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To support applications such as Internet security, virtual private networks, and 

Quality of Service (QoS), Internet routers need to quickly classify incoming packets into 
flows. Packet classification uses information contained in the packet header and a prede-
fined rule table in the routers. In general, packet classification on multiple fields is a dif-
ficult problem. Hence, researchers have proposed a variety of classification algorithms. 
This paper presents a novel packet classification algorithm, the bit compression algo-
rithm. As with the best-known classification algorithm, bitmap intersection, bit compres-
sion is based on the multiple dimensional range lookup approach. Since bit vectors of the 
bitmap intersection contain many “0” bits, the bit vectors could be compressed. We 
compress the bit vectors by preserving only useful information and removing the redun-
dant bits of the bit vectors. An additional index table would be created to keep track of 
the rule number associated with the remaining bits. Additionally, the wildcard rules en-
able an extensive improvement in the storage requirement. A novel Fast Boolean Expan-
sion enables our scheme to obtain better classification speed even under a large number 
of wildcard rules. Compared to the bitmap intersection algorithm, the bit compression 
algorithm reduces the storage complexity in the average case from O(dN2) (for bitmap 
intersection) to θ(dN · log N), where d denotes the number of dimensions and N repre-
sents the number of rules. The proposed scheme cuts the cost of packet classification en-
gine and increases classification performance by accessing less memory, which is the 
performance bottleneck in the packet classification engine implementation using a net-
work processor.   
 
Keywords: router, packet classification, bitmap intersection, bit compression, Boolean 
expansion, network processor 
 
 

1. INTRODUCTION 
 

The accelerated growth of Internet applications has increased the importance of the 
development of new network services such as security, virtual private network (VPN), 
Quality of Service (QoS), and accounting. All of these mechanisms generally require 
routers to be able to categorize packets into different classes called flows. The categori-    
zation function is termed packet classification. 

An Internet router classifies incoming packets into flows using information con-
tained in the packet header and a predefined rule table in the router. A rule table main-
tains a set of rules specified based on the packet header fields such as the network source 
address, network destination address, source port, destination port, and protocol type. 
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The rule field can be a prefix (e.g., a network source/destination address), a range (e.g., a 
source/destination port), or an exact number (e.g., a protocol type). 

When a packet arrives, the packet header is extracted and compared with the corre-
sponding fields of the rule in the rule table. A rule matching in all corresponding fields is 
considered a matched rule. The packet header is compared with every rule in the rule 
table, and the matched rule with the highest priority yields the best-matching rule. Finally, 
the router performs an appropriate action associated with the best-matching rule. 

The d-dimensional packet classification problem (PC problem) is formally defined 
as follows. The rule table has a set of rules R = {R1, R2, …, Rn} over d dimensions. Each 
rule comprises d fields Ri = {F1,i, F2,i, …, Fd,i}, where Fj,i denotes the value of field j in 
rule i. Each rule also has a cost (priority). A packet P with header field (p1, p2, …, pd) 
matches rule Ri if all the header fields pj, j from 1 to d, of the packet match the corre-
sponding fields Fj,i in Ri. If P matches multiple rules, the minimal cost (highest priority) 
rule is returned. 

The general packet classification problem can be viewed as a point location problem 
in multidimensional space [1]. Rules have a natural geometric interpretation in d dimen-
sions. Each rule Ri can be considered a “hyper-rectangle” in d dimensions, obtained by 
the cross product of Fj,i along each field. The set of rules R thus can be considered a set 
of hyper-rectangles, and a packet header represents a point in d dimensions. 

A good packet classification algorithm must quickly classify packets with minimal 
memory storage requirements. This study proposes a novel bit compression packet clas-
sification algorithm. This algorithm succeeds in reducing the memory storage require-
ments in the bitmap intersection algorithm [8], proposed by Lakshman and Stiliadis. The 
bitmap intersection algorithm converts the packet classification problem into a multidi-
mensional range lookup problem and constructs bit vectors for each dimension. Since the 
bit vectors contain many “0” bits, the bit vectors could be compressed. We compress the 
bit vectors by preserving only useful information and removing the redundant bits of the 
bit vectors. An additional index table is created to track the rule number associated with 
the remaining bits. Additionally, the wildcard rules enable more extensive improvement. 
The bit compression algorithm reduces the storage complexity on average from O(dN2), 
for bitmap intersection, to θ(dN · logN), where d denotes the number of dimensions and N 
represents the number of rules, without sacrificing the classification performance. Al-
though the authors of bitmap intersection proposed a scheme, called incremental read, 
which can reduce the storage complexity from O(dN2) to θ(dN · log N), it requires more 
memory accesses than its original scheme. The incremental read takes an advantage of 
the fact that any two adjacent bit vectors differ by only one bit. Therefore, instead of 
storing all the bit vectors for each interval, it stores the position of the single bit between 
these two bit vectors. However, when a complete bit vector of an interval needs to be 
reconstructed, the incremental read will access not only multiple bit positions but also a 
complete bit vector as a final reference. Another famous scheme is the aggregated bit 
vector (ABV) algorithm [9]. Even though the ABV algorithm has much fewer memory 
accesses, close to that of the bit compression algorithm, it demands larger memory stor-
age than the bit compression algorithm. The ABV algorithm attempts to reduce the 
number of memory accesses by adding smaller bit vectors called ABVs, which partially 
capture information from the complete bit vectors. An ABV is created along with an 
original bitmap vector to speed up packet classification performance by accessing only 
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corresponding chunks of bits in the regular bit vector identified by the ABV.  
The rest of this paper is organized as follows. Section 2 reviews related work. Sec-

tion 3 describes the bit compression algorithm. Section 4 summarizes the performance 
results. Conclusions are made in section 5. 

