a bottleneck. We have conducted experiments to
evaluate the performance of our MBL Gateway, the original Kannel WAP Gateway [13],
and a Standalone Kannel WAP Gateway [34] that removes the built-in load balancing
capability of the original Kannel WAP Gateway by means of a realistic WAP traffic
model.

4.1 Experiment Setup

The experimental results were obtained under the configuration shown in Table 1
and the network environment shown in Fig. 8. To evaluate the performance of the WAP
gateways, we adopted the traffic model that was proposed in [27] to generate WAP traf-
fic. We have also implemented a WAP benchmark program that can simulate a large
number of users simultaneously accessing the Internet through a pre-configured WAP
gateway. This program generates WAP traffic according to the traffic model and meas-
ures the response time. The WAP benchmark program takes a file list that contains the
filenames and paths of WAP pages that reside on the content server. The program com-
putes the popularity of each page to determine when the page should be loaded.

Table 1. Configuration for the performance evaluation.

Consideration Configuration

Network Environment LAN: 100Mb/s Ethernet

Client Hardware and OS IP: 140.113.88.116, CPU: Pentium 700, RAM: 64M, Ⅲ

Network Adapter: RealTek RTL 8139 Fast Ethernet, OS:
Red Hat Linux 6.2 + CLE v0.9p1

Gateway Hardware and OS IP: 140.113.88.118, CPU: Pentium 800, RAM: 256MB, Ⅲ

Network Adapter: Intel PCI EtherExpress Pro100, OS: Red
Hat Linux 6.2 + CLE v0.9p1

Server Hardware and OS IP: 140.113.88.120, CPU: Pentium 700, RAM: 128M, Ⅲ

Network Adapter: RealTek RTL 8139 Fast Ethernet, OS:
Red Hat Linux 6.2 + CLE v0.9p1

WAP Client Benchmark Software A homemade WAP benchmark program

Content Server Software Apache 1.3.14 [26]

Fig. 8. The network environment.

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1289

The main difference between WAP pages and WWW pages is in the structure and
size of a viewed page. A WAP page is much smaller than a WWW page due to its binary
encoding and the fewer and smaller inline objects (WBMP images) included. The major-
ity of WAP pages are WML files with an average of 0.4 embedded WBMP images. A
total of 3,000 WAP documents, including WML, WBMP, and WMLScript files, were
used in the experiment. The file sizes ranged from 44 bytes to 2,391 bytes. Table 2 sum-
marizes the characteristics of the WAP pages. The parameters [27] used to generate
WAP traffic are summarized in Table 3. New WAP client session arrivals followed the
Poisson distribution [27, 30, 31]. The lowest WAP workload (when the session arrival
rate λ = 0.0005) was approximately 10 requests per second, and the highest load (when λ
= 0.015) was 270 requests per second. The number of clicks corresponded to the number
of consecutive WAP pages which a WAP client requested during a session based on the
inverse Gaussian distribution [27, 30, 33]. The client’s user inter-click idle time (silent
time) between the retrieval of two successive WAP pages was modeled as a LogNormal
distribution [27].

Table 2. The characteristics of the WAP pages.

Characteristic Value

Number of files 3000

Number of WML files 2000

Number of WBMP files 800

Number of WMLScript files 200

Average file size 531 bytes

Average encoded file size 104 bytes

Mean number of embedded objects per WML page 0.4

Mean number of links per WML page 3

Table 3. The parameters used to generate WAP traffic.

Variable Law Lowest Load Highest Load

Session arrival
Poisson Process

(0.0005 ≦ λ ≦ 0.015)
10 requests/sec 270 requests/ sec

Variable Law Mean Std deviation

Number of clicks
Inverse Gaussian

(µ = 8; λ = 5)
8 10.1

Inter-click idle time
LogNormal

(m = 2; σ = 0.8)
10.2 sec 9.6 sec

4.2 Experimental Results

To evaluate the performance of the WAP gateways, we varied the session arrival

rate and measured the response time of WAP pages. The three different WAP gateways
were evaluated in both connection-oriented and connectionless modes. Figs. 9 and 10
show the experiment results. The MBL Gateway reduced the average response time by

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1290

Fig. 9. The average response time vs. the session arrival rate for the three WAP gateways in con-

nection-oriented mode.

Fig. 10. The average response time vs. the session arrival rate for the three WAP gateways in con-

nectionless mode.

up to 25% and 87% compared to the Standalone Kannel Gateway and Original Kannel
Gateway, respectively, under the highest load (270 requests/sec when the session arrival
rate λ = 0.015).

