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Abstract Wireless data broadcast is an effective approach
to disseminate information to a massive number of users.
Indexing techniques for broadcasting data can reduce the
battery power consumptions of mobile terminals by
decreasing the tuning time. The organization of the indexes
affects the efficiency of data searching. We investigate how
the degree of the index node affects the tuning time, and
thus minimize the power consumption of user’s terminals.
We proposed a performance measurement for the tuning
time and a cyclic indexing algorithm. The numerical results
suggest the degree of an index node be 3 when the access
probabilities of the data tend to be uniformly distributed so
that the expected tuning time is minimal. When the access
distribution of the data nodes is skewer, the tuning time can
be minimized by setting the degree in the index node 2.

Keywords Broadcast .Wireless . Tuning time . Tuning cost .

Access time . The Hu–Tucker algorithm

1 Introduction

Wireless data broadcast is an efficient technology to
overcome the limited bandwidth in the ubiquitous comput-
ing. Wireless data broadcast over radio channels allows
users to access data simultaneously at a cost independent of
the number of users. It is a powerful way to disseminate
data to a massive number of users in the ubiquitous
computing. A centralized server periodically broadcasts
the data to a large number of mobile terminals through a
wireless medium. The mobile terminals receive the broad-
casts and filter out the data that is not desired [2]. This
service is especially useful for disseminating data that are
commonly accessed, such as traffic information for navigation
system and real-time stock information. The location-
dependent web service can also utilize wireless data broad-
cast. One disadvantage of the wireless data broadcast is that
the mobile terminals can only wait for the requested data.

Power-efficient wireless communication is another impor-
tant issue for the wireless data broadcast. A simple way to
reduce the power consumption is to add auxiliary information
to enable the mobile terminals to receive only the data the
user needs. A mobile terminal can be three power modes:
transmission mode, receiving mode, and doze mode.

There are two basic approaches for users to access data
through radio channels [8]. One is push-based scheme,
where the clients retrieve data by only listening to a certain
channel in the receiving mode. The clients cannot inform
the broadcast server about what they need due to the lack of
uplink communication channels from the users to the
server. The other approach is pull-based scheme where the
clients send requests to retrieve data. There is an uplink
channel through which a client can send requests for
specific data items to the broadcast server. The broadcast
server may arrange the broadcast sequence according to the
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request received. In the power management view, the client
saves power by avoiding transmissions and waking up from
the doze mode only when necessary. The push-based scheme
is a better strategy to overcome the limited battery power.

To evaluate the efficiency of the wireless broadcasting,
two criteria are often used: access time and tuning time [1].
The access time is the average time from the moment a
client requests data identified by a primary key to the point
when the requested data are received by the client. The
access time determines the response time of data access. The
tuning time is the time spent by a client listening to the
channel. The tuning time determines the power consumed
by the client to retrieve the requested data. Indexing
techniques insert auxiliary information indicating when each
data item will be broadcasted to reduce the tuning time [1, 2,
4, 5, 16]. After receiving the index, a client waits for the
requested data most of time in the doze mode in which low
power is consumed and only wakes up to receive data when
the requested data is coming. Therefore, the tuning time can
be reduced and the battery power is conserved.

2 The Relative Works

A broadcast server broadcasts the data to the clients by radio
channels. The clients receive the broadcast data and the
requested data are filtered. To consume less power of the
clients, the broadcast server inserts indexes before the
broadcast data to indicate the offsets to the requested data.
The clients receive the indexes and go to doze mode. When
the requested data are broadcasted, the client wakes up to the
receiving mode and receives the requested data. Moreover,
to provide efficient search of the indexes, an alphabetic
Huffman tree is used for the indexing tree. The clients using
this scheme should tune to the beginning of the indexes to
get the offset to the requested data. The waiting time
between the start of tuning and the beginning of the indexes
is half of a broadcast cycle in average. This is referred to the
distributed indexing scheme [1].