2. RELATED WORKS 

The simplest packet classification algorithm involves a linear search of each rule. 
Linear search is efficient in terms of memory, but requires a large search time for a large 
number of rules. The data structure is simple and easy to update in response to rule 
changes. A tries-based data structure called ‘Grid of tries’ [2] was proposed by Srinivan-
san et al. This scheme is a good solution if the rules are restricted to just two fields, but it 
could not be applied to more fields to solve the general problem. The investigation pro-
poses another general solution called ‘Cross-producting’. This approach creates a table of 
all possible field value combinations (cross-products) and calculates the best-matching 
rule matching for each cross-product in advance. Unfortunately, the size of the cross- 
product table grows significantly with the number of rules and fields. To reduce memory 
consumption on the extra rules needed to represent the cross-products, recently Dhar-
mapurikar et al. [18] proposed an architecture solution to apply the “Cross-producting 
Algorithm” to multiple subsets of rules. They introduce an overlay-free grouping to di-
vide the rules into multiple subsets. Then, a cross-product table without extra rules can 
be constructed for each subset. However, to avoid performing multiple lookups in multi-
ple tables, the Bloom filter is introduced to sustain high throughput, as in the original 
cross- producting algorithm. The ‘tuple-space search’ [3] is another general approach. 
This scheme partitions the rules into different tuple categories based on the number of 
specified bits in each dimension, and then uses hashing among the rules within the same 
tuple. This scheme has a fast average search time and update time, but suffers a disad-
vantage by using hashing, which leads to lookups and updates with non-deterministic 
durations. The Recursive Flow Classification (RFC) [4] proposed by Gupta et al. is one 
of the earliest heuristic approaches. This approach attempts to map an S-bit packet header 
into a T-bit identifier, where T = log N (N is the number of rules) and T << S. This ap-
proach employs cross-producting in stages. It groups intermediate results into equivalent 
classes to reduce storage requirements. RFC works fast, but this speed comes at the price 
of substantial memory use, and it does not support efficient updating. Gupta et al. also 
propose another heuristic algorithm called ‘Hierarchical Intelligent Cuttings’ (HiCuts) 
[5]. This algorithm attempts to partition the search space in each dimension, and then it 
establishes a decision-tree data structure by careful preprocessing of the rule table. Each 
leaf node stores a small number of rules. Meanwhile, a linear search of these rules yields 
the desired matching. This scheme exploits the characteristics of real rule table, but these 
characteristics vary. The method used to find a suitable decision tree prevents effective 
scaling in large rule tables. The ‘Extended Grid of Tries’ (EGT) [6] and ‘Hyper-Cuts’ [7] 
are general packet classification algorithms that achieve high performance without ex-
treme storage space requirements. EGT employs a slightly modified two-dimensional 
Grid-of-Tries for classification of source and destination addresses, followed by a linear 
search of the rules that match the two fields (source and destination addresses) at that 
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point. HyperCuts, similar to HiCuts, uses multidimensional cuts at each step. Unlike 
HiCuts, in which each node in the decision tree represents a hyperplane, each node in the 
HyperCuts decision tree represents a k-dimensional (k > 1) hypercube. 

Another interesting solution devised by Lakshman et al. [8] is the bitmap intersec-
tion scheme, which uses the concept of divide-and-conquer, dividing the packet classifi-
cation problem into k sub-problems and then combining the results. This scheme uses the 
geometrical space decomposition approach to project every rule on each dimension. For 
N rules, a maximum of 2N + 1 non-overlapping intervals are created on each dimension. 
Each interval is associated with an N-bits bit vector. Bit j in the bit vector is set if the 
projection of the rule range corresponding to rule j overlaps with the interval. On packet 
arrival, for each dimension, the interval to which the packet belongs is found. Taking 
conjunction of the corresponding bit vectors in each dimension to a resultant bit vector, 
the highest priority entry in the resultant bit vector can be determined. Since the rules in 
the rule table are assumed to be sorted in terms of decreasing priority, the first set bit 
found in the resultant bit vector is the highest priority entry. The rule corresponding to 
the first set bit is the best matching rule applied to the arriving packet. This scheme em-
ploys bit-level parallelism to match multiple fields concurrently, and can be implemented 
in hardware for fast classification. However, this scheme is difficult to apply to large rule 
tables, since the memory storage scales quadratically each time the number of rules dou-
bles. The same study describes a variation that reduces the space requirement at the ex-
pense of higher execution time. Fig. 1 shows the bitmap for a 2-dimensional rule table in 
dimension X. The ten rules are represented by 2-dimensional rectangles. The bitmap in-
tersection starts with projecting the edges of the rectangles to the X axis and the ten rec-
tangles then create nine intervals. Subsequently, associate a bit vector with each interval. 
For example, the bit vector in interval X2 is “1011000000” since the first, third, and 
fourth rules overlap X2. 
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Fig. 1. The bitmap in dimension X of a 2-dimensional rule table with 10 rules. 

 
The Aggregated Bit Vector (ABV) algorithm [9] designed by Baboescu et al. is an 

improvement on the bit map intersection scheme. The authors made two observations: 
there are sparse set bits in bit vectors and a packet matches few rules in the rule table. 
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Building on these two observations, two key ideas are extended – aggregation of bit vec-
tors and rule rearrangement. Aggregation attempts to reduce memory access time by 
adding smaller bit vectors called Aggregate Bit Vectors (ABVs), which partially capture 
information from whole bit vectors. The length of an ABV is defined as ⎡N/A⎤, where A 
denotes aggregate size. Bit k is set in ABV if there is at least one bit set in group k, which 
is from ((k − 1) * A + 1)th bit to (k * A)th bit in the original bit vector; otherwise, bit k is 
cleared. Aggregation reduces the search time for bitmap intersection, but produces an-
other unfavorable effect, false matching, a situation where the result of the conjunctions 
of all ABV returns a set bit, but no actual match exists in the group of rules identified by 
the aggregate. False matching may increase memory access time. Rule rearrangement 
can alleviate the probability of false matching. Although ABV outperforms bitmap inter-
section for memory access time by an order of magnitude, it does not ameliorate the 
main problem of bit map intersection, which is the rapid exploitation of memory space. 
In fact, it uses more space. A detailed survey of packet classification schemes can be 
found in [15-17]. 

