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Similar to the Landauer electric dipole created around an impurity by the electric current, a spin
polarized cloud of electrons can be induced by the intrinsic spin Hall effect near a spin independent elastic
scatterer. It is shown that in the ballistic range around the impurity, such a cloud appears in the case of
Rashba spin-orbit interaction, even though the bulk spin Hall current is absent.
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The spin Hall effect attracts much interest because it
provides a method for manipulating electron spins by
electric gates, incorporating thus spin transport into con-
ventional semiconductor electronics. As it has been ini-
tially predicted, the electric field E induces the spin flux of
electrons or holes flowing in the direction perpendicular to
E. This spin flux can be due either to the intrinsic spin-orbit
interaction (SOI) inherent to a crystalline solid [1], or to
spin dependent scattering from impurities [2]. The intrinsic
spin Hall effect corresponding to the former situation has
been observed in p-doped 2D semiconductor quantum
wells [3], while the extrinsic effect related to the latter
scenario has been detected in n-doped 3D semiconductor
films [4].

Most of the theoretical studies on the spin Hall effect
(SHE) have been focused on calculation of the spin current
(for a review see [5]). On the other hand, since the spin
current carries the spin polarization, one would expect a
buildup of the spin density near the sample boundaries.
Such a spin accumulation near interfaces of various nature
was calculated in a number of works [6–8]. This accumu-
lated polarization is a first evidence of SHE that has been
observed experimentally in Ref. [3,4]. In fact, measuring
spin polarization is thus far the only practical way to detect
SHE.

Yet the spin accumulation near interfaces is not the only
signature of SHE. To draw an analogy with the charge
transport, one can expect that similar to Landauer charge
dipoles created by the dc electric current around impurities
[9], nonequilibrium spin dipoles must be formed subse-
quent to the spin Hall current. One may expect that the spin
cloud will appear around a spin-orbit scatterer in the case
of extrinsic SHE, as well as around a spin-independent
scatterer, in the case of the intrinsic effect. We will con-
sider the latter possibility for a 2D electron gas with
Rashba interaction. The polarization in the direction per-
pendicular to 2DEG will be calculated in the ballistic range
around an impurity represented by an isotropic spin-
independent scattering potential. Besides conventional
semiconductor quantum wells, this analysis can be applied
to metal adsorbate systems with strong Rashba type spin

splitting of surface states [10]. In this case the spin cloud
can be measured by STM with a magnetic tip.

The Landauer electric dipole has been calculated [11,12]
based on the asymptotic expansion of the electron waves
elastically scattered from an isolated impurity. Subsequent
averaging of the corresponding spatial probability
weighted by the Boltzmann distribution function of inci-
dent wave vectors produces the dipole distribution. The
spin cloud could be obtained in a similar way. Instead, we
choose a Green function method combined with the linear
response theory. Within this method, the spin density is
given by the standard Kubo formula where the scattering
potential of a target impurity, at a fixed position ri, is
included into the Green functions, up to the second pertur-
bation order. Other impurities are assumed to be randomly
distributed over a 2D plane, so that the calculated spin
density is averaged over their positions.

We assume that a uniform external electric field is ap-
plied to 2DEG. The field is represented by the vector po-
tential A, E � i!A=c, with !! 0 in the dc regime. The
corresponding interaction Hamiltonian is eA � v=c, where
the velocity vj, j � x, y, includes the spin-orbit correction
@�hk � ��=@k

j. The spin-orbit field hk is a function of the
two-dimensional wave-vector k. In its turn, the spin-orbit
(so) interaction is written in the form