The experimental results show that the MBL Gateway is quite efficient compared to
the other two gateways. This is because we have implemented an HTTP proxy module in
the MBL gateway to cache WAP pages that are frequently accessed by WAP clients. The
HTTP proxy module reduces the response time associated with obtaining WAP pages
and the network traffic between the WAP gateway and content servers. In short, our im-
plementation of an efficient HTTP proxy module is the main reason why the perform-
ance of the MBL Gateway is better than that of the other two gateways, in which the
HTTP proxy mechanism is not implemented.

In addition, a monolithic gateway might become overloaded and is not sufficient to
handle a huge amount of WAP traffic. Upgrading the gateway with a faster model usu-
ally results in high cost and still can not enable the gateway to scale up with demand. An

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1291

efficient way to cope with growing demand is to add extra hardware resources so as to
provide a clustered gateway architecture. That is, turning a monolithic MBL gateway
into a clustered MBL gateway is a cost effective way to build a scalable, reliable, high-
performance MAP platform. The proposed clustered MBL WAP gateway architecture
has been integrated with an efficient load balancing mechanism in the Front-end Dis-
tributor to make it possible to assign a request to the selected real gateway in the cluster
that can offer the best service, as shown in Fig. 11 [34]. In this way, our MAP platform
can provide a flexible, scalable, rapid-service-creation environment, where mobile Inter-
net applications can easily dwell in the mobile agent-based Wagent Server. It also en-
ables more mobile users to access mobile Internet services concurrently and efficiently
via the clustered MBL WAP gateway.

WAP
Phones

PDA with
MBL

Browser

WAP Pull/Push
SMS Pull/Push

Wireless Domain Wireless Domain Clustered MBL WAP Gateway

Switch HTTP

1 2 N
Front-end Real Gateway
Distributor

WAP & i-Mode Simulator

WAP
Pull/Push

HTTP

Wagent
Server

Service Content

Agent-based

Applications

Fig. 11. Scalable MAP architecture.

5. CONCLUSIONS

We have designed and built a WAP-based, Push-enabled mobile Internet application
platform, called MAP, which enables WAP clients to access legacy information systems,
Intranets or WWW services. MAP also provides a flexible, scalable and rapid-service-
creation environment in which applications can dwell. It includes four major components:
the WAP Browser for mobile handsets, the WAP & i-Mode Simulator for desktops or
notebooks, the WAP Push Proxy Gateway, and a distributed mobile agents system, the
Wagent Server. It enables mobile users to easily access any Internet resources from any
WAP device at anytime, anywhere. We have also shown the efficiency of the MBL
Gateway by comparing its performance with that of other two existing gateways, and we
have demonstrated the versatility of MAP by implementing several useful applications.

REFERENCES

1. K. Read and F. Maurer, “Developing mobile wireless applications,” IEEE Internet

Computing, Vol. 7, 2003, pp. 81-86.
2. K. K. Tan, C. Y. Soh, and K. N. Wang, “Development of an internet home control

system,” in Proceedings of the IEEE International Conference on Control Applica-
tions (ICCA), Vol. 2, 2002, pp. 1120-1125.

HSUAN-HAO CHEN, KUOCHEN WANG AND HUNG-CHENG SHIH

1292

3. Open Mobile Alliance, http://www.openmobilealliance.org.
4. Open Mobile Alliance, “Wireless markup language version 2 specification,” 2001.
5. Open Mobile Alliance, “WMLScript language specification,” 2000.
6. J2METM CLDC and Killobyte Virtual Machine (KVM), http://java.sun.com/prod-

ucts/cldc/.
7. Open Mobile Alliance, “Wireless datagram protocol specification,” 2001.
8. Open Mobile Alliance, “Binary XML content format specification,” 2001.
9. W3C, “Document Object Model (DOM) level 1 specification version 1.0,” http://

www.w3.org/DOM/, 1998.
10. Open Mobile Alliance, “WAP service indication specification,” 2001.
11. Open Mobile Alliance, “WAP service loading specification,” 2001.
12. Open Mobile Alliance, “Wireless application environment specification,” 2002.
13. Kannel: Open Source WAP and SMS Gateway, http://www.kannel.org.
14. Jigsaw − W3C’s Java Web Server, http://www.w3.org/Jigsaw.
15. The kAWT project, http://www.kawt.de.
16. Sun Microsystems, “Abstract window toolkit,” http://java.sun.com/products/jdk/awt,

1997.
17. S. Wilson and J. Kesselman, Java™ Platform Performance Strategies and Tactics,

Addison Wesley, 2000.
18. G. McCluskey, “Thirty ways to improve the performance of your Java™ programs,”

http://www.glenmccl.com/jperf/index.htm, 1999.
19. J. Shirazi, Java™ Performance Tuning, O’Relly, 2000.
20. Sun Microsystems, “JAVATM API for XML processing version 1.1,” http://java.sun.

com/xml, 2001.
21. Java based Constructor of Useful Parsers, http://www.cs.princeton.edu/~appel/ mod-

ern/java/CUP.
22. ETSI/TC, “Technical realization of the short message service point-to-point,” Ver-

sion 4.6.0, Technical Report Recommendation GSM 03.38, Version 5.6.0 (Phase 2+),
ETSI, 1997.