In a nutshell, for the general classification problem of large numbers of rules, we 
find that existing solutions do not balance well between performance and memory space. 
Our paper uses the bitmap intersection scheme as a foundation since it already is scalable 
in search performance. Our bit compression scheme adds a new idea by removing a large 
number of bits in bit vectors. The results show that our scheme not only resolves the is-
sue of large memory requirement in bitmap intersection, but also cuts the search speed of 
bitmap intersection by several times when implemented on Intel IXP 1200/2400 network 
processors. 

3. BIT COMPRESSION ALGORITHM 

3.1 Motivation 
 

As mentioned in the previous section, bitmap intersection is a hardware-oriented 
scheme with rapid classification speed, but suffers from a crucial drawback in that the 
storage requirements increase exponentially with the number of rules. The space com-
plexity of bitmap intersection is O(dN2), where d denotes the number of dimensions and 
N represents the number of rules. Even though the ABV algorithm improves the search 
speed, it requires even more memory space than the bitmap intersection algorithm. For a 
packet classification hardware solution, memory storage is an important performance 
metric. Decreasing the required storage will reduce costs correspondingly. The question 
thus arises whether any method exists to resolve the extreme memory storage require-
ment for a large rule table. Observing the bit vectors produced by each dimension, as 
mentioned in [9], the set bits (“1” bits) are very sparse in the bit vectors of each dimen-
sion, and there are considerable clear bits (“0” bits). The authors of [9] used this property 
to reduce memory access time, but this property can also be applied to reduce memory 
storage requirements. As Fig. 2 shows, a space saving of approximately 60% can be 
achieved by removing redundant “0” bits. The shaded parts of Fig. 2 illustrate the re-
movable “0” bits. Our challenge is how to represent the compressed format of bit vector. 
We segment each dimension into several sub-ranges. We call a sub-range a “Compressed 
Region” (CR), where a CR denotes the range of a series of consecutive intervals. In each  
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Fig. 2. pace saving by removing redundant ‘0’ bits. 

 
CR, only an extremely small number of rules are overlapped, while the corresponding 
bits of the non-overlapped rules in this CR are all “0” bits. If a packet falls into a CR, 
denoted by CRm, only the overlapped rules need to be considered. The corresponding bits 
of the non- overlapped rules in CRm are all “0” bits. Neglecting the non-overlapped rules 
means those “0” bits corresponding to the non-overlapped rules of the bit vectors in CRm 
can be removed. This study calls a bit vector after redundant “0” bits are removed a 
Compressed Bit Vector (CBV). 

For example, consider the two-dimensional rule table in Fig. 1. By dividing dimen-
sion X into four CRs, CR1, CR2, CR3, and CR4. Only R1, R3, and R4 are overlapped with 
CR1. Therefore, if a packet falls into CR1, only R1, R3, and R4 have to be considered. 
Consequently, maintaining the first, third, and fourth bits of the bit vectors while remov-
ing the “0” bits of the non-overlapped rules in CR1 is sufficient to looking for matching 
rules. 

However, recall that in the bit map intersection, the bit order of a bit vector indicates 
to the rule order (ith bits in a bit vector correspond to ith rule in rule table). “0” bits are 
removed from a bit vector in such a way that it is no longer known which remaining bits 
represent what rules. To solve this problem, this study claims an “index list” with each 
CR, which stores the rule number associated with the remaining bits. Collections of the 
“index list” form an “index table”. For example in Fig. 1, after removing the redundant 
“0” bits, the bit vectors in CR1 remain three bits. To keep track of the rule number of the 
three remaining bits, an index list [1, 3, 4] is appended to CR1. Each CR associates an 
index list. The index table comprising four index lists is shown in Fig. 4. 

After removing redundant “0” bits, we build the CBVs and index list for each CR. 
Because the length (number of bits) of the CBV is related to the number of overlapped 
rules in the corresponding CR, the length of the CBVs is different for each CR. As the 
example in Fig. 4 shows, the length of CBVs in CR1 should be three bits, while the length 
of CBVs in CR2 should be five bits. However, the bitmap intersection is a hardware-  
oriented algorithm. Our improvement scheme is also hardware-oriented. For convenience 
of memory access, the length of bit vectors should be fixed, and the CBVs maintaining 
fixed length are also desired. Therefore, the length of all CBVs should be based on the  
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Fig. 3. The bitmap in dimension X of a 2-dimensional rule table that has two wildcard rules R11 and 

R12 in dimension X. 
 
 
longest (maximum bits) CBV, and fill up “0” bits to the end of the CBVs which are 
shorter than the longest CBV. Note that a similar idea is applied to the index lists, where 
the index lists should have the same number of entries. 

Furthermore, rules are considered to have wildcards. This study notes that if rule Ri 
is a wildcard in dimension j, the ith bit of each bit vector in dimension j is set, thus form-
ing a series of “1” bits over dimension j. As an example, Fig. 3 illustrates the rule table 
with two wildcard rules in dimension X, rule R11 and R12. The last two bits of each bit 
vector are set because the ranges of R11 and R12 cover all intervals in dimension X. In [4], 
the authors mentioned that in the destination and source address fields, approximately 
half the rules are wildcards. Consequently, half of each bit vector in the destination field 
(or source field) is set to “1” because of the wildcards. Intrinsically, lots of these “1” bits 
are redundant. The idea is that for each dimension j, regardless of the interval in which a 
packet falls, the packet always matches the rules with wildcards in dimension j. Thus, 
there is no need to set corresponding “1” bits in every interval for recording these wild-
card rules. Instead these rules are stored just once. Additional bit vectors, here called 
“Don’t Care Vectors” (DCV), are used to separate the wildcard and non-wildcard rules. 
A DCV is established for each dimension. Removing the redundant “1” bits caused by 
wildcard rules helps further reduce storage space. A DCV resembles a bit vector. Note 
that in a bit vector, bit j in the bit vector is set if the projection of the rule region corre-
sponding to rule j overlaps with the related interval. In the DCV, bit j is set if the corre-
sponding rule j is a wildcard; otherwise, bit j is clear. For example, the last two bits of 
each bit vector in Fig. 3 could be removed and DCV “000000000011” added instead, 
which indicates that the 11th and 12th rules are wildcards and others are not. 
 