To reduce the access time of the distributed indexing
scheme, the broadcast bandwidth is spilt into several
physical channels or logical channels [9]. The use of
multi-channeling and indexing scheme provides a way to
retrieve efficient data [14, 15]. All data are assigned into a
data channel. The indexes of the same level are proposed to
occupy on the same channel. Figure 1 shows the indexing
tree and the channel assignment of the broadcast data. For
example, to retrieve data D4 in data channel C4, one should
receive index I in channel C1, I2 in channel C2, and I3 in
channel C3 to obtain the time offset to D4.

The distributed indexing scheme assumed the access
probabilities of the data items are the same. Shivakumar
and Venkatasubramanian released the assumption [9]. Let n

be the number of data items. Every data item has the
popularity probability to indicate the expected number of
access to the data items. We assume the popularity
probabilities of the data items be f1, f2,…, fn. If the tuning
time for the data item i is Ti, the average tuning time is

Xn

i¼1
fi � Ti

� �. Xn

i¼1
fi

� �

The tuning time Ti is dependent on the depth of the
data item in the indexing tree. The problem to construct an
indexing tree to minimize the average tuning time is
similar to the Huffman coding, but the alphabetic ordering
of the data items is preserved. Hu and Tucker proposed an
algorithm to optimize the alphabetic-ordered Huffman
code [11, 12]. Shivakumar and Venkatasubramanian
suggested a k-ary Hu–Tucker algorithm to minimize the
average tuning time, but didn’t describe the algorithm
clearly [9].

An open problem is remained unsolved in the k-ary Hu–
Tucker algorithm. For some n, it is impossible to construct
a tree that the branches of all internal nodes are filled with k
nodes. The k-ary Hu–Tucker algorithm constructs the
internal nodes with 2 to k branches, but doesn’t specify
exact rules to construct the internal nodes. A strategy to
determine the branches of the internal nodes of an indexing
tree to obtain the minimal average tuning time is needed for
the k-ary Hu–Tucker algorithm.

The tuning time is determined only by the depth of the
indexing tree. If we increase the branches of the index, the
tuning time is reduced. However, increasing the branches
should increase the capacity of the index. For the wireless
broadcasting, the indexes can be broadcasted on the index
channels. The size of the index represents the bandwidth
requirement of the radio channel. In wireless communica-
tions, a radio channel is partitioned into slots of constant
size. The 3rd generation personal communication service
provides the function to assign the fixed bandwidth of the
channel to a dedicated service [8]. Therefore, the size of the
indexes should be the same to fit in a time slot. The tuning
time should count the number of indexes received and the
size of the index. Assume the depth of the data node i is di,
and the degree of the index is k. β represents the length of
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Figure 1 The indexing tree and the channel assignment of the
broadcast data.
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the key and the offset. The average tuning time can be
expressed as:

T ¼ kb
Pn

i¼1 di � 1ð ÞfiPn
i¼1 fi

¼ kb
Xn

i¼1
di � 1ð Þfi ð1Þ

3 The Cyclic Incomplete-Index First Alphabetic
Huffman Algorithms

Tominimize the average tuning time, an algorithm is proposed
to construct the k-ary alphabetic Huffman tree. For n data
nodes, it may not be possible to construct an index tree where
all indexes have exact k downward branches. That is, empty
branches are remained in some indexes. We call this category
of indexes as the incomplete indexes. In our proposed
algorithm, we gather those empty links in one index of the
index tree, i.e., there is only an incomplete index in the tree.
Under this assumption, the number of the non-empty links of
the incomplete index can be determined from the number of
data nodes, n, and the degree, k. Let a % b represent the
remainder of a/b, and k1 be the number of the non-empty
links of the incomplete index. k1 can be expressed as

k1 ¼
bþ k � 1ð Þ; for n% k � 1ð Þ ¼ b and b ¼ 0or1

b; for n% k � 1ð Þ ¼ b and b 6¼ 0; 1:

(

ð2Þ

Using the techniques of the binary Hu–Tucker tree,
we construct the k-ary index tree by merging k nodes with
the least access probability into an index node of the index
tree. The access probability of the index is the sum of the
access probabilities of its k children. The number of the
non-empty links of the incomplete index is calculated first.
It is due to that we reduce the average tuning time by
merging nodes with less access probability into an index
in the lower level of the tree. This algorithm will be
referred to as the k-ary Incomplete-index First Alphabetic
Huffman Algorithm (IFAH). The algorithm is shown in
the following.

