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Anisotropic higher derivative gravity and inflationary universe
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Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is
studied in detail. The nonredundant generalized Friedmann equation of the system is derived by
introducing a reduced one-dimensional generalized Kantowski-Sachs type action. Existence and stability
of inflationary solution in the presence of higher derivative terms are also studied in detail. Implications to
the choice of physical theories are discussed in detail in this paper.
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I. INTRODUCTION

Inflationary theory is a nice resolution for the flatness,
monopole, and horizon problems of our present universe
described by the standard big bang cosmology [1]. In
particular, our universe is homogeneous and isotropic to
a very high degree of precision [2,3]. Such a universe can
be described by the well-known Friedmann-Robertson-
Walker (FRW) metric [4].

One expects that gravitational physics could be different
from the standard Einstein models near the Planck scale
[5,6]. For example, quantum gravity or string corrections
could lead to interesting cosmological applicastions [5].
Indeed, some investigations have already addressed the
possibility of deriving inflation from higher order gravita-
tional corrections [7—10].

For example, a general analysis of the stability condition
for a variety of pure higher derivative gravity theories
could be useful choosing physical models. In particular,
it has been shown that a stability condition should hold for
any potential candidate of inflationary universe in the flat
FRW space [10].

In addition, there is no particular reason for our universe
to be initially isotropic to such a high degree of precision.
Even if anisotropy can be smoothed out by the proposed
inflationary process, it is also interesting to study the
stability of the FRW space during the post-inflationary
epoch. Nonetheless, it is interesting to study the cases
where our universe starts out from an initially anisotropic
universe. As a result, our universe is expected to evolve
from certain anisotropic universe to a stable and isotropic
universe. Indeed, it has been shown that there exists such
kind of anisotropic solution for a NS-NS model with a
metric, a dilaton, and an axion field [11]. Such inflationary
solution is also shown to be stable against small field
perturbations [12]. Note also that similar stability analysis
has also been studied in various fields of interest [13,14].

Higher derivative terms should also be important for the
Planck scale physics [10,13]. For example, higher order
corrections from quantum gravity or string theory have
been considered as the inflationary models [15]. In addi-
tion, higher derivative terms also arise as the quantum
corrections to the matter fields [15]. The stability analysis
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of the pure higher derivative gravity models has hence been
shown in Ref. [10]. Therefore, it is interesting to study the
implication of this stability analysis in different models.

Recently, there are also growing interests in the study of
Kantowski-Sachs (KS) type anisotropic universes [16—18].
Hence we will try to study the existence and stability
conditions of an inflationary de Sitter final state in the
presence of higher derivative theory in Kantowski-Sachs
spaces. In particular, it will be applied to study a large class
of pure gravity models with inflationary KS/FRW solutions
in this paper. Any KS type solution that leads itself to an
asymptotic FRW metric at time infinity will be referred to
as the KS/FRW solution in this paper for convenience.

It will be shown that the existence of a stable de Sitter
background is closely related to the choices of the coupling
constants. We will try to generalize the work in
Refs. [19,20] in order to obtain a model-independent for-
mula for the nonredundant field equations in the
Kantowski-Sachs (KS) type anisotropic space.

We will first derive a stability equation which turns out
to be identical to the stability equation for the existence of
the inflationary de Sitter solution discussed in
Refs. [10,20]. Note that an inflationary de Sitter solution
in pure gravity models is expected to have one stable mode
and one unstable mode for the system to undergo inflation
with the help of the stable mode. Later on, the inflationary
era will come to an end once the unstable mode takes over
after a brief period of inflationary expansion. The method
developed in Refs. [10,20] was shown to be a helpful way
in choosing physically acceptable model for our universe.
Our result indicates, however, that the unstable mode will
also tamper the stability of the isotropic space. To be more
specific, if the model has an unstable mode for the de Sitter
background perturbation with respect to isotropic pertur-
bation, this unstable mode will also be unstable with re-
spect to any anisotropic perturbations.

In particular, we will show in this paper that the roles
played by the higher derivative terms are dramatically
different in the inflationary phase of our physical universe.
First of all, third order terms will be shown to determine the
expansion rate H, for the inflationary de Sitter space. The
quadratic terms will be shown to have nothing to do with
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the expansion rate of the background de Sitter space. They
will however affect the stability condition of the de Sitter
phase. Their roles played in the existence and stability
condition of the evolution of the de Sitter space are dra-
matically different.