3.2 Bit Compression Algorithm 
 

Using the above ideas, this study proposes an improved approach to bitmap inter-
section, called “bit compression.” Before describing the proposed bit compression scheme, 
this study presents some denotations and definitions. 
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For a k-dimensional rule table with N rules, Ii,j denotes the ith non-overlapping in-
terval on dimension j and ORNi,j denotes the overlapped rule numbers for each interval Ii,j. 
Furthermore, BVi,j denotes the bit vectors associated with the interval Ii,j and CBVi,j 
represents the corresponding compressed bit vector. DCVj is the “Don’t Care Vector” for 
dimension j and DCVi,j is the ith bit in DCVj. 

 
Definition 1  For a k-dimensional rule table with N rules, “maximum overlap” for dimen-
sion j, denoted as MOPj, is defined as the maximum ORNi,j for all intervals in dimension j. 
 

The preprocessing part of the bit compression algorithm is as follows. For each di-
mension j, 1 ≤ j ≤ k, 

 
1. Construct DCVj. For n from 1 to N, if RN is wildcarded on dimension j then DCVn,j is 

set; otherwise, DCVn,j is clear. 
2. Calculate the value of MOPj and segment the entire range of dimension j into t CRs, 

CR1, CR2, …, CRt . The rules, where the rule projection overlaps with CRi, 1 ≤ i ≤ t, 
form a rule set RSi, where the entry number of each rule set should be smaller than or 
equal to MOPj (according to the subsequently described “region segmentation” algo-
rithm). 

3. For each CR CRi, 1 ≤ i ≤ t, construct a compressed bit vector and corresponding index 
list based on RSi. Then gather the index lists to compose an index table. Furthermore, 
use listi to denote the index list related to CRi and listx,i to represent the xth entry of 
listi. 

4. For each CR CRi, 1 ≤ i ≤ t, append “index table lookup address” (ITLA), which is the 
binary of (i − 1), in front of each CBV. For convenient hardware processing, the num-
ber of bits of the ITLA in each CR are the same. 

 
The classification steps of a packet are as follows. For each dimension j, 1 ≤ j ≤ k, 
 

1. Find the interval Ii,j to which the packet belongs and obtain the corresponding com-
pressed bit vector CBVi,j and ITLA. 

2. Use ITLA to look up the index table to obtain the corresponding index list, assume 
listm. 

3. Read the DCVj into the final bit vector. Subsequently, read the index list found in step 
2 entry by entry. If the xth bit in CBVi,j is “1”, then access listx,m and set the corre-
sponding bit in the final bit vector. 

4. Take the conjunction of the final bit vector associated with each dimension and de-
termine the highest priority rule. 

 
Fig. 4 illustrates the bit compression algorithm. First, construct the DCV “00000000 

0011” for dimension X. As shown in Fig. 1, dimension X is divided into four CRs. In 
CR1, t, the corresponding rule set RS1 is {R1, R3, R4}, and thus the CBV in CR1 is con-
structed by considering R1, R3, R4 only and the index list list1 is [1, 3, 4]. An ITLA “00” 
then is appended in front of the CBVs in CR1. As mentioned previously, additional “0” 
bits are filled up in the CBVs and index table for the convenience of hardware imple-
mentation. Furthermore, similar steps are manipulated for CR2, CR3, and CR4.   
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Fig. 4. An example of the bit compression algorithm. 

 
Consider an arriving packet p shown in Fig. 4, which falls into interval X4. The 

ITLA “01” and CBV “11101” associated with X4 are accessed. The ITLA “01” serves as 
the lookup address in the index table to access index list [1, 2, 5, 6, 8]. The bits of 
“11101” then are known to represent R1, R2, R5, R6, and R8, respectively. Read DCV 
“000000000011” and set the first, second, fifth, and eighth bits to form the final bit vec-
tor. The final bit vector in dimension X is “110010010011,” the same as the bit vector of 
interval X4 produced by the bitmap intersection scheme in Fig. 3. Similar processes are 
operated to form the final bit vector of dimension Y. Take the conjunction of the final bit 
vectors in dimension X and Y, and the matched highest priority rule is obtained. 

 
3.3 Maximum Overlap Statistics 

 
Because the bit compression scheme does not change the number of bit vectors in 

bit intersection, the storage space saving is influenced by the length of the CBV. A 
shorter CBV length leads to greater space saving. However, as mentioned previously, the 
length of the CBV is limited by the value of maximum overlap. Consequently, the space 
saving increases with decreasing value of the maximum overlap, The bit compression 
scheme requires extra storage for the index table. If the value of the maximum overlap is 
sufficiently large, the overhead for the index table may exceed the profit from compres-
sion. 

To determine if the number of redundant “0” bits removed from the bitmap is large 
enough to exceed the extra storage overhead (index table) in the bit compression algo-
rithm, this study performs experiments on the destination field to measure statistics of the 
maximum overlap. This study employs two approaches to create the one-dimensional 
rule table with 0.5K, 1K, 5K, and 10K numbers of rules. In the first approach, the rule 
tables are generated by randomly picking prefixes from a Mae-West routing database 
[11]. In the second approach, the type of rule table is determined by the prefix length 
distribution probability based on five publicly available routing tables in [9] and prob-
ability, β, [10], which denotes the probability that prefix PA is a prefix of PB, where PA 
and PB are randomly selected from the rule table. β is an important parameter for the 
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second rule type for controlling rule overlapping probability, and overlapping probability 
increases with increasing β. In [10], the authors calculated the value of β and acquired 
results about 10-5 for several real-life routing tables obtained from the Mae-West routing 
database. This study considers four different values of β (10-2, 10-3, 10-4, and 10-5). 