Step 1. Let S=(N1, N2, …, Nn), the ordered list consists of
all data nodes sorted by the search key in the
increasing order. Ni=Di.

Step 2. Calculate the number of the non-empty links k1 of
the incomplete index using Eq. 2.

Step 3. Construct the incomplete index node.

& Find k1 consecutive nodes in S whose sum of
access probabilities is minimum.

& Replace the k1 consecutive nodes with an index
node in S. The access probability of the index node
equals to the sum of the access probabilities of the
replaced nodes.

Step 4. If |S|=1, then go to Step 7.
Step 5. Construct the k-degree index nodes.

& Find the k “consecutive” nodes, but index nodes
can be bypassed, in S that have the minimum sum
of access probabilities.

& Replace the k “consecutive” nodes with a new
index node in S.

Step 6. If |S|=1, then go to Step 7.

Else go to Step 5.

Step 7. Determine the level of each data node in the index
tree.

Step 8. Reconstruct the index tree according to the levels
of the data nodes.

& Initialize the ordered list S as in Step 1.
& Find k1 consecutive data nodes whose levels are the

same. The levels of k1 consecutive data nodes must
be the maximum among the remaining nodes.

& Combine the k1 consecutive nodes to an index
node. Replace the k1 consecutive nodes with the
index node in S.

& Find k consecutive nodes whose levels are the same
and the maximum among the remaining nodes, and
combine the k consecutive nodes at the highest
level first. Then, the nodes on the next-to-highest
level are combined.

& The process continues until there is only one node
left and its level must be 0.

Figure 2 shows an example index tree obtained by the
IFAH. The boxes represent the data nodes and the numbers
in the boxes represent the access probabilities of the data
nodes. The circles represent the index nodes and the numbers
in the circles represent the combined access probabilities of
the linked nodes. i is the key for the data node Di. The
degree k of the example in Fig. 2 is 3. The number of the
data nodes is 8. Therefore, the number of the non-empty
links k1 is 2. We do Step 2 of IFAH to find two consecutive
nodes whose sum of access probabilities is minimum. Then,
IFAH constructs index node I1 first, because D2 and D3 have
the minimum sum of access probabilities. Then, go to Step 5
of IFAH. In constructing index node I2, index node I1 is
bypassed, because D1, D4, and D5 are the 3 “consecutive”
nodes that have the minimum sum of access probabilities.
The index nodes construction process continues until only
one node is left in S. We assign level 0 to the root. According
to the links of the indexes, we assign the level values to all
index nodes and data nodes. Then, the index tree is
reconstructed from the highest level of the data nodes.

The format of an index is as follows,

Key 1 Offset 1 Key 2 Offset 2 Key 3 Offset 3
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Key i is the boundary key value for searching requested
data. If the key of the requested data is larger or equal to
Key i and less than Key (i+1), Offset i is the offset for the
index or data slot of the lower level in the index tree.

Note that the index tree in Fig. 3 places D1 in its left-
most leaf, i.e., the index tree starts from D1, the first data
node. However, the order of the broadcast data can be
considered as the order of a cyclic link list. That is, the k-
ary alphabetic tree does not necessarily start from D1; it
can starts from any data node. Figure 3 shows the index
trees starting from different data nodes. The numbers on
the links under the index nodes are the boundary key
values of the index nodes. Figure 3a is an example of k-
ary alphabetic tree starting from D1. Figure 3b shows an

example of k-ary alphabetic tree starting from D2; the data
node before the D2 is rotated to the end of the ordered list.
In the example of Fig. 3b, we show how to retrieve data
node D1. The boundary key values of the root index are 2,
5, and 6. The key of D1 is less than 2. Therefore, we chose
the offset of boundary key value 6 to obtain the index of
the next level. The index of the next level shows the offset
of the requested data node D1. This shows that a k-ary
alphabetic tree can start from any data nodes. That is, the
alphabetic order of the data nodes in the index tree can be
treated as a cycle. We use Eq. 1 to calculate the average
tuning time. Consider the example of Fig. 3a, the degree
of the index k is 3. The length of the key and the offset β
is 1. Therefore, the average tuning time is:

T ¼ kb
Xn

i¼1
di � 1ð Þfi ¼ 3� 1� 1

127
� 2þ 32

127
� 2þ 4

127
� 2þ 8

127
� 2þ 64

127
� 2þ 2

127
� 2þ 16

127
� 1

� �

� 5:62

Finally, we know that the average tuning times are 5.62
in Fig. 3a and 4.49 in Fig. 3b, respectively. We apply the
rotatability to improve the IFAH. The new algorithm will be
referred to as the k-ary Cyclic Incomplete-index First

Alphabetic Huffman Algorithm (CIFAH). The CIFAH
modifies Step 3 and 5 of the IFAH. In CIFAH, we treat
the ordered list as a cycle and find the minimum sum of
access probabilities.
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Figure 2 An example of the
IFAH.
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4 The Numerical Analysis

To simplify the analysis of the tuning cost of the proposed
alphabetic Huffman algorithms, we made the following
assumptions:

& There is no fault in the broadcasting or reception.
& The initial probe is uniformly distributed in the

broadcast cycle.

First, consider a special case where the access probabil-
ities of the data nodes are identical, and the optimal index
tree is a full k-ary tree that has no incomplete index. Let k
be the degree in each index, and d be the depth of the index
tree. The number of data nodes is n ¼ kd�1. We use ln
function for the both sides of the equation of the number of
data nodes: lnn=(d−1)lnk. Therefore, d � 1 ¼ ln n

ln k . The
average tuning time is T ¼ k d � 1ð Þ ¼ k ln n

ln k ¼ k ln n
ln k . If k

could be any real number, the average tuning time can be
minimized when d T

d k ¼ 0.

dT

dk
¼ d k ln n

ln k

� �
dk

¼ 0 ) k ¼ e ¼ 2:71828 . . .

Since k is a natural number, the result suggests that the
average tuning time may be minimized when the degree of
the index is 3.

Release the limitation of the full k-ary tree, we assume the
probability distributions of all data nodes are uniformly
distributed. That is, f1 ¼ f2 ¼ f3 ¼ � � � ¼ fn ¼ 1=n and
d ¼ logk nd e. The index tree is a full k-ary tree when n=kd.
For kd � k þ 2 � n < kd, all leaves are at the same level
(level d). The average tuning time is T ¼ k d � 1ð Þ. For
kd � 2k þ 3 � n � kd � k þ 1, there are one leaf at level
(d−1) and (n−1) leaves at level d. The average tuning time is
T ¼ k n d � 1ð Þ � 1ð Þ=n. For kd � 3k þ 4 � n � kd � 2kþ
2, there are two leaves at level (d−1) and (n−2) leaves at
level d. The average tuning time is T ¼ k n d � 1ð Þ � 2ð Þ n= .
F o r kd � kd�1k þ kd�1 þ 1

� � � n � kd � kd�1 � 1
� �

kþ
kd�1 � 1
� �

, there are k−1 leaves at level (d−1) and
(n−k+1) leaves at level d. The average tuning time is

T ¼ k n d � 1ð Þ � kd�1 � 1
� �� ��

n. Therefore, if kd � iþð
1Þk þ iþ 2ð Þ � n � kd � ik þ i, we have

T ¼ k n d � 1ð Þ � ið Þ n;
�

for i ¼ 0; 1; . . . ; kd�1 � 1:

The average tuning time can be expressed as

T ¼
k n d � 1ð Þ � kd�n

k�1

j k� �
n

;where d ¼ logk nd e ð3Þ

Figure 4 shows the tuning time as functions of the
number of data nodes and the degree of the index node.
The access probabilities of the data nodes are all equal.
The number of the data nodes varies from 2 to 1,000. The
five curves, in the figure, represent the average tuning
time for the cases where the degrees are 2, 3, 4, 5, and 6,
respectively. The average tuning time increases as the
number of data nodes increases due to the increasing
height of the index tree. The tuning time increases as the
degree of the index is larger than 3. Therefore, when the
access probabilities are uniformly distributed, the index
nodes of degree 3 tend to minimize the average tuning
time.