II. NONREDUNDANT FIELD EQUATION AND
BIANCHI IDENTITY IN KS SPACE

Given the metric of the following form:
ds* = —dr* + ()dr* + a*(1)(d*0 + f2(0)de?) (1)

with f(#) = (6, sinh#, sinf) denoting the flat, open and
close anisotropic space known as Kantowski-Sachs type
anisotropic spaces. To be more specific, Bianchi I (BI),
II(BIM), and Kantowski-Sachs (KS) space correspond to
the flat, open and closed model, respectively. One can
instead write the metric as

dr?
1 — kr?

ds®> = —dr* + az(t)( + r2d02> + a2(t)dz> (2)
with r, 6, and z read as the polar coordinates and z
coordinate for convenience. One writes it this way in order
to make the comparison with the FRW metric easier. Note
that k = 0, 1 — 1 stands for the flat, open and closed uni-
verses similar to the FRW space.

In addition, one can restore the g,, component b*(z) for
the purpose of deriving the nonredundant field equation
associated with G, that will be shown shortly. As a result,
one has

2

1 — kr?

ds* = —b*(de* + a2(1)< + r2d02> +az(1dz’.

3)

One can show that all nonvanishing spin connections
read

b B
I'; = BH,g;; &)
F;i =H, (6)

kr
I =—- 7
rr 1 _ kr2 ( )
Iy =—-r(1-— kr?) 8)
1

I%=-. )

Here B = 1/b* and H; = (a/a, a/a, a,/a,) = (H\, H, =
H,, H,) for r, 8, and z component, respectively. One can
also define Fu = F/”w and I'* = T'), g"* for convenience.
As aresult, one can compute all nonvanishing components,
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with b = 1 being reset to unity:

I"=3H (10)

1
I"=— (11)

ra
I'=3H (12)
I, = 1 (13)

"or(1 — k%)’

Writing H,, =G,, —T,,, one can show that

D, H*" = 0 following the Bianchi identity D,G*” = 0
and the energy momentum conservation D, T#" = 0 for
any energy momentum tensor 7#” coupled to the system.
With the metric (2), one can show that the r component of
the equation D, H*” = 0 implies that

H',=H, (14)

The result says that any matter coupled to the system has
the property that 77, = T%,. In addition, the equations
D MHW =0 and D, H** = 0 both vanish identically all
by itself irrelevant to the form of the energy momentum
tensor. More interesting information comes from the ¢
component of this equation. It says:

(9, + 3H)H', = 2H,H", + H,H" . (15)

This equation implies that (i) H', = 0 implies that H", =
H?, =0 and (ii)) H", = H*, = 0 only implies that (9, +
3H)H', = 0. Case (ii) can be solved to give H', =
constant X exp[—a?a,] which approaches zero when
a*a_ — oo. Therefore, for the anisotropic system one is
considering here, the metric contains two independent
variables a and a, while the Einstein field equations have
three nonvanishing components: H', = 0, H', = H’; = 0
and H*, = 0. The Bianchi identity implies that the #¢
component is not redundant which needs to be reserved
for complete analysis. One can freely ignore one of the rr
or zz components without affecting the final result of the
system. In short, the H! = 0 equation, known as the gen-
eralized Friedmann equation, is a nonredundant field equa-
tion as compared to the H; = 0 and H? = 0 equations.

In principle, one can reduce the Lagrangian of the
system from a functional of the metric g,,,, £(g,,), to a
simpler function of a(f) and a.(z), namely L(r) =
a*a,L(g uv(a(t), a,(1))). The equation of motion should
be reconstructed from the variation of the reduced
Lagrangian L(tf) with respect to the variable a and
a,. The result is, however, incomplete because, the
variation of a and a, are related to the variation of
g and g_, respectively. One can never derive the field
equation for g, without restoring the variable b(¢) in
advance. This is the reason why one needs to introduce
the metric (3) such that the reduced Lagrangian L(f) =
a*a,L(g uv(D(2), a(t), a (1)) contains the nonredundant in-
formation of the H! = 0 equation. One can reset b = 1
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after the variation of b(¢) has been done. The wanted and
nonredundant Friedman equation can hence be reproduced
accordingly.