Table 1 presents the statistical results of the first and second approaches, respec-
tively. The maximum and average values of maximum overlap of 1,000 statistics are 
calculated. For real-life Mae-West routing tables, the ratio of maximum overlap to rule 
numbers shown in Table 1 is low (below 0.006). For rule tables created by the second 
approach, as expected, maximum overlap increases with β. Table 1 also shows that even 
with large β (= 10-2), the ratio of maximum overlap to rule numbers remains low (below 
0.044). The statistics confirm that considerable storage in the bitmap intersection is saved 
through bit compression. Note that the maximum overlap for the Mae-West routing table 
lies between the statistical results of the second approach with β = 10-4 and β = 10-5. 
 

Table 1. Maximum and average values of “maximum overlap” for different β and real- 
life Mae-West routing table. 

β = 10-2 β = 10-3 β = 10-4 β = 10-5 
Real-life 

Mae-West  
routing table 

Number of 
Rules 

Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. 
0.5 K 22 15.308 7 4.827 4 2.544 3 2.014 3 2.111 
1 K 36 25.879 10 6.777 6 3.205 4 2.119 4 2.561 
5 K 114 98.39 26 18.183 9 5.844 5 3.158 7 4.734 
10 K 253 189.08 43 29.487 11 8.178 6 3.742 9 6.58 

 
3.4 Region Segmentation 

 
This section describes the “region segmentation” algorithm. As mentioned previ-

ously, the region segmentation algorithm is used to segment the range of each dimension 
into CRs and then to group rules overlapping with each CR. Moreover, as in the bit com-
pression algorithm, each CR is associated with an index list that contains the same num-
ber of entries (the maximum overlap). So, if more CRs are constructed, more storage 
space is needed to store the index list. Minimizing the number of CRs can help the bit 
compression algorithm save further space. Consequently, the objective of the region 
segmentation algorithm is to segment the range of dimension into the minimum number 
of CRs such that the number of rules overlapping within each CR is smaller than or equal 
to the maximum overlap. 

The region segmentation algorithm transforms this problem into a graph model ac-
cording to rule dependency. The definition of rule dependency is as follows. 

 
Definition 2  Projecting all rule regions to one dimension, rules Ri and Rj are considered 
dependent if they overlap; otherwise, they are considered independent. 
 

Accordingly, the region segmentation algorithm constructs an undirected graph G(V, 
E) first, where V = {v1, v2, …, vN}, each vertex vi corresponds to a rule Ri, and an edge is 
constructed between vi and vj if rules i and j are dependent. Graph G would include sev-
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eral connected components, where each connected component represents a group of mu-
tually dependent rules that form a separated CR. The corresponding rules of a connected 
component form a rule set. If the vertex numbers of a connected component (rule num-
bers of rule set) are less than or equal to the maximum overlap, the connected component 
(rule set) is desired. Otherwise, the maximum degree vertex (which means neglect the 
rule overlapped with the maximum number of rules) and the related edges are removed, 
and the search for the desired connected components continues. In fact, the rule set cor-
responding to a connected component should consider the removed vertices originally 
connected with the connected component. The process is repeated until the vertex num-
bers of each connected component are less than or equal to the maximum overlap. 
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Fig. 5. (a) Graph model of the rule table in Fig. 1, and (b) and (c) illustration of the steps of “region 

segmentation” algorithm. 

 
For example, Fig. 5 (a) presents a graph model constructed using the rule table of 

Fig. 1, in which the maximum overlap equals 5. First, two connected components, C1 and 
C2, are found, as shown in Fig. 5 (b). The corresponding rule set of C2 is {R9, R10}, where 
the number of rules is 2, less than the maximum overlap, and thus the rule set is desired. 
On the other hand, the rule set corresponding to connected component C1 has eight ver-
tices, so the maximum degree vertex of C1, vertex v1, and the related edges are removed. 
Subsequently, two new connected components, C11 and C12, are obtained, as shown in 
Fig. 5 (c). The corresponding rule set of C11 and C12 should take R1 into consideration. 
Therefore, the rule set of C11 should be {R1, R3, R4} and the rule set of C12 should be {R1, 
R2, R5, R6, R7, R8}. {R1, R3, R4} is a desired rule set, while the maximum degree vertex, v2, 
is neglected for C12 and the process continues. Finally, four desired rule sets {R1, R3, R4}, 
{R1, R2, R5, R6, R8}, {R1, R2, R6, R7}, and {R9, R10} are obtained. 

The region segmentation algorithm achieves the objective of minimizing the num-
ber of CRs by merging the rule sets. Two rule sets can be merged together if the rule 
numbers of the merged rule sets are smaller than or equal to the maximum overlap. The 
merged CRs then share the same index list. After merging the rule sets, the required 
number of index lists can be reduced so as to save the space of the index table. For ex-
ample, Fig. 6 merges the rule sets {R1, R3, R4} and {R9, R10}, so CR1 and CR4 can be con-
sidered as the same CR, which uses only an index list [1, 3, 4, 9, 10]. The CBVs in re-
gions 1 and 4 then employ ITLA “00” to access the same index list. Compared with Fig. 
4, merging rule sets helps the index table in Fig. 6 save 25% in storage space. 
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Fig. 6. An example of the bit compression algorithm after merging rule sets. 
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Fig. 7. Performance comparison of the number of CRs between low bound and region segmenta-
tion with merging 

 
To observe the performance of the region segmentation algorithm with merging rule 

sets, we compare the number of CRs constructed by merging rule sets with the low 
bound. The low bound for the number of CRs is determined by the number of rules and 
maximum overlap, since the maximum number of rules in each CR equals the maximum 
overlap. Therefore, the low bound of the number of CRs for N-rules rule table is N/MOPj. 
Fig. 7 presents the statistical results under three different β (10-3, 10-4, and 10-5). The 
number of CRs constructed by region segmentation with merging rule sets is very close 
to the low bound. 
 
