WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2006; 6:585-599
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.412

SIP mobility and IPv4/IPv6 dual-stack supports in 3G IP
multimedia subsystem

Shiang-Ming Huang?, Quincy Wu?*1, Yi-Bing Lin! and Che-Hua Yeh!

' Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
2Graduate Institute of Communication Engineering, National Chi Nan University, Nantou 545, Taiwan

Summary

In the Universal Mobile Telecommunications System (UMTS), session initiation protocol (SIP) and IPv6 are the
default protocols for IP multimedia core network subsystem (IMS). However, a user equipment (UE) may not be
allowed to roam or hand off from UMTS to a private-IPv4 GPRS network. In this paper, we utilize SIP mobility
and an automatic IPv6 tunneling mechanism, called Teredo, to support roaming/handoff of a UE between different
networks. We have developed the first non-commercial Linux-based Teredo mechanism, and compared our solution
with other Teredo implementations in the public domain. Our study indicates that our solution can reduce the
tunneling overhead and transmission delay over two other implementations by 44—74%. Copyright © 2006 John

Wiley & Sons, Ltd.

KEY WORDS: IPv6; NAT; SIP terminal mobility; Teredo; tunneling; UMTS

1. Introduction

Universal Mobile Telecommunications System
(UMTS) is a third-generation (3G) mobile network
proposed by the Third Generation Partnership Project
(3GPP). UMTS effectively integrates Internet protocol
(IP) with cellular technologies. Specifically, the IP
multimedia core network subsystem (IMS) utilizes IP
version 6 (IPv6) to support large IP address space, and
provides a variety of multimedia services based on
session initiation protocol (SIP) [1].

Figure 1 illustrates the UMTS architecture for
packet-switched service domain [2-5]. The general
packetradio service (GPRS) network (Figure 1(b))is an

IP-based backbone network consists of serving GPRS
support nodes (SGSNs; Figure 1(i)) and gateway GPRS
support nodes (GGSNs; Figure 1(j)). An SGSN relays
IP packets between the mobile users and the GGSN.
A GGSN is a specialized router that functions like a
gateway. It controls user data sessions and transfers
the data packets between the GPRS network and the
external packet data network (PDN; Figure 1(d)). The
home subscriber server (HSS; Figure 1(h)) is a mas-
ter database containing all 3G user-related subscription
information. Both the GPRS and the IMS networks
(Figure 1(c)) access the HSS for mobility manage-
ment and session management. The UMTS terrestrial
radio access network (UTRAN; Figure 1(a)) consists

*Correspondence to: Quincy Wu, Graduate Institute of Communication Engineering, National Chi Nan University, No. 1,

University Road, Puli, Nantou 545, Taiwan.
tE-mail: Quincy. Wu@Gmail.com

Contract/grant sponsor: National Science Council; contract/grant numbers: NSC93-2219-E-009-029; NSC93-2752-E-0090005-

PAE.
Copyright © 2006 John Wiley & Sons, Ltd.

586 S.-M. HUANG ET AL.

-- signaling links
—— dala and signaling links

(e) ﬂ é— RNC(g)
UE Node 8
""];} é— RNC
UE Node B

UTRAN (a)

CSCF: Call session contfral funclion
GGSN: Gateway GPRS support node Node B: Base station
GPRS: Genaral Packe! Radio Service P-CSCF: Proxy CSCF
HSS: Home subscriber server FDM: Packet data network
I-CSCF: Interrogating CSCF

SGSN (i)

RNC: Radio network controller

?ﬂ::::;_‘j _________ P-CSCF —-:“.I-CSCF
Eﬂ uO &

PDN (d)

GGSN (j)

GPRS netwark (b)

IS IP multimadia core natwark subsystern 5-CSCF: Serving CSCF

SGSN: Serving GPRS support node

UE: Usar aquipment

UMTS: Universal Mobile Telecommunications System
UTRAMN: LMTS terrestrial radio access network

Fig. 1. The UMTS network architecture.

of Node Bs (the UTRAN base stations; Figure 1(f))
and radio network controllers (RNCs; Figure 1(g)) con-
nected by an asynchronous transfer mode (ATM) net-
work. The user equipment (UE; Figure 1(e)) is a mobile
phone with an IP protocol stack. A UE communicates
with a Node B through radio interface based on wide-
band code division multiple access (WCDMA) radio
technology.

