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Abstract

We study bosonic closed string scattering amplitudes in the high-energy limit. We find that the meth-
ods of decoupling of high-energy zero-norm states and the high-energy Virasoro constraints, which were
adopted in the previous works to calculate the ratios among high-energy open string scattering amplitudes
of different string states, persist for the case of closed string. However, we clarify the previous saddle-
point calculation for high-energy open string scattering amplitudes and claim that only (t, u) channel of the
amplitudes is suitable for saddle-point calculation. We then discuss three evidences to show that saddle-
point calculation for high-energy closed string scattering amplitudes is not reliable. By using the relation
of tree-level closed and open string scattering amplitudes of Kawai, Lewellen and Tye (KLT), we calculate
the high-energy closed string scattering amplitudes for arbitrary mass levels. For the case of high-energy
closed string four-tachyon amplitude, our result differs from the previous one of Gross and Mende, which
is NOT consistent with KLT formula, by an oscillating factor.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Recently high-energy, fixed-angle behavior of string scattering amplitudes [1–3] was inten-
sively reinvestigated [4–10]. The motivation was to uncover the long-sought hidden stringy
space–time symmetry. An important new ingredient of this approach is the zero-norm states
(ZNS) [11–13] in the old covariant first quantized (OCFQ) string spectrum. One utilizes the de-
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coupling of zero-norm states to obtain relations among scattering amplitudes. An infinite number
of linear relations among high-energy scattering amplitudes of different string states were de-
rived. Moreover, these linear relations can be used to fix the proportionality constants among
high-energy scattering amplitudes of different string states at each fixed mass level algebraically.
Thus there is only one independent component of high-energy scattering amplitude at each fixed
mass level. On the other hand, a saddle-point method was also developed to calculate the general
formula of tree-level high-energy scattering amplitudes of four arbitrary string states to verify
the ratios among the high-energy scattering amplitudes of different string states calculated by the
above algebraic methods. Moreover, these high-energy scattering amplitudes can be expressed
in terms of high-energy four tachyon scattering amplitude as conjectured by Gross in 1988 [2].
However, all the above calculations were focused only on the case of open string theory.

In this paper, we generalize the calculations to high-energy closed string scattering ampli-
tudes. We find that the methods of decoupling of high-energy zero-norm states and the high-
energy Virasoro constraints, which were adopted in the previous works to calculate the ratios
among high-energy open string scattering amplitudes of different string states, persist for the
case of closed string. The result is simply the tensor product of two pieces of open string ratios
of high-energy scattering amplitudes. However, we clarify the previous saddle-point calculation
for high-energy open string scattering amplitudes and claim that only (t, u) channel of the am-
plitudes is suitable for saddle-point calculation. We then discuss three evidences to show that
saddle-point calculation for high-energy closed string scattering amplitudes is not reliable. By
using the relation of tree-level closed and open string scattering amplitudes of Kawai, Lewellen
and Tye (KLT) [14], we calculate the tree-level high-energy closed string scattering amplitudes
for arbitrary mass levels. For the case of high-energy closed string four-tachyon amplitude, our
result differs from the previous one of Gross and Mende [1], which is NOT consistent with KLT
formula, by an oscillating factor. This means that the high-energy closed string amplitudes do not
factorize into product of two high-energy open string amplitudes in contrast to the conventional
wisdom [1,15].

2. Decoupling of zero norm states

In this section, we calculate the ratios among high-energy closed string scattering amplitudes
of different string states by the decoupling of high-energy closed string ZNS. Since the calcu-
lation is similar to that of open string, we will, for simplicity, work on the first massive level
M2 = 8(n − 1) = 8 (n = 2) only. At this mass level, the corresponding open string Ward identi-
ties are (M2 = 2 for open string, α′

closed = 4α′
open = 2) [16]

(1)kμθνT μν + θμT μ = 0,

(2)

(
3

2
kμkν + 1

2
ημν

)
T μν + 5

2
kμT μ = 0,

where θν is a transverse vector. In Eqs. (1) and (2), we have chosen, say, the second vertex
V2(k2) to be the vertex operators constructed from zero-norm states and kμ ≡ k2μ. The other
three vertices can be any string states. Note that Eq. (1) is the type I Ward identity while Eq. (2)
is the type II Ward identity which is valid only at D = 26. The high-energy limits of Eqs. (1)
and (2) were calculated to be

(3)MT 3→1
T P + T 1

T = 0,

(4)MT 4→2
LL + T 2

L = 0,
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(5)3M2T 4→2
LL + T 2

T T + 5MT 2
L = 0.