3.5 Fast Boolean Expansion (FBE) 
 

One can see that more memory access for bit compression algorithm, compared to 
bitmap intersection, is needed when processing an arriving packet with wildcard rules. 
For each dimension, our scheme needs not only to access the CBV and the index list, but 
also to access extra wildcard rules knowledge, DCV, whose size is identical with the bit 
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vector of the bitmap intersection algorithm. In this section, we introduce an improving 
scheme modified from the original bit compression scheme described in the previous 
section. The intent is to minimize the amount of memory access by accessing the appro-
priate parts of the DCV instead of accessing the complete DCV. 

In the bit compression algorithm, the DCV is used to keep track of every wildcard. 
If rules are not considered to have wildcards, the lookup performance of bit compression 
outperforms the bitmap intersection scheme as shown later in simulation. However, from 
[4], we know that approximately half of the rules are wildcards in the destination and 
source address fields. The question now arises: How to reduce the performance degrada-
tion caused by accessing DCV? 

To gain some insight, the two-dimension rule table is considered. We translate the 
steps of the classification scheme into a Boolean expression: 

 
(CBVs + DCVs) ⋅ (CBVd + DCVd)                                       (1) 
 

where CBVs + DCVs and CBVd + DCVd are from steps 1 through 3 of the bit compression 
algorithm in section 3.2 for source dimension and destination dimension, respectively. 
The notation “ ⋅ ” means the conjunction of the final vector associated with each dimen-
sion, i.e., step 4. In Eq. (1), several interesting observations come to attention. First, full- 
length DCVj is always accessed whatever the length of CBVj. Second, we consider the 
relation between set bits in CBVi and their corresponding bit in DCVj, as well as if any 
matching existed between CBVi and CBVj, where i ≠ j. it is futile to conjoin two complete 
vectors if the probability that the ith bit is set in both vectors is low. This inspires us: if, 
early in the process, we can combine CBVs and essential parts of DCVs appropriately to 
obtain the integrated matchings, then the only thing what we should do is select the high-
est priority matching from those integrated matchings. Therefore, based on this idea, we 
expand the original Boolean expression to a new form: 
 

(CBVs ⋅ CBVd) + (CBVs ⋅ DCVd) + (DCVs ⋅ CBVd) + (DCVs ⋅ DCVd)           (2) 
 
In Eq. (2), a matching rule for a packet is obtained by comparing the priority of the 

four rules generated from the four clauses of Eq. (2). Processing (CBVs ⋅ CBVd) takes few 
memory accesses since CBVs and CBVd are compressed bit vectors. To reduce the num-
ber of memory accesses, while conjoining (CBVs ⋅ DCVd) and (DCVs ⋅ CBVd), we only 
extract the essential bits from DCV that are corresponding to the set bits of CBV instead 
of reading the complete DCV. Moreover, there is no need to process (DCVs ⋅ DCVd) 
since we know the conjunction of DCVs and DCVd is the default rule. Based on this 
modification, the bit compression algorithm can obtain much better classification speed 
as shown in simulation even under a large number of wildcard rules.  

4. PERFORMANCE RESULTS 

For a d-dimensional rule table with N rules, the query time of the proposed bit com-
pression scheme comprises the time required for interval lookup, TIL, and the time to ac-
cess ITLAs, CBVs, index lists, and DCVs. The time complexity is θ(d ⋅ (TIL + (log r + n 
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+ n ⋅ log N + N)/W)), where r denotes the number of index lists, n represents the value of 
maximum overlap, W is the memory bandwidth, and the time complexity of bitmap in-
tersection algorithm is θ(d ⋅ (TRL + N/W)). 

The space requirement of the bit compression algorithm consists of four parts – 
ITLAs, CBVs, index tables, and DCVs. This study neglects the space complexity of the 
DCV because it has a much smaller size than the other three parts. On average, the mem-
ory space complexity is θ(d ⋅ N ⋅ (log r + n + log N)). The storage complexity is reduced 
from O(dN2) of the bitmap intersection algorithm to θ(dN ⋅ log N). 

In the worst case, for N rules, a maximum of 2N + 1 non-overlapping intervals are 
created on each dimension. Each interval is associated with an N-bit bit vector; therefore, 
the storage consumption is θ(N2). For the bit compression algorithm, the storage con-
sumption is calculated as: for each dimension, the ITLA has a log |CR|-bit index for each 
interval, i.e., (2N + 1) ⋅ log |CR|. The CBV has a MOP-bit vector for each interval. In the 
worst case, MOP is N, so it consumes N · (2N + 1) bits. The index table consumes |CR| · 
MOP · log N = |CR| ⋅ N ⋅ log N bits. The DCV consumes N bits. Therefore, the total space 
consumption is θ(d((2N + 1) ⋅ log |CR| + N ⋅ (2N + 1) + |CR| ⋅ N ⋅ log N + N)). If we take 
|CR| as a constant, this is equivalent to O(dN2). Even though the theoretical space con-
sumption is not improved, the actual memory requirement can be reduced, as Figs. 8, 9, 
and 10 shown. 