The UEs utilize the GPRS network to access the IMS
network. A packet data protocol (PDP) context speci-
fies a connection between the UE and the GGSN, and
the UE needs to activate the PDP context before it pro-
ceeds to access the IMS services. From the PDP context
activation procedure, the UE obtains an IP address as-
signed by the GGSN. Note that the GGSN-assigned IP
address can be in the IPv4 (IP version 4) or in the IPv6
format [6].

The IMS is a SIP-based service infrastructure where
IMS signaling is exercised at proxy call session control
function (P-CSCF; Figure 1(1)), interrogating CSCF
(I-CSCF; Figure 1(m)) and serving CSCF (S-CSCF;
Figure 1(k)). The P-CSCF is the first contact point
within the IMS for a UE. It acts as a SIP proxy
server between the UE and I-CSCF/S-CSCF. The I-
CSCEF is responsible for routing SIP messages from
P-CSCF to an appropriate S-CSCF, and the S-CSCF
provides actual SIP service functions. Some of these
CSCFs may only support IPv6 (e.g., 3GPP Release
5) and thus cannot be accessed from an IPv4-only
network.

Copyright © 2006 John Wiley & Sons, Ltd.

During IPv6 deployment, many existing IP networks
remain to support IPv4 only, and a UE may find itself
attached to a GPRS network that does not support IPv6.
Because each network may deploy IPv6 in incremen-
tal fashion, it is unrealistic to assume a single flag day
to upgrade all IPv4 networks to IPv6. To facilitate the
transition for IPv4 to IPv6 migration in UMTS, tunnel-
ing techniques are utilized to carry IPv6 traffic through
IPv4 networks [7]. A dual-stack UE (a UE with both
IPv4 and IPv6 protocol stacks) can utilize the GGSN-
assigned IPv4 address to establish a tunnel for connec-
tion with external IPv6 networks [8]. We will address
this transition issue later.

In existing IPv6-in-IPv4 tunneling mechanisms such
as configured tunnel and automatic tunnel [7], 6 to 4
tunnel [9] and tunnel broker [10], both end points of a
tunnel must possess public IPv4 addresses. Although
public IPv4 addresses may be available in some typical
scenarios, many Internet service providers, especially
WLAN (wireless local area network) and GPRS [5],
may only provide private IPv4 addresses to their cus-
tomers, and NAT (network address translation) [11] is
required to establish Internet connectivity. Hence, IPv6
users within private IPv4 networks would not be able
to establish tunnels to IPv6 networks. This issue turns
out to be one of the major obstacles in the deployment
of IPv6 environment (e.g., UMTS IMS).

Several IPv6 tunneling solutions for private IPv4
networks with NAT have been proposed, including
virtual private network (VPN) and user datagram

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 587

Visited network

Home network

UE (after moving to| |UE (in home SIP EaisE Correspondent
visited network) network) host (CH)
BEGISTER » Standard SIP
200 OK ragistration procedure
UE maoves |
REGISTER (1)
L 2000k (2)

INVITE ©)

302 moved temporarily @

ACK @

INVITE
180 Ringing
200 OK = Standard SIP
ACK call setup procedure
media data

Fig. 2. SIP pre-call mobility procedure.

protocol (UDP) tunnel [12]. These solutions provide
IPv6 connectivity for private hosts, but require
manual configuration at the user end of a tunnel. This
configuration task is not transparent to users, and is not
easy for novice users. Therefore, these solutions are
not suitable for large private [Pv4 networks. Moreover,
in these approaches, only one static tunnel server is
assigned to relay all IPv6 packets of a host in the
private network. This tunnel server may potentially
become the bottleneck, and it is very likely that the
traffic follows a ‘dog leg’ route from the source to the
tunnel server and then to the destination, resulting in a
non-optimal routing path. To address the above issues,
the Internet society proposes Teredo [13], an automatic
tunneling mechanism with the capability to traverse
NATs.*

Another important issue in UMTS is mobility sup-
port for UEs. Within a single GPRS network, the UE
mobility is supported by the SGSN and the GGSN
with a layer-2 protocol called GPRS tunneling protocol
(GTP). However, if a UE hands off to different visited
networks with different IPv4/IPv6 support (e.g., a UE

fRecently, an enhanced model of UDP tunnel called
“Silkroad” [14] was proposed to alleviate the bottleneck is-
sue. However, some critical algorithms of Silkroad are still
missing at the time when this paper is written.