In the above equations, we have defined the following orthonormal polarization vectors for the
second string vertex V2(k2)

(6)eP = 1

M
(E2, k2,0) = k2

M
,

(7)eL = 1

M
(k2,E2,0),

(8)eT = (0,0,1)

in the center-of-mass (c.m.) frame contained in the plane of scattering. We have also denoted the
naive power counting for orders in energy [4,5] in the superscript of each amplitude according
to the following rules, eL · k ∼ E2, eT · k ∼ E1. Note that since T 1

T P is of subleading order in
energy, in general T 1

T P �= T 1
T L. A simple calculation of Eqs. (3)–(5) shows that [16]

(9)T 1
T P :T 1

T = 1 :−√
2 = 1 :−M,

(10)T 2
T T :T 2

LL :T 2
L = 4 : 1 :−√

2 = 2M2 : 1 :−M.

It is interesting to see that, in addition to the leading order amplitudes in Eq. (10), the subleading
order amplitudes in Eq. (9) are also proportional to each other. This does not seem to happen at
higher mass level.

We are now back to the closed string calculation. The OCFQ closed string spectrum at this
mass level are (�� + � + •) ⊗ (�� + � + •)′. In addition to the spin-four positive-norm state
��⊗��′, one has 8 ZNS, each of which gives a Ward identity. In the high-energy limit, we have
θμν = e

μ
Leν

L − e
μ
T eν

T or θμν = e
μ
Leν

T + e
μ
T eν

L, θμ = e
μ
L or e

μ
T and one replace ημν by e

μ
T eν

T . In the
following, we list only high-energy Ward identities which relate amplitudes with even-energy
power in the high-energy expansion:

(1) �� ⊗ �′:

(11)M(TLL,LL − TT T ,LL) + TLL,L − TT T ,L = 0,

(12)MTLT,PT + TLT,T = 0.

(2) �� ⊗ •′:

(13)3M2(TLL,LL − TT T ,LL) + (TLL,T T − TT T ,T T ) + 5M(TLL,L − TT T ,L) = 0.

(3) � ⊗ ��′:

(14)M(TLL,LL − TLL,T T ) + TL,LL − TL,T T = 0,

(15)MTPT,LT + TT ,LT = 0.

(4) � ⊗ �′:

(16)M2TLL,LL + MTLL,L + MTL,LL + TL,L = 0,

(17)M2TPT,PT + MTPT,T + MTT ,PT + TT ,T = 0.

(5) � ⊗ •′:

(18)3M3TLL,LL + MTLL,T T + 5M2TLL,L + 3M2TL,LL + TL,T T + 5M2TL,L = 0.
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(6) • ⊗ ��′:

(19)3M2(TLL,LL − TLL,T T ) + (TT T ,LL − TT T ,T T ) + 5M(TL,LL − TL,T T ) = 0.

(7) • ⊗ �′:

(20)3M3TLL,LL + MTT T ,LL + 5M2TL,LL + 3M2TLL,L + TT T ,L + 5M2TL,L = 0.

(8) • ⊗ •′:

9M4TLL,LL + 3M2TLL,T T + 3M2TT T ,LL + 15M3TLL,L

(21)+ 15M3TL,LL + 5MTT T ,L + 5MTL,T T + 25M2TL,L + TT T ,T T = 0.

Those Ward identities which relate amplitudes with odd-energy power in the high-energy expan-
sion are omitted as they are subleading order in energy. The mass M in Eqs. (11) to (21) should
now be interpreted as the closed string mass M2 = 8. Eqs. (12), (15) and (17) are subleading
order amplitudes, and one can then solve the other 8 equations to give the ratios

TT T ,T T :TT T ,LL :TLL,T T :TLL,LL :TT T ,L :TL,T T :TLL,L :TL,LL :TL,L

(22)= 1 :
1

2M2
:

1

2M2
:

1

4M4
:− 1

2M
:− 1

2M
:− 1

4M3
:− 1

4M3
:

1

4M2
.