 Hso � hk � �; (1)

where � � ��x; �y; �z� is the Pauli matrix vector. We
assume that the target impurity, located at ri, has a scat-
tering (sc) potential U�r� ri�. In 2D geometry the corre-
sponding Born amplitude is given by

 f�k;k0� � �
m�������������
2�kF
p

Z
dr2U�r�ei�k�k0�r; (2)

where @ � 1 and ’ is the angle between k and k0. Both
the scattered and the incident wave vectors are taken
at the Fermi circle with the radius kF. Other impuri-
ties, which are not necessarily of the same nature as the
target impurity, are randomly distributed within a sample.
They create the random potential Vsc�r�, which is as-
sumed to be delta correlated, so that the pair correlator
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hVsc�r�Vsc�r0�i � ���r� r0�=�NF, where NF is the elec-
tron density of states at the Fermi energy, and � � 1=2� is
expressed via the mean elastic scattering time �. Assuming
that the semiclassical approximation EF�� 1 is valid, one
can apply the standard perturbation theory [13,14] when
calculating the configurational averages of Green functions
and their products. In the leading order of �EF���1 and up
to the second order in U�r� ri�, the average retarded
Green function in the momentum representation is given
by

 Gr
kk0 �!� � �kk0G

r�0�
k �!� 	G

r�1�
kk0 �!� 	G

r�2�
kk0 �!�; (3)

with the unperturbed function given by the 2
 2 matrix

 Gr�0�
k �!� � �!� Ek � hk � � 	 i��

�1; (4)

where Ek � k2=�2m��. Other functions in (3) are

 Gr�1�
kk0 �!� � Gr�0�

k �!�Ukk0G
r�0�
k0 �!�;

Gr�2�
kk0 �!� � Gr�0�

k �!�
X
k00
Ukk00G

r�0�
k00 �!�Uk00k0G

r�0�
k0 �!�:

(5)

The matrix elements Uk0k � �
������������
2�kF
p

f�k;k0� exp�i�k�
k0� � ri�=m�. Expressions similar to Eqs. (3)–(5) can be
obtained for the advanced functions Ga

k0k�!� � Gr
k0k�!�

y.
The sum over k00 in the second Eq. (5) can be directly
calculated. First, we decompose Gr�0�

k00 into a spin indepen-
dent scalar part and a spin dependent part which is propor-
tional to hk00 � �. Because of the time inversion symmetry
hk00 � �h�k00 , the sum over k00 on the spin dependent part
is zero for an isotropic scattering amplitude. For aniso-
tropic amplitude, however, this sum is not identically 0.
Nevertheless, the sum on the spin dependent part can be
ignored either way in the following calculations because it
is proportional to the small parameter hkF=EF  1.

Further, it is easily seen that only Im�Gr�0�
k00 � is important

in this k00 sum because the real part gives rise to a term that
simply adds to Ukk0 in the first line of Eq. (5), thus
effectively renormalizing the Born scattering amplitude.
The imaginary part can not be absorbed in such a way
because it has opposite signs for the advanced and retarded
Green functions. Taking into account that ! ’ EF and
assuming that hkF  EF, we thus get
 X
k00
Ukk00G

r�0�
k00 �!�Uk00k0 � �i�NFS�k;k0�ei�k

0�k��ri ;

S�k;k0� �
kF
m�2

Z
d�00f�k00;k�f�k0;k00�;

(6)

where �00 is the angle of the vector k00, with jk00j � kF. At
k � k0 the integral in (6) is equal to the scattering cross
section.

Within the semiclassical theory we follow the well
known method [13,14] to calculate the configurational
average of the Green functions product that enters into

the Kubo’s linear response equation. Because of scattering
on a target impurity this product contains more than a pair
of Green functions. As our leading approximation we take
into account the so-called ladder perturbation series de-
scribing particle and spin diffusion processes. When aver-
aging the Green function product, within this approxima-
tion, only pairs of retarded and advanced functions carry-
ing close enough momenta should be chosen to become
elements of the ladder series. This considerably simplifies
calculations. Some of the representative diagrams are
shown at Fig. 1, where v denotes the velocity operator

 v j �
kj

m�
	
@hk � �

@kj
: (7)

The diffusion ladder renormalizes only the vertex associ-
ated with the electric field, while such a ladder, as we just
explained, does not appear at the vertex attributed to the
induced spin density. It is because in the ballistic range
around the impurity, the momentum transfer jp� kj �
1=�vF��, and thus the diffusion is not important. Finally,
the density of spins oriented in the z direction can be
written as
 

�z�r� �
X

k;k0;p

ei�p�k��r
Z d!

2�
dnF�!�
d!