We implement the bitmap intersection and bit compression algorithms with Micro-
engine C. Experiments are conducted on the Intel IXP 1200/2400 (Internet Exchange 
Processor) Developer WorkBench [13]. IXP 1200/2400 are the network processors, 
which consist of a core processor, StrongARM, and 6/8 microengines [12]. Memory hi-
erarchies in IXP 1200/2400 consist of multiple memories. We focus on three primary 
storage devices (Scratchpad memory, SRAM, and SDRAM). We use six microengines to 
receive, classify, and route packets and use the remaining two microengines for packet 
transmission. The StrongARM core handles routing table management and exceptions. 
Three types of memory storage are used in IXP 2400: a SRAM configuration of 64MB, a 
SDRAM of 128MB, and a scratchpad memory of 16kB. IXP 1200 has less memory. Its 
three memory sizes are 8MB, 64MB, and 4KB respectively. In bitmap intersection, 
SRAM or SDRAM is used to store the bit vectors according to space requirements. 
Moreover, the relative memory access time and the bus bandwidth of the IXP 2400 
memory is Scratchpad: 10 with a 32-bit bus; SRAM: 14 with a 32-bit bus; and SDRAM: 
20 with a 64-bit bus [14]. In the bit compression scheme, SRAM is used to store com-
pressed bit vectors, while the scratchpad is used to store index table and DCV.  

This study considers the complexity of storage requirements and classification per-
formance. We compare the proposed bit compression scheme with the bitmap intersec-
tion scheme. This study focuses on the two-dimensional rule table, IP destination address, 
and IP source address. The proposed scheme randomly generates two field rules to create 
a synthesized rule table, as previous experiments consider the prefix length distribution 
and β. Recall that for the real-life routing table, the value of β is approximately 10-5 and 
maximum overlap is measured to be between β = 10-4 and 10-5. Therefore, this study lists 
the experimental performance statistics with β = 10-4 and 10-5 and even a larger β = 10-3. 

Figs. 8, 9, and 10 compare the memory requirements (based on log2) for the bitmap 
intersection and bit compression schemes. Note that since the bitmap intersection and bit 
compression algorithms use the same size of memory storage to store interval boundaries,  



FAST PACKET CLASSIFICATION USING BIT COMPRESSION WITH FAST BOOLEAN EXPANSION 

 

75 

 

0

2

4

6

8

10

12

14

16

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

number of rules

m
em

or
y 

st
or

ag
e 

(K
B

s)
(b

as
ed

 o
n 

lo
g2

)

bit-compression (theoretical) bitmap intersection (theoretical)
bit-compression (on IXP1200) bitmap intersection (on IXP1200)  

Fig. 8. Memory requirements under β = 10-3. 
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Fig. 9. Memory requirements under β = 10-4. 
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Fig. 10. Memory requirements under β = 10-5. 
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we omit the memory storage of the interval boundary in memory requirements. The ex-
perimental results demonstrate that the proposed scheme performs better than the bitmap 
intersection algorithm. Under β = 10-5, with the rule table size of 5k, we need only 164 
KBytes for the bit compression algorithm compared to 12.5 MBytes required by the bit-
map intersection algorithm. With the rule table size of 10K, 374 Kbytes are needed for 
the bit compression algorithm compared to 48 MBytes required by the bitmap intersec-
tion algorithm. When the rule number doubles, the memory consumption of the bit com-
pression algorithm increases (374/164) = 2.28 times, which approximates (10K/5K) · 
(log10K/log5K) = 2 ⋅ log5K 10K = 2 ⋅ log5K 5K ⋅ 2 = 2 ⋅ (log5K 5K + log5K 2) = 2 ⋅ (1 + 
log5K 2) ≅ 2. The difference is caused by storing the index table and related information. 
The memory consumption of the bitmap intersection algorithm increases (48/12.5) = 3.84 
times, which approximates N2 = 4. The simulation result shows the bit compression algo-
rithm significantly decreases memory consumption while the rule number increases in 
the proportion we expect. The memory storage requirement for the bitmap intersection 
algorithm scales quadratically each time the number of rules doubles, while the memory 
storage requirement for the bit compression algorithm scales twice as the number of rules 
doubles. The bit compression algorithm prevents memory explosion with large rule ta-
bles. The difference between theoretical measurement and implementation on the IXP 
1200 is that the lengths of the CBV, index list, and DCV are multiples of 32 bits, wasting 
a certain amount of space. The memory storage with implementation on the IXP1200 is 
higher than the theoretical storage requirements. 
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Fig. 11. Improvement of memory storage by merging rule sets under β = 10-5. 

 
As noted previously, the space of the index table can be further reduced by merging 

the rule sets. Fig. 11 displays the total memory space consumed by the rule table of the 
bit compression scheme with and without merging. The required space is reduced around 
25%-40% after merging the rule sets. 

In the bitmap intersection scheme, the rule table is expected to store in SRAM. But 
the memory storage increases rapidly such that the required storage exceeds the size of 
SRAM (8MB) in IXP 1200. For example, under β = 10-5, the required storage space for 
the rule table with rules more than 4K exceeds 8MB. Thus the rule table of more than 4K 
rules must be stored in SDRAM. In the bit compression scheme, the memory explosion 
is prevented. For a two-dimensional rule table with 10K rules, the bit compression 
scheme stores the bit vector and index table using SRAM. 
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Fig. 12. Transmission rate vs. number of rules without wildcards. 

 
As mentioned above, the bit compression algorithm needs less memory access than 

the bitmap intersection algorithm. Compared with bitmap intersection, the bit compres-
sion algorithm requires decompressing the CBV to full bit vector. Extra processing time 
for decompression is required, which will degrade the classification performance of the 
bit compression algorithm. However, the time for decompression is actually much less 
than the memory access time. The memory access time dominates the classification per-
formance. Therefore, even the bit compression scheme requires extra processing time for 
decompression. The bit compression algorithm can still outperform the bitmap intersec-
tion algorithm, as Fig. 12 illustrates. Fig. 12 presents the packet transmission rates for the 
bitmap intersection, aggregated bit vector, and bit compression schemes with different 
sizes (from 1K to 10K) of rule tables without wildcards under β = 10-5 on the IXP 2400. 
The minimum size packets (46 Bytes) were created as arriving data. The number of 
memory access for reading a CBV and index list is less than used for reading a full bit 
vector, although extra processing time for decompression is required for the bit compres-
sion scheme. The bit compression scheme outperforms the bitmap intersection scheme. 
Moreover, since the lengths of CBVs and index lists remain an almost fixed value (ac-
cording to maximum overlap), the transmission rate of the bit compression scheme re-
mains constant. In contrast, the transmission rate of the bitmap intersection decreases 
linearly with the number of rules. 