Eq. (22) is exactly the tensor product of two pieces of open string ratios calculated in Eq. (10).

3. Virasoro constraints

We consider the mass level M2 = 8 (n = 2). The most general state is

|2〉 =
{

1

2! μ1
1 μ1

2 α
μ1

1−1α
μ1

2−1 + 1

2
μ2

1 α
μ2

1−2

}
⊗

{
1

2! μ̃1
1 μ̃1

2 α̃
μ̃1

1−1α̃
μ̃1

2−1 + 1

2
μ̃2

1 α̃
μ̃2

1−2

}
|0, k〉

(23)= 1

4

{
μ1

1 μ1
2 α

μ1
1−1α

μ1
2−1 + μ2

1 α
μ2

1−2

}
⊗

{
μ̃1

1 μ̃1
2 α̃

μ̃1
1−1α̃

μ̃1
2−1 + μ̃2

1 α̃
μ̃2

1−2

}
|0, k〉.

The Virasoro constraints are

(24a)L1|2〉 ∼
{
kμ1

1 μ1
1 μ1

2 α
μ1

2−1 + μ2
1 α

μ2
1−1

}
⊗

{
μ̃1

1 μ̃1
2 α̃

μ̃1
1−1α̃

μ̃1
2−1 + μ̃2

1 α̃
μ̃2

1−2

}
= 0,

(24b)L̃1|2〉 ∼
{

μ1
1 μ1

2 α
μ1

1−1α
μ1

2−1 + μ2
1 α

μ2
1−2

}
⊗

{
kμ1

1 μ̃1
1 μ̃1

2 α̃
μ̃1

2−1 + μ̃2
1 α̃

μ̃2
1−1

}
= 0,

(24c)L2|2〉 ∼
{

μ1
1 μ1

2 ημ1
1μ

1
2 + 2kμ2

1 μ2
1

}
⊗

{
μ̃1

1 μ̃1
2 α̃

μ̃1
1−1α̃

μ̃1
2−1 + μ̃2

1 α̃
μ̃2

1−2

}
= 0,

(24d)L̃2|2〉 ∼
{

μ1
1 μ1

2 α
μ1

1−1α
μ1

2−1 + μ2
1 α

μ2
1−2

}
⊗

{
μ̃1

1 μ̃1
2 ημ̃

1μ̃1
12 + 2kμ̃2

1 μ̃2
1

}
= 0.

Taking the high-energy limit in the above equations by letting (μi, νi) → (L,T ), and

(25)kμi → MeL, ημ1μ2 → eT eT ,

we obtain

(26a)
{
M L μ + μ

}
α

μ
−1 ⊗

{
μ̃1

1 μ̃1
2 α̃

μ̃1
1−1α̃

μ̃1
2−1 + μ̃2

1 α̃
μ̃2

1−2

}
= 0,

(26b)
{

μ1
1 μ1

2 α
μ1

1−1α
μ1

2−1 + μ2
1 α

μ2
1−2

}
⊗

{
M L μ̃ + μ̃

}
α̃

μ̃
−1 = 0,
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(26c)
{

T T + 2M L
}

⊗
{

μ̃1
1 μ̃1

2 α̃
μ̃1

1−1α̃
μ̃1

2−1 + μ̃2
1 α̃

μ̃2
1−2

}
= 0,

(26d)
{

μ1
1 μ1

2 α
μ1

1−1α
μ1

2−1 + μ2
1 α

μ2
1−2

}
⊗

{
T T + 2M L

}
= 0,

which lead to the following equations

(27a)
{
M L μ + μ

}
⊗ μ̃1

1 μ̃1
2 = 0,

(27b)
{
M L μ + μ

}
⊗ μ̃2

1 = 0,

(27c)μ1
1 μ1

2 ⊗
{
M L μ̃ + μ̃

}
= 0,

(27d)μ2
1 ⊗

{
M L μ̃ + μ̃

}
= 0,

(27e)
{

T T + 2M L
}

⊗ μ̃1
1 μ̃1

2 = 0,

(27f)
{

T T + 2M L
}

⊗ μ̃2
1 = 0,

(27g)μ1
1 μ1

2 ⊗
{

T T + 2M L
}

= 0,

(27h)μ2
1 ⊗

{
T T + 2M L

}
= 0.