 Tr�Ga
k0k�!��zG

r
pk0 �!�T �!;k

0��; (8)

where the trace runs through the spin variables and nF�!�
is the Fermi distribution function. The functions Gr=a

k0k
are given by Eq. (3). In (8), only terms up to the second
order in Uk0k should be taken into account. Hence, the
highest order corrections are those shown at Fig. 1(b) and
1(c). At low temperatures only ! in close vicinity around
EF contributes to the integral in (8). Therefore, below we
set ! � EF.

It is important that the vertex T �!;k� in Eq. (8) is the
same that enters into the spin Hall conductance. On the
other hand, as was shown in many publications [15], for
linear in k SOI and hk  EF, a contribution to T �!;k�
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FIG. 1. Diagram for the spin density. Scattering of electrons by
a target impurity is shown by the solid circles. Dashed lines
denote the ladder series of particle scattering by the random
potential. p;k;k0 are electron momenta.
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from the spin dependent part of the velocity (7) cancels
with its spin independent part, while such a cancellation
does not take place in the case of nonlinear SOI [16]. As a
result of such cancellation, in a linear case, T �!;k� is
reduced to the simple expression

 T �!;k� �
e
m�

k � E: (9)

Let us consider the spin density (8) in the presence of the
Rashba spin-orbit field hx � �ky, hy � ��kx. In the ze-
roth order in Ukk0 the Green functions in (8) are given by
the first term in (3). In this approximation and with T
given by (9) one can easily see that �z�r� � 0. On the other
hand, the inplane spin polarization directed perpendicular
to E is finite. This polarization is due to the electric
orientation effect [17]. In the first order with respect to
Ukk0 the z spin polarization is represented by Fig. 1(a).
Expressing Ukk0 via the scattering amplitude, from (3)–(5)
and (8) we obtain

 ��a�z �r� � �e

�������
kF
2�

s X
k;p

k �E
m�2

TrfGr0
k �EF�G

a0
k �EF�


 ��zG
r0
p �EF�f�p;k�ei�p�k��R 	 H:c:�g; (10)

where R � r� ri. At kR, pR� 1 the 2D angular inte-
gration in (10) can be performed by expansions around the
saddle points �p �R=pR� � �1 and �k �R=kR� � �1,
that result in the asymptotic expansion of �z�r� at a large
distance from the impurity. The remaining integrals over p
and k are dominated by contributions from the poles of
Green functions (4). These poles are located at k, p �
�kF � L�1

so � il�1, where Lso � @=m��� k�1
F is the

characteristic spin-orbit length and l is the mean free
path. In the ballistic range R & l one may substitute the
imaginary part il�1 of the poles by i� with �! 0.
Depending on combination of � signs of the poles,
the scattering amplitude entering into (10) will coincide
either with the forward scattering amplitude f�0� �
f�kFR̂; kFR̂�, or with the backscattering amplitude f��� �
f�kFR̂;�kFR̂�, where R̂ � R=R is the unit vector di-
rected to the observation point. Finally, we obtain from
(10) and (4)
 

��a�z �r� �
m�

R

�����������
2

�3kF

s
vjd

�
@nR
@Rj

 nR

�


 Re�f���e2ikFR�sin2

�
R
Lso

�
; (11)

where vd � e�E=m� is the drift velocity. The unit vector
nR � hkFR̂=jhkFR̂j. For Rashba interaction it is nxR � R̂y,

nyR � �R̂
x.

In a similar way and with the use of Eq. (6) one can
calculate the second order contribution to the spin density,
that is represented in Fig. 1(b) and 1(c). Assuming the
electric field to be applied in the x direction, we get the

final result, which is as a sum of all diagrams in Figs. 1(a)–
1(c),

 

�z�r� � �
m�vd�t
2�2RLso

sin
�

2R
Lso

�
sin�	

m�vd
2�2R2 sin2

�
R
Lso

�


 sin3�
�
�tot 	

�������
8�
kF

s
Re�f���e2ikFR�

�
; (12)

where �tot and �t are the total and transport scattering
cross sections, respectively, and � is the angle between the
vector R and the x axis. In order to check our method we
applied it to the calculation of the charge dipole, whence
�z is substituted by 1 in Eq. (8). Ignoring SOI we obtained
the same result as in Ref. [12].