Consider the case where the access probabilities are
non-uniformly distributed. We assume the distribution of
the access probabilities is Zipfian [9, 13, 17]. For n data
nodes, the access probability of a data node Di is as
follows,

fi ¼ 1

ir �Pn
i¼1 1=i

r
;where r is the rank of the distribution:

Note that, the larger the rank r is, the skewer the
probability distribution is. In addition, fi decreases as i
increases. In this section, we use the rank r to set the access
probabilities of data nodes. Then, reorder the sequence of
the data nodes using a random number generator. The
number of possible sequence orders is n!. Therefore, it is
impossible to evaluate all possible sequence orders for a
large number of data nodes. To simplify the computation,
the sequence order is randomly generated. In our experi-
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ments, we generate 10,000 random sequences for each
Zipfian distribution, and then generate the index tree for
each random sequence order, and calculate the average
tuning time.

Figure 5 shows the results of the average tuning time for
different ranks of Zipfian distribution. For a small rank (e.
g., r=0.2) and a large number of data nodes, the minimum
average tuning time can be obtained when the degree is 3.

The results are consistent with that of the uniform
distribution. It is because that a smaller rank for Zipfian
distribution results in the less skew probabilities distribu-
tion. For a large rank (e.g., r=2) in Zipfian distribution, the
minimal average tuning time is found when the degree is 2.
This is because the large number of branches increases the
tuning time of every data node in the index tree. Consider
the index trees of a given degree. The skewer the access
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probability distribution is, the less the tuning time is. This is
because as the access distribution gets skewer, fewer data
nodes commands more access probability. The data nodes
of large access probabilities trend to be placed at the lower
levels of the index tree. As a result, the tuning time
decreases.

Figure 6 shows that the average tuning time of the
CIFAH is less than that of the IFAH. The CIFAH is an
efficient algorithm in reducing the average tuning time. It is
because we can find the minimum tuning time from the
selected nodes in the cycle sequence to build low cost
indexes in the index tree. The improvement ratio of the
CIFAH with large rank r is larger than that with small rank.
This is because there are data nodes of larger access
probabilities for the skewer access probabilities distribu-
tions. The CIFAH has the capability to find an ordered list
for the data nodes to construct an index tree that places those
frequently accessed data nodes in the lower level. Therefore,
the improvement ratio of the tuning time increases.

5 Conclusions

In this paper, we proposed indexing schemes to obtain
minimal tuning time in the wireless broadcast system. The
IFAH is an algorithm similar to the Hu–Tucker algorithm in
organizing the indexes. To reduce the tuning time, the
CIFAH can improve the IFAH by rotating the sequence of
the data nodes.

From the experiments, we have the following results for
the indexing schemes.

& If the access probabilities of the data are uniformly
distributed, the tuning time is minimal when the degree
of the index node is 3.

& For the data nodes whose access probabilities are
Zipfian distributed, the tuning time increases as the
number of the data nodes increases. It is because that
the depth of the index tree increases as the number of
the data nodes increases.

& The CIFAH can effectively reduce the tuning time when
the access probabilities are of Zipfian distribution, since
it is more likely to find consecutive nodes with less
access probability to be merged into an index node in
the rotatable data cycle.

& For the Zifian distribution, the improvement ratio of the
CIFAH increases as rank r increases, i.e., the distribu-
tion gets more distorted. It is because skewer access
probabilities let the CIFAH have more chances to find k
consecutive nodes of less tuning access probability in

the rotatable broadcast cycle to construct an index node
in the index tree.

& The tuning time increases as the degree of the index
increases, since index of large degree increases the
tuning time of every data node in the index tree.

We provide the cyclic indexing construction schemes to
reduce the average tuning time. To reduce the tuning time, the
degree of the index in the index tree is suggested to be 2 or 3.
The frequencies of the broadcasted data may not be uniform
in a broadcast cycle. In the future, we can schedule the
broadcast sequence according the access probabilities and a
new indexing scheme is required to reduce the tuning time.
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