The remaining indices μ, μ̃ in the above equations can be set to be T or L, and we obtain

(28a)M L L ⊗ L L + L ⊗ L L = 0,

(28b)M L L ⊗ T T + L ⊗ T T = 0,

(28c)M T L ⊗ T L + T ⊗ T L = 0,

(29a)M L L ⊗ L + L ⊗ L = 0,

(29b)M T L ⊗ T + T ⊗ T = 0,

(30a)M L L ⊗ L L + L L ⊗ L = 0,

(30b)M T T ⊗ L L + T T ⊗ L = 0,

(30c)M T L ⊗ T L + T L ⊗ T = 0,

(31a)M L ⊗ L L + L ⊗ L = 0,

(31b)M T ⊗ T L + T ⊗ T = 0,

(32a)T T ⊗ L L + 2M L ⊗ L L = 0,

(32b)T T ⊗ T T + 2M L ⊗ T T = 0,
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(33)T T ⊗ L + 2M L ⊗ L = 0,

(34a)L L ⊗ T T + 2M L L ⊗ L = 0,

(34b)T T ⊗ T T + 2M T T ⊗ L = 0,

(35)L ⊗ T T + 2M L ⊗ L = 0.

Since the transverse component of the highest spin state αT−1 · · ·αT−1 ⊗ α̃T−1 · · · α̃T−1 at each fixed
mass level gives the leading order scattering amplitude, there should have even number of T at
each fixed mass level. Thus Eqs. (28c), (29b), (30c) and (31b) are subleading order in energy
and are therefore irrelevant. Set T T ⊗ T T = 1, we can solve the ratios from the remaining
equations. The final result is

εT T ,T T 1
εT T ,LL = εLL,T T 1/(2M2)

εLL,LL 1/(4M4)

εT T ,L = εL,T T −1/(2M)

εLL,L = εL,LL −1/(4M3)

εL,L 1/(4M2)

which is exactly the tensor product of two pieces of open string ratios. This result is consistent
with Eq. (22) from the decoupling of high-energy zero-norm state in Section 2.

4. Saddle point calculation

In this section, we calculate the tree-level high-energy closed string scattering amplitudes
for arbitrary mass levels. We first review the calculation of high-energy open string scattering
amplitude. The (s, t) channel scattering amplitude with V2 = α

μ1
−1α

μ2
−1 · · ·αμn

−1|0, k〉, the highest
spin state at mass level M2 = 2(n − 1), and three tachyons V1,3,4 is [6]

(36)

T μ1μ2...μn

n;st =
n∑

l=0

(−)l
(

n

l

)
B

(
− s

2
− 1 + l,− t

2
− 1 + n − l

)
k
(μ1
1 · · ·kμn−l

1 k
μn−l+1
3 · · ·kμn)

3 ,

where B(u, v) = ∫ 1
0 dx xu−1(1 − x)v−1 is the Euler beta function. It is now easy to calculate the

general high-energy scattering amplitude at the M2 = 2(n − 1) level

(37)T T T T ...
n (s, t) � [−2E3 sinφc.m.

]nTn(s, t)

where Tn(s, t) is the high-energy limit of
�(− s

2 −1)�(− t
2 −1)

�( u
2 +2)

with s + t + u = 2n − 8, and was

previously [4,6] miscalculated to be

T̃n;st � √
π(−1)n−12−nE−1−2n

(
sin

φc.m.

2

)−3(
cos

φc.m.

2

)5−2n

(38)× exp

[
− s ln s + t ln t − (s + t) ln(s + t)

2

]
.
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One can now generalize this result to multi-tensors. The (s, t) channel of open string high-
energy scattering amplitude at mass level (n1, n2, n3, n4) was calculated to be [4,6]

(39)T T 1...T 2...T 3...T 4...
n1n2n3n4;st = [−2E3 sinφc.m.