23. Sun Microsystems, “Java™ remote method invocation specification,” http://java.sun.
com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html, 2003.

24. Apache HTTP Server, http://httpd.apache.org/.
25. Z. Liu et al., “Traffic model and performance evaluation of web servers,” http://

www.inria.fr/rrrt/rr-3840.html, 1999.
26. K. Hung and Y. T. Zhang, “Implementation of a WAP-based telemedicine system

for patient monitoring,” IEEE Transactions on Information Technology in Biomedi-
cine, Vol. 7, 2003, pp. 101-107.

27. A. Andreadis, G. Benelli, G. Giambene, and B. Marzucchi, “A performance evalua-
tion approach for GSM-based information services,” IEEE Transactions on Vehicu-
lar Technology, Vol. 52, 2003, pp. 313-325.

28. J. E. Pitkow, “Summary of WWW characterizations,” http://decweb.ethz.ch/WWW7
/1877/com1877.htm, 1998.

29. J. J. Huang, M. S. Chen, and H. P. Hung, “A QoS-aware transcoding proxy using on
demand data broadcasting,” in Proceedings of the IEEE INFOCOM, 2004, pp.
2050-2059.

30. V. Cardellini and P. S. Yu, “Collaborative proxy system for distributed web content

A WAP-BASED, PUSH-ENABLED MOBILE INTERNET APPLICATION PLATFORM

1293

transcoding,” in Proceedings of the 9th International ACM Conference on Informa-
tion Knowledge Management, 2000, pp. 520-527.

31. T. H. Lin, K. C. Wang, and A. Y. Liu, “An efficient load balancing strategy for scal-
able WAP gateways,” Computer Communications, Vol. 28, 2005, pp. 1028-1037.

32. T. Enderes, “Design and implementation of a multiplexing framework for the wire-
less application protocol,” Technical Report, Institute for Communications Engi-
neering, University of Karlsruhe, Germany, 1999.

33. ETSI, GSM 11.14: Specification of the SIM Application Toolkit for the Subscriber
Identity Module – Mobile Equipment (SIM-ME) Interface, http://www.etsi.org.

34. K. Sabatakakis, M. Zumbuhl, and S. Krotsch, Mobile eCommerce, Andersen
Consulting, Zurich, Switzerland.

35. J. Leppanen, T. Laakko, and M. Kylanpaa, Prototype Development for the WAP Ap-
plication, VTT Information Technology, Finland, 1999.

36. M. Cannataro and D. Pascuzzi, “A component-based architecture for the develop-
ment and deployment of WAP-compliant transactional services,” in Proceedings of
the 34th Hawaii International Conference on System Sciences, 200, pp. 7073.

Hsuan-Hao Chen (陳軒皓) received the B.S. degree in Computer Science and In-
formation Engineering from Catholic Fu Jen University, Taiwan, in 1999 and the M.S.
degree in Computer and Information Science from National Chiao Tung University,
Taiwan, in 2001. He is currently a project manager in the Network and Multimedia In-
stitute, Information Appliance Technology Center, Institute for Information Industry. He
has been working on software development for mobile devices as well as WAP technol-
ogy implementation for several years. His research interests include distributed objects,
embedded systems, wireless Internet, and mobile handset applications.

Kuochen Wang (王國禎) received the B.S. degree in Control Engineering from

National Chiao Tung University, Taiwan, in 1978, and the M.S. and Ph.D. degrees in
Electrical Engineering from the University of Arizona in 1986 and 1991, respectively.
He is currently a Professor in the Department of Computer and Information Science, Na-
tional Chiao Tung University. From 1980 to 1984, he worked on network management,
and design and implementation of the Toll Trunk Information System at the Directorate
General of Telecommunications in Taiwan. He served in the army as a second lieutenant
communication platoon leader from 1978 to 1980. His research interests include wireless
(sensor) networks, mobile computing, and power management for mobile handheld de-
vices.

Hung-Cheng Shih (施宏政) received the B.S. degree and the M.S. degree in the
Department of Computer and Information Science from National Chiao Tung University,
Taiwan, in 1997 and 2002, respectively. He is currently a Ph.D. student in the Depart-
ment of Computer and Information Science, National Chiao Tung University. His re-
search interests include mobile computing, wireless Internet, 3G telecommunication sys-
tems, and power management.