Figs. 13 (a) and (b) demonstrate the performance of the bitmap intersection algo-
rithm, aggregated bit vector algorithm, and proposed bit compression algorithm with and 
without Fast Boolean Expansion under different amounts of rules (from 1K to 10K) with 
20% and 50% percent of wildcards. When rules are not considered to have wildcards, the 
results shown in Fig. 12 demonstrate that the proposed bit compression algorithm out-
performs the bitmap intersection algorithm and is better than the aggregated bit vector. 
As previously mentioned, DCV is used to reserve the wildcard information if the rule 
database is considered to have wildcards. Therefore, in practice, we can even omit the 
DCV and the need to access it if the rule database does not contain wildcards such as in 
Fig. 12.  

However, the result is contrary if the rule database is considered to have wildcards. 
Figs. 13 (a) and (b), with 20% and 50% wildcards, respectively, indicate the performance  
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Fig. 13. (a) Rule table contains 20% wildcard. 
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Fig. 13. (b) Rule table contains 50% wildcard. 

Fig. 13. Transmission rate of bitmap intersection, bit compression, bit compression with FBE, and 
aggregated bit vector vs. number of rules with wildcards. 

 
comparison between the four algorithms. As Figs. 13 (a) and (b) indicate, expectably, the 
bit compression algorithm has the poorest behavior compared to the bitmap intersection 
algorithm and aggregated bit vector algorithm. The reason for this is that if the rule tables 
contain wildcard rules, most of the memory access cost of the bit compression scheme is 
expended to access the DCVs which are the same size as the bit vectors in the original 
bitmap intersection algorithm. Therefore, plus the CBVs and index table, the number of 
memory accesses of the bit compression algorithm are more than the bitmap intersection 
algorithm for the same size of rule tables with wildcards. Even we take advantage of 
memory hierarchy to store the DCVs in the smallest (16 KB) but fastest scratchpad mem-
ory rather than the SDRAM. However, in IXP 2400 the bus width of DRAM (64 bits) is 
twice as the bus width of scratchpad memory (32 bits). The memory access performance 
of the bit compression algorithm is worst than bitmap intersection if the accesses of 
DCVs are required. To improve the performance, we employ the concept of Fast Boolean 
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Expansion, which is proposed in the previous section. The results are also presented in 
Figs. 13 (a) and (b). 

As Figs. 13 (a) and (b) indicate, the bit compression algorithm with Fast Boolean 
Expansion has the best classification performance. It also outperforms the aggregated bit 
vector algorithm. Because in ABV, to lower the probability of false matching, a new 
sorting scheme has been presented to concentrate the set bits in the bit vectors produced 
by the rules. However, the experiments indicate that reordering the 1st dimension de-
creased the concentration of the bits in the 2nd dimension. Hence, ABV’s performance 
fell in respect to the rule table with a large percentage of wildcards, because a large per-
centage of wildcards raises the chance of false matching. This figure proves that the pro-
posed Fast Boolean Expansion indeed decreases the amount of memory access and in-
creases the classification speed. For 10K rules with 50% wildcard as an example, the bit 
compression algorithm with FBE takes at most 38 memory accesses, since as mentioned 
in the previous section, there are at most nine rule overlaps in each bit vector. But the 
bitmap intersection algorithm takes 626 memory accesses and the aggregated bit vector 
algorithm only needs 40 memory accesses. Although the aggregated bit vector algorithm 
has the similar memory accesses as the proposed bit compression algorithm, the storage 
requirements for the aggregated bit vector algorithm is much greater than that for the 
proposed bit compression algorithm.  

5. CONCLUSION 

Packet classification is an essential function of Internet security, virtual private net-
works, QoS, and various network services. Numerous investigations have addressed the 
problem of efficient packet classification. This paper attempts to improve the original 
bitmap intersection algorithm, which has a memory explosion problem for large rule ta-
bles. This study introduces the notion of bit compression to significantly decrease the 
storage requirement, creating what we call the CBV. Bit compression is based on the fact 
that “1”bits are sparse enabling redundant “0” bits to be removed. By region segmenta-
tion, the bit compression algorithm segments the range of dimension into CRs and then 
associates each CR with an index list. Merging rule sets reduces the number of CRs fur-
ther. For rule tables with wildcard rules, the bit compression proposes a novel idea, 
“Don’t Care Vector” to save plenty of storage space. The experiments for measuring 
maximum overlap led us to believe that plenty of redundant “0” bits exist, such that re-
moving “0” bits can significantly improve memory storage.  

Compared to the bitmap intersection algorithm, the storage complexity is reduced 
from O(dN2) for the bitmap intersection algorithm to θ(dN · log N). In our experiment, 
the bit compression scheme needs less than 380 Kbytes to store the two-dimensional rule 
table with 10K rules, while the bitmap intersection algorithm needs 48 MBytes. When 
comparing memory access speed, our algorithm accesses, on average, 96% fewer bits 
than the bitmap intersection algorithm under the rule tables without wildcards. For the 
rule tables with wildcards, by exploiting Fast Boolean Expansion, the bit compression 
scheme requires much less memory access time than the bitmap intersection algorithm, 
even though extra processing time for decompression is required for bit compression. 
Since memory access dominates the classification performance. From the experiments, 
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our bit compression scheme with Fast Boolean Expansion outperforms the bitmap inter-
section and aggregated bit vector schemes on packet classification speed. 
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