The explicit shape of the spin cloud is clearly seen from
Eq. (12). It consists of a dipole, oriented perpendicular to
the electric field, and a tripole. Similar to the Landauer
charge dipole distribution [12], the spin density contains
both slowly varying and fast Friedel oscillation compo-
nents. Important distinctions, however, are found in the
asymptotic behaviors. First, unlike the charge density,
whose slow asymptotic term is represented by monotonous
R�1 dependence, the spin density oscillates with a period
determined by the spin-orbit precession length �Lso.
Second, at smaller distances R & Lso, the polarization
decreases as R�2. It should be noted that this asymptotic
form cannot be obtained by the method based on the
conventional leading order asymptotic expansion of the
wave function, as it has been done in [12] for the
Landauer dipole. It is because in 2D geometry the corre-
sponding scattered amplitude decreases as 1=

����
R
p

.
Accordingly, the probability density, which can be either
the charge or the spin density, will be proportional to 1=R,
not 1=R2.

When talking about asymptotic expression (12), one
should not forget that it is valid only within the ballistic
range R & l. At larger distances the ballistic part of the
spin density decays as exp��R=l�. On the other hand,
outside the ballistic range the spin diffusion becomes
important. Spin diffuses during the D’yakonov-Perel’
[18] spin relaxation time, up to the distance �Lso.
Hence, the spin diffusion must be taken into account at
R� l, providing that the spin-orbit coupling is not too
strong, so that Lso � l. In order to calculate the spin
density in the diffusive range, the ladder diagrams renorm-
alizing the left-hand vertex in Fig. 1 should be taken into
account. An evident result to be expected in this case is that
the diffusion spin cloud with the size � l will appear in
addition to Eq. (12). Because of the spin relaxation, how-
ever, the spin density will decay exponentially at R� Lso.
This behavior is in sharp contrast to the power law decreas-
ing of the charge density [11]. In the latter case, the long-
range R�1 charge-density tails of many impurities result in
the macroscopic electric field which can be related to the
electric potential difference at the sample boundaries. This
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was the main idea by Landauer—to associate impurities
with resistors which give rise to an overall potential drop at
a given current. Similarly, one would try to formulate the
spin Hall effect in terms of the spin Hall resistance and spin
dependent chemical potential ��r�, defined as NF��r� �P
i�z�r� ri�. In such a way an influence of disorder on

SHE can be considered from the microscopic point of view
starting from individual impurities. For example, a similar
approach has been employed in a semiclassical analysis of
the side jump contribution to the anomalous Hall effect
[19]. Returning to the spin potential ��r�, one can notice
that due to exponential decay in space of the spin cloud, the
well-converging sum over impurities will produce, on
average, a vanishing spin Hall chemical potential every-
where, except for the R� Lso range near the sample
boundary. No such spin accumulation, on the other hand,
has been found near hard wall flanks of a 2D diffusive strip
of 2DEG with Rashba SOI [7]. At the same time the finite
accumulation was calculated in [6] for other boundary
conditions. Probably, this means that the spin density out-
side the ballistic range around an elastic scatterer is finite,
but the combined spin density produced by many impuri-
ties will depend on the boundary conditions for spin
diffusion.

In conclusion, for a 2DEG with Rashba spin-orbit inter-
action we calculated the nonequilibrium spin polarization
induced by the intrinsic spin Hall effect in the ballistic
range around a spin independent scatterer. The angular
spatial distribution of the spin density is represented by a
tripole and a dipole oriented perpendicular to the electric
field. As a function of the distance from the scatterer, the
polarization shows the power law decay with oscillations,
some terms oscillating relatively slowly, with the period
�Lso, while other terms varying fast, with a period of
Friedel oscillations. Note, that although the z-polarized
spin Hall current is zero in case of Rashba SOI, we found
out that the z component of the spin density is not zero in
the ballistic range. This agrees with finite spin accumula-
tion near flanks of a ballistic strip [8].
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