]∑niT∑
ni

(s, t).

In the above calculations, the scattering angle φc.m. in the center of mass frame is defined to be
the angle between �k1 and �k3. s = −(k1 + k2)

2, t = −(k2 + k3)
2 and u = −(k1 + k3)

2 are the
Mandelstam variables. M2

i = 2(ni − 1) with ni the mass level of the ith vertex. T i in Eq. (39)
is the transverse polarization of the ith vertex defined in Eq. (8). All other 4-point functions at
mass level (n1, n2, n3, n4) were shown to be proportional to Eq. (39).

The corresponding (t, u) channel scattering amplitudes of Eqs. (37) and (39) can be obtained
by replacing (s, t) in Eq. (38) by (t, u)

Tn(t, u) � √
π(−1)n−12−nE−1−2n

(
sin

φc.m.

2

)−3(
cos

φc.m.

2

)5−2n

(40)× exp

[
− t ln t + u lnu − (t + u) ln(t + u)

2

]
.

We now claim that only (t, u) channel of the amplitude, Eq. (40), is suitable for saddle-point
calculation. The previous saddle-point calculation for the (s, t) channel amplitude, Eq. (38),
in the high-energy expansion is misleading. The corrected high-energy calculation of the (s, t)

channel amplitude will be given in Eq. (57). The reason is as following. When calculating
Eq. (37) from Eq. (36), one calculates the high-energy limit of

(41)
�(− s

2 − 1)�(− t
2 − 1)

�(u
2 + 2)

, s + t + u = 2n − 8,

in Eq. (36) by expanding the � function with the Stirling formula

(42)�(x) ∼ √
2πxx−1/2e−x.

However, the above expansion is not suitable for negative real x as there are poles for �(x) at
x = −n, negative integers. Unfortunately, our high-energy limit

(43a)s ∼ 4E2 
 0,

(43b)t ∼ −4E2 sin2
(

φc.m.

2

)
� 0,

(43c)u ∼ −4E2 cos2
(

φc.m.

2

)
� 0,

contains this dangerous situation in the (s, t) channel calculation of Eq. (38). On the other hand,
the corresponding high-energy expansion of (t, u) channel scattering amplitude in Eq. (40) is
well defined. Another evidence for this point is the following. When one uses the saddle point
method to calculate the high-energy open string scattering amplitudes in the (s, t) channel, the
saddle-point we identified was [6–8]

(44)x0 = s

s + t
= 1

1 − sin2(φ/2)
> 1,

which is out of the integration range (0,1). Therefore, we cannot trust the saddle point calculation
for the (s, t) channel scattering amplitude. On the other hand, the corresponding saddle-point
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calculation for the (t, u) channel scattering amplitude is safe since the saddle-point x0 is within
the integration range (1,∞). This subtle situation becomes crucial and relevant when one tries
to calculate the high-energy closed string scatterings amplitude and compare them with the open
string ones.

We now discuss the high-energy closed string scattering amplitudes. There exists a celebrated
formula by Kawai, Lewellen and Tye (KLT), which expresses the relation between tree ampli-
tudes of closed and open string (α′

closed = 4α′
open = 2)

(45)A
(4)
closed(s, t, u) = sin(πk2 · k3)A

(4)
open(s, t)Ā

(4)
open(t, u).

To calculate the high-energy closed string scattering amplitudes, one encounters the difficulty of
calculation of high-energy open string amplitude in the (s, t) channel discussed above. To avoid
this difficulty, we can use the well-known formula

(46)�(x) = π

sin(πx)�(1 − x)

to calculate the large negative x expansion of the � function. We first discuss the high-energy
four-tachyon scattering amplitude which already existed in the literature. We can express the
open string (s, t) channel amplitude in terms of the (t, u) channel amplitude,

A
(4-tachyon)
open (s, t) = �(− s

2 − 1)�(− t
2 − 1)

�(u
2 + 2)

= sin(πu/2)

sin(πs/2)

�(− t
2 − 1)�(−u

2 − 1)

�( s
2 + 2)

(47)≡ sin(πu/2)

sin(πs/2)
A

(4-tachyon)
open (t, u),

which we know how to calculate the high-energy limit. Note that for the four-tachyon case,
Ā

(4)
open(t, u) = A

(4)
open(t, u) in Eq. (45). The KLT formula, Eq. (45), can then be used to express

the closed string four-tachyon scattering amplitude in terms of that of open string in the (t, u)

channel

(48)A
(4-tachyon)

closed (s, t, u) = sin(πt/2) sin(πu/2)

sin(πs/2)
A

(4-tachyon)
open (t, u)A

(4-tachyon)
open (t, u).