After some algebra, one can also compute all nonvan-
ishing components of the curvature tensor:

R, =[iBH; + B(H; + H})]5' (16)
y . ko
R\, = BH;H €" ey, + = €€, (17)

Given a Lagrangian L = /gL = L(b(t), a((1), a,(t)) one
can show that

lea . ;s aza .
L= \/EZ LR, RY) = ﬁL(H,», H,d%. (18)
The variational equations for this action can be shown to be
d . .
d 2 . d 6L
L+ (—+3H|)L =(—-+3H|L; —a®>—(1—5,,).
(dt ) (dt ) i 5a2( i)
(20)

Here L; = 6 L/8H;, L' = §L/5H,, and 3H = ¥ ;H,. For
simplicity, we will write £ as L from now on in this paper.
As a result, the field equations can be written in a more
comprehensive form:

d . o
L+ H,»(E + 3H>L‘ =HL,+ H,L 1)

d 2 d 8L
L+(—+3H|\L =(—+3H\|L,—a>—=(1-6..).
<dt ) (dt ) i Saz( 2

(22)

ITI. FRW SPACE AS A STABLE FINAL STATE

For simplicity, one will start with the Einstein-Hilbert
(EH) action and study its evolutionary process from an
anisotropic space. It is known that our final universe is
isotropic to a very high precision. Therefore, any physical
model should carry our physical universe from an initially
anisotropic space to an isotropic final space. Since the
lowest order Einstein-Hilbert action is the most well-
known popular model, one expects such isotropilized pro-
cess should also be realized in this model. Any acceptable
higher order terms being considered as corrections around
this stable EH background should not affect its intention
evolving toward the FRW space. Therefore, one will start
with a simple EH action with a cosmological constant term
given by

One can show directly that the reduced Lagrangian L is
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. . 2k
L =4H, +2H, + 6H7 + 2H? + 4H,H_ + — — 2A.
a

(24)

Therefore, one can show that the Friedmann equation (21)
and z-equation (22) take the following form:

k
H? +2HH. + 2= A (25)

. k
a
For convenience, one can also use Egs. (25) and (26) to
derive the following equation:
H,+ H?=HH.. (27
Equation (27) can be shown to give
a, = kya (28)
for some integration constant ky. Note also that Eq. (26)
can also be integrated as

(29)

for some integration constant k;. For the case kK = 0, one
can show that A = 9H3A /4 if we write A = a*/?. Hence
one can integrate this equation to obtain

exp[3Hpt/2] + ky exp[—3H0t/2]}2/3 30)

1+ k,

alt) = a(O)[

for some constant k,. Here H(% = A/3 denotes the expan-
sion factor. For the case where k # 0, a special solution
with k; = 0 can be found to be

k
a= a1|:exp[H0t] + W exp[—HOt]}. (€2))

In fact, one can show that the evolutionary properties of
these solutions can be obtained without knowing the exact
solutions. Indeed, one will show in a moment that the
inflationary solution will try to evolve to an isotropic
FRW space as t — oo. In addition, one can also show that
these solutions will remain isotropic from a stability analy-
sis. One will study the evolution of the physical universe
from an anisotropic initial state to an isotropic final state.
Therefore, one will write the above equations in terms of
the following variables:
v
3H=2H,+H,= v (32)

A= (H, - H,) (33)

with X, V = azaz, and A the total expansion rate, 3-
volume, and the deviation function, respectively. One ex-
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pects A — 0 as the physical universe evolves toward an
isotropic final state. Indeed, one can show that the field
equations can be written as

A +3HA = —52. (34)
a

Equation (34) can be rewritten as
4 (va) = —ka.. (35)
dt

Hence one has

V(0)  ka*(0) [ a,(¢)dl
5 .

A=20~;

(36)

Z

If a, eventually expands as exp[Agt], one can show that
[oa.(t)dt' /a, — 1/ Ay, a small constant, as t — 0. Since
the scaling factor a?(0)/a> — 0 for an expanding a solu-
tion, this equation implies that A — 0 as # — oco. Hence
one shows that the field equations of the EH action will
definitely take the anisotropic universe, either one of the
KS type spaces, to the final FRW universe as t — 0.