The high-energy limit of open string four-tachyon amplitude in the (t, u) channel can be easily
calculated to be

(49)A
(4-tachyon)
open (t, u) � (stu)−3/2 exp

(
− s ln s + t ln t + u lnu

2

)
,

which gives the corresponding amplitude in the (s, t) channel

(50)A
(4-tachyon)
open (s, t) � sin(πu/2)

sin(πs/2)
(stu)−3/2 exp

(
− s ln s + t ln t + u lnu

2

)
.

The high-energy limit of closed string four-tachyon scattering amplitude can then be calculated,
through the KLT formula, to be

(51)A
(4-tachyon)

closed (s, t, u) � sin(πt/2) sin(πu/2)

sin(πs/2)
(stu)−3 exp

(
− s ln s + t ln t + u lnu

4

)
.
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The exponential factor in Eq. (49) was first discussed by Veneziano [17]. Our result for the high-
energy closed string four-tachyon amplitude in Eq. (51) differs from the one calculated in the
literature [1] by an oscillating factor sin(πt/2) sin(πu/2)

sin(πs/2)
[18]. We stress here that our results for

Eqs. (49), (50) and (51) are consistent with the KLT formula, while the previous calculation
in [1] is NOT.

One might try to use the saddle-point method to calculate the high-energy closed string scat-
tering amplitude. The closed string four-tachyon scattering amplitude is

A
(4-tachyon)

closed (s, t, u) =
∫

dx dy exp

(
k1 · k2

2
ln |z| + k2 · k3

2
ln |1 − z|

)

=
∫

dx dy
(
x2 + y2)−2[

(1 − x)2 + y2]−2

× exp

{
− s

8
ln

(
x2 + y2) − t

8
ln

[
(1 − x)2 + y2]}

(52)≡
∫

dx dy
(
x2 + y2)−2[

(1 − x)2 + y2]−2
exp

[−Kf (x, y)
]
,

where K = s
8 and f (x, y) = ln(x2 + y2) − τ ln[(1 − x)2 + y2] with τ = − t

s
. One can then

calculate the “saddle-point” of f (x, y) to be

(53)∇f (x, y)|
x0= 1

1−τ
,y0=0 = 0.

The high-energy limit of the closed string four-tachyon scattering amplitude is then calculated
to be

A
(4-tachyon)

closed (s, t, u) � 2π

K

√
det ∂2f (x0,y0)

∂x∂y

exp
[−Kf (x0, y0)

]

(54)� (stu)−3 exp

(
− s ln s + t ln t + u lnu

4

)
,

which is consistent with the previous one calculated in the literature [1], but is different from our
result in Eq. (51). However, one notes that

(55)
∂2f (x0, y0)

∂x2
= 2(1 − τ)3

τ
= −∂2f (x0, y0)

∂y2
,

∂2f (x0, y0)

∂x∂y
= 0,

which means that (x0, y0) is NOT the local minimum of f (x, y), and one should not trust this
saddle-point calculation. This is the third evidence to see that there is no clear definition of
saddle-point in the calculation of the high-energy open string scattering amplitude in the (s, t)

channel, and thus the invalid saddle-point calculation of high-energy closed string scattering
amplitude.

Finally we calculate the high-energy closed string scattering amplitudes for arbitrary mass
levels. The (t, u) channel open string scattering amplitude with V2 = α

μ1
−1α

μ2
−1 · · ·αμn

−1|0, k〉, the
highest spin state at mass level M2 = 2(n − 1), and three tachyons V1,3,4 can be calculated to be

(56)T μ1μ2...μn

n;tu =
n∑

l=0

(
n

l

)
B

(
− t

2
+ n − l − 1,−u

2
− 1

)
k
(μ1
1 · · ·kμn−l

1 k
μn−l+1
3 · · ·kμn)

3 .
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In calculating Eq. (56), we have used the Mobius transformation y = x−1
x

to change the inte-
gration region from (1,∞) to (0,1). One notes that Eq. (56) is NOT the same as Eq. (36) with
(s, t) replaced by (t, u), as one would have expected from the four-tachyon case discussed in the
paragraph after Eq. (45). In the high-energy limit, one easily sees that

(57)Tn(s, t) � (−)n
sin(πu/2)

sin(πs/2)
Tn(t, u),

which is the generalization of Eq. (47) to arbitrary mass levels. Eq. (57) is the correction of
Eqs. (37) and (38) as claimed in the paragraph after Eq. (40). The (s, t) channel of high-energy
open string scattering amplitudes at mass level (n1, n2, n3, n4) can then be written as, apart from
an overall constant,

A(4)
open(s, t) � (−)

∑
ni

sin(πu/2)

sin(πs/2)

[−2E3 sinφc.m.

]∑niT∑
ni

(t, u)

(58)� (−)
∑

ni
sin(πu/2)

sin(πs/2)
(stu)

∑
ni−3
2 exp

(
− s ln s + t ln t + u lnu

2

)
.

Finally the total high-energy open string scattering amplitude is the sum of (s, t), (t, u) and (u, s)

channel amplitudes, and can be calculated to be

A(4)
open � (−)

∑
ni

sin(πs/2) + sin(πt/2) + sin(πu/2)

sin(πs/2)

(59)× (stu)

∑
ni−3
2 exp

(
− s ln s + t ln t + u lnu

2

)
.

By using Eqs. (45) and (57), the high-energy closed string scattering amplitude at mass level
(n1, n2, n3, n4) is calculated to be, apart from an overall constant,

A
(4)
closed(s, t, u) � (−)

∑
ni

sin(πt/2) sin(πu/2)

sin(πs/2)

[−2E3 sinφc.m.

]2
∑

niT∑
ni

(t, u)2

� (−)
∑

ni
sin(πt/2) sin(πu/2)

sin(πs/2)

(60)× (stu)
∑

ni−3 exp

(
− s ln s + t ln t + u lnu

4

)
,

where T∑
ni

(t, u) is given by Eq. (40). For the case of four-tachyon scattering amplitude at mass
level (0,0,0,0), Eq. (60) reduces to Eq. (51). All other high-energy closed string scattering am-
plitudes at mass level (n1, n2, n3, n4) are proportional to Eq. (60). The proportionality constants
are the tensor product of two pieces of open string ratios.

5. Conclusion

In conclusion, we have used the methods of decoupling of high-energy zero-norm states and
the high-energy Virasoro constraints to calculate the ratios among high-energy closed string scat-
tering amplitudes of different string states. The result is exactly the tensor product of two pieces
of open string ratios calculated before. However, we clarify the previous saddle-point calculation
for high-energy open string scattering amplitudes and show that only (t, u) channel of the am-
plitudes is suitable for saddle-point calculation. We also discuss three evidences, Eqs. (43), (44)



290 C.-T. Chan et al. / Nuclear Physics B 749 (2006) 280–290
and (55), to show that saddle-point calculation for high-energy closed string scattering ampli-
tudes is not reliable. Instead of using saddle-point calculation adopted before, we then propose
to use the formula of Kawai, Lewellen and Tye (KLT) to calculate the high-energy closed string
scattering amplitudes for arbitrary mass levels. For the case of high-energy closed string four-
tachyon amplitude, our result differs from the previous one of Gross and Mende, which is NOT
consistent with KLT formula, by an oscillating factor. The oscillating prefactors in Eqs. (59)
and (60) imply the existence of infinitely many zeros and poles in the string scattering ampli-
tudes even in the high-energy limit. Physically, the presence of poles simply reflects the fact that
there are infinite number of resonances in the string spectrum [18], and the presence of zeros
reflects the coherence of string scattering.
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