One can also show that the final isotropic FRW universe
is stable against any small perturbations H; = Hy + 0H,
and H, = Hy, + 6H,. For convenience, one can also use
Egs. (25) and (26) to derive the following equation:

H,+ H?+2HH, = A. (37)
Applying these perturbations to Egs. (27) and (37), one has

SH, + Hy8H, — Hyd0H, = 0, (38)

SH, + 4Hy8H, + 2H,8H, = 0. (39)
Adding Eqgs. (38) and (39) one can derive
(6H, + 3Hy86H,) + (8H. + 3H,6H.) = 0. (40)

Hence one has 6H, + §H, = constant/a®> — 0 as a — oo.
Hence any physical perturbation against the FRW back-
ground would imply J6H, — —6H,= 6H. Hence,
Eq. (38) implies

8H + 2Hy8H = 0. (41)
This equation can be integrated to obtain the result

constant

SHy = ————0 (42)
a

as t — oo, Hence one can again show that the final FRW
space is stable against this anisotropic perturbation. Note
that both §H; — 1/a” asymptotically, while their signs in
the order of O(a~?) are opposite to each other such that
their sum 8H, + 8H, — 1/a’.
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IV. STABILITY OF HIGHER DERIVATIVE
INFLATIONARY SOLUTION

One can then apply the perturbation, H; = H;, + 6H,,
to the field equation with H;, the background solution to
the system. This perturbation will enable one to understand
whether the background solution is stable or not. In par-
ticular, one would like to learn whether a KS — FRW (KS/
FRW) type evolutionary solution is stable or not.

Note that our universe could start out anisotropic even if
evidences indicate that our universe is isotropic to a very
high degree of precision in the post-inflationary era.
Therefore, one expects that any physical model should
admit a stable KS/FRW solution. In particular, one will
be interested in a de Sitter (dS) background solution with
H,y = H, for some constant Hubble expansion parameter.
One will denote such solution as KS — de Sitter (KS/dS)
type inflationary solution.

One can show that any FRW inflationary solution with a
stable mode and an unstable mode is a negative result to
our search for a stable inflationary model. In particular, any
FRW inflationary solution with a stable mode and an
unstable mode will provide a natural way for the infla-
tionary universe to exit the inflationary phase. Such models
will, however, also be unstable against the anisotropic
perturbations. Therefore, such solution will be harmful
for the system to settle from anisotropic space to FRW
space once the graceful exit process is done. One will show
in this section that the higher derivative gravity theory one
considers here could also accommodate two stable modes
with appropriately chosen coupling constants. In such case,
the inflationary de Sitter solution H, will also be stable
against anisotropic perturbations.

First of all, one can show that the first order perturbation
equation from the nonredundant field equation (21), with
H; — H, + 6H,, gives

(H,L'6H ;) + 3H(H,LV6H ;) + 5(H,L")
+ 3H((H;L} + LY)6H ;) + (H;L)6(3H)

with all functions of H; evaluated at some FRW back-
ground with H; = H,. The notation {(A;B;) = Y ;_ .A;B;
denotes the summation over i = 1 and z for repeated
indices. Note that we have absorbed the information of i =
2 into i = 1 since they contribute equally to the field
equations in the KS type spaces. In addition, Lj- =
8°L/8H;8H; and similarly for L;; and L" with upper
index  and lower index ;j denoting variation with respect
to H; and H; respectively for convenience. In addition,
perturbing equation (22) can also be shown to reproduce
the Eq. (43) in the FRW limit [1].

Once we adopt the de Sitter solution with H, = con-
stant, one has
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(H;L'8H ;) + 3H(H;L'8H ;) + 3H((H;L} + L/)6H )

where all field variables are understood to be evaluated at
the background de Sitter space where H; = H, = constant
for all directions.

If the inflationary de Sitter solution has one stable mode
and one unstable mode for the system, the unstable mode is
expected to collapse the de Sitter phase. Then the infla-
tionary era will come to an end once the unstable mode
takes over. It was shown earlier to be a helpful way to select
a physically acceptable model for our universe. Our result
shown here indicates, however, that the unstable mode will
also tamper the stability of the isotropic space. Indeed, if
the model has an unstable mode for the de Sitter perturba-
tion, this unstable mode will also be unstable against the
anisotropic perturbation.

For example, one can show that the model [10]

L = —R+ aR*+ BRYR}, + yR* 5 RFY , . RV,
(45)

admits an inflationary solution if y > 0. Note that the y
term is the minimal consistent effective low-energy two-
loop renormalizable Lagrangian for pure gravity theory
[21]. In addition, the quadratic terms can be shown to be
derivable from the matter effect of quantum fields. For
simplicity, one can write

A=H, +H} (46)
,  k

B=H;+—, (47)
a

Cc= HIHZ’ (48)

D=H,+ H? (49)

since all curvature tensor components and all field equa-
tions will be functions of the above combinations. This
notation will be shown to very convenient in tracking the
field equations for any complicated models such as the
higher derivative models we are working on in this paper.
Indeed, one can show that the Lagrangian reads

L =4A + 2B +4C + 2D + 4a[4A? + B*> + 4C? + D?
+ 4AB + 8AC + 4AD + 4BC + 2BD + 4CD]
+ 2B[3A% + B> + 3C? + D> + 2AB + 2AC + 2AD
+ 2BC + 2CD] + 8y[243 + B3 + 2C3 + D*]. (50)

This Lagrangian will reduce to the de Sitter models when
we set H; — H in the isotropic limit. Hence one can show
that the generalized Friedmann equation (21) gives

HY = 1/4y 51
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in the isotropic limit for an inflationary solution with a2 >

Note that the quadratic terms does not contribute to the
Friedmann equation in the de Sitter limit with a constant
inflationary phase. This can be shown to be a general
property of the quadratic models. One will show later
that these terms will, however, affect the stability condi-
tions for the inflationary phase. Indeed, quadratic terms
will be shown to affect the duration of the inflationary de
Sitter phase which will be shown in a moment.

Note that one can also show that

(H;L™y = 2(H;L"?), (52)
(H;Li) = 2(H,L%), (53)

L' =2L7, (54)
(H,Ly) = 2(H;L.,), (55)

in the inflationary de Sitter background with Hj, =
constant. Therefore, the stability equations (44) can be
greatly simplified. For convenience, one will define the
operator D as

DSH =(H;L""Y6H +3H(H;L""Y6H + 3H(H;L} + L')6H
+2(H,L"Y6H — (H;L,,)5H. (56)

As a result, one can show that the stability equation (44)
reads

D (8H, + 8H,) =0 (57)

with i = 1 and i = z components summed over. Since one
can perturb the filed H; from any directions, stability
conditions must also hold for perturbation from any direc-
tion. Hence, one expects the stability conditions must hold
and be identical from the perturbations in each direction.
Indeed, the above result shows that both 6H; and 0H,
follow the same condition. Hence one needs to solve the
following stability condition DSH; = 0 for both i =1
and i = z. Hence one has

(H,L")8H,; + 3H(H,L")6H; + 3H(H;L} + L")8H
to see if the system is stable or not against any small
perturbation with respect to the de Sitter background.

In addition, the stability equation (58) for 6H; can be
shown to be

[6a +2B+12yHZ][SH; + 3H)6H,]
+(1—12yH})SH; =0  (59)

for such KS/dS solutions. Hence one has
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H —3H
5H,~=C,~exp[ 32 0t(1+51)i|+d,exp|: 32 Ot(l_(sl):|

(60)
with

8 = \/1 +8/[27 + 9(6a + 28)HZ] 61)

and some arbitrary constants c;, d; to be determined by the
initial perturbations. It is easy to see that any small pertur-
bation 6 H; will be stable against the de Sitter background
if both modes characterized by the exponents

AL = —[3Hyt/2][1 = &,] (62)

are all negative. This will happen if §; < 1. In such case,
the inflationary de Sitter space will remain a stable back-
ground as the universe evolves.

On the other hand, one would have a stable mode and an
unstable mode if 6; > 1. This indicates that this model
admits one stable mode and one unstable mode following
the stability equation (58) for the inflationary de Sitter
solution. It is shown to be a positive sign for an inflationary
model that is capable of resolving the graceful exit problem
in a natural manner.

Indeed, one expects any unstable mode for a model to be
of the form 6 H; ~ exp[lH,t], to the lowest order in Ht, in
a de Sitter background with / some constant characterizing
the stability property of the model. In such models, the
inflationary phase will only remain stable for a period of
the order Ar ~ 1/IH,. The inflationary phase will start to
collapse after this period of time. This means that the de
Sitter background fails to be a good approximation when
> At

As a result, the anisotropy will also grow according to
SH; — SHY exp[lHyAt] with SHY denoting the initial per-
turbation. Hence this model will have a problem remaining
isotropic for a long period of time. Therefore, a pure
gravity model of this sort will not solve the graceful exit
problem. One will need, for example, the help of a certain
scalar field to end the inflation in a consistent way. The
unstable mode gives us, however, a hope that small anisot-
ropy observed today can be generated by the initial infla-
tionary instability for models with appropriate factor .

The result shown in this paper shows that the roles
played by the higher derivative terms are dramatically
different in the inflationary phase of our physical universe.
First of all, the third order term characterized by the
coupling constant y will determine the expansion rate
H,, given by Eq. (51), for the inflationary de Sitter space.
The quadratic terms characterized by the coefficients a and
B will not affect the expansion rate of the background de
Sitter space. They will however affect the stability condi-
tion of the de Sitter phase depending on the sign of the
characteristic function A... Both the third order term and
quadratic terms are closely related to the quantum correc-
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tions of the quantum fields [15,21]. Their roles played in
the existence and stability condition of the evolution of the
de Sitter space are dramatically different. They are how-
ever equivalently important in the higher derivative
models.

V. CONCLUSION

We have tried to obtain a model-independent formula for
the nonredundant field equations in the Kantowski-Sachs
(KS) type anisotropic space. This equation is applied to
obtain the stability conditions in pure gravity theories. It is
also shown that the existence of a stable de Sitter back-
ground is closely related to the choices of the coupling
constants. We first derive a stability equation which turns
out to be identical to the stability equation for the existence
of the inflationary de Sitter solution discussed in
Refs. [10,20].

If the inflationary de Sitter solution in the pure gravity
theory has one stable mode and one unstable mode for the
system, the unstable mode is expected to collapse the de
Sitter phase. Later on, the inflationary era will come to an
end once the unstable mode takes over after a brief period
of inflationary expansion. Our result indicates, however,
that the unstable mode will also tamper the stability of the
isotropic space.

To be more specific, if the model has an unstable mode
for the de Sitter background perturbation with respect to
isotropic perturbation, this unstable mode will also be
unstable with respect to any anisotropic perturbations. In
particular, we have shown in this paper that the roles
played by the higher derivative terms are dramatically
different in the inflationary phase of our physical universe.
First of all, the third order term is shown to determine the
expansion rate H, for the inflationary de Sitter space. The
quadratic terms are shown to have nothing to do with the
expansion rate of the background de Sitter space. They will
however affect the stability condition of the de Sitter phase.
Their roles played in the existence and stability condition
of the evolution of the de Sitter space are dramatically
different.

In short, the result of this paper shows that graceful exit
and stability of any de Sitter model cannot work along in a
naive way. The physics behind the inflationary de Sitter
models appears to be much more complicated than one
expects. In another words, the phase transition during and
after the inflationary phase deserves more attention and
requires extraordinary care in order to resolve the problem
lying ahead.

In particular, the result shown in this paper shows that
the roles played by the higher derivative terms are dramati-
cally different in the inflationary phase of our physical
universe. First of all, the third order term characterized
by the coupling constant vy determines the expansion rate
H,, given by Eq. (51), for the inflationary de Sitter space.
The quadratic terms characterized by the coefficients o and
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B will not affect the expansion rate of the background de
Sitter space. They will however affect the stability condi-
tion of the de Sitter phase depending on the sign of the
characteristic function A.. Both the third order term and
quadratic terms are closely related to the quantum correc-
tions of the quantum fields [15,21]. Their roles played in
the existence and stability condition of the evolution of the

(1]

(2]

(3]
[4]

(5]
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de Sitter space are dramatically different. They are how-
ever equally important in the higher derivative models.
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