Copyright © 2006 John Wiley & Sons, Ltd.

hands off to different operator’s IP network), the situ-
ation becomes complicated. In this paper, we combine
an application level mechanism, called SIP terminal
mobility, and an automatic IPv6 tunneling mechanism,
called Teredo, to support the handoff of a UE between
different networks, including private IPv4 networks as
well as IPv6 networks.

This paper is organized as follows. Section 2 de-
scribes the mobility support with SIP in UMTS net-
work. Specifically, we elaborate on the procedures for
a UE to access the IMS services when it hands off
from its home network (UMTS) to a visited network
(UMTS or GPRS). Section 3 describes the Teredo
mechanism that enables a UE to access the IPv6-
only IMS via a private IPv4 PDP context. In Sec-
tion 4, we investigate the design of our Linux-based
Teredo software architecture, and then show the per-
formance comparison with other public-domain Teredo
solutions.

2. SIP Terminal Mobility

SIP is an application-layer signaling protocol for es-
tablishing, modifying, and terminating multimedia ses-
sions [1]. The SIP protocol is capable of handling ter-
minal mobility, session mobility, personal mobility, and
service mobility [15]. Here, we focus on SIP terminal

Wirel. Commun. Mob. Comput. 2006; 6:585-599

588 S.-M. HUANG ET AL.

Home network

Visited network

UE (after moving to || UE (in home Correspondent
visited network) network) host (CH)
INVITE = 1
180 Ringing
200 OK Standard SIP
= call setup procedure
ACK
= media data
UE moves
re-NviTE (1) :
o 20006 (2)
ACK ®
4
¢ media data O >

Fig. 3. SIP mid-call mobility procedure.

mobility that allows a mobile host (i.e., a UE in UMTS)
to move between IP subnets while remaining reachable
to correspondent hosts (CHs). The SIP terminal mo-
bility comprises SIP pre-call mobility (Figure 2) and
SIP mid-call mobility (Figure 3), in which the former
enables a CH to establish sessions to a UE, and the lat-
ter enables a UE to re-establish its on-going sessions
while it moves to a visited network. In UMTS network,
these two actions correspond to roaming and handoff,
respectively.

The SIP pre-call mobility is illustrated in Figure 2. In
this figure, a UE moves from its home network (UMTS)
to a visited network (GPRS or UMTYS), and initiates the
SIP pre-call mobility procedure as described below.

Steps A.1and A.2. The UE sends a SIP REGISTER
request to update its new contact address with the SIP
server.

Steps A.3and A.4. When a CH sends a SIP INVITE
request to the UE through the SIP server, the SIP server
notifies the CH of the UE’s new contact address.

Step A.5. The CH replies with a SIP ACK message
to notify the SIP Server that it has received the SIP 200
OK response.

Upon receipt of the UE’s new contact address, the
CH contacts this address directly and a session is estab-
lished between the CH and the UE through the standard
SIP call setup procedure.

Copyright © 2006 John Wiley & Sons, Ltd.

In addition to SIP pre-call mobility which is applied
to allow call establishment of successive sessions after
the UE moves, for UE movement in the middle of a
session, SIP mid-call mobility must be applied to re-
establish the on-going sessions. After the UE moves to
a visited network and obtains a new contact address,
it modifies the existing session by issuing a new SIP
INVITE request, in which the SIP header fields ‘From’,
“To’, ‘Call-ID’ have identical values as those in the
original SIP INVITE request which establishes this
session. This secondary SIP INVITE request is called
a SIP re-INVITE request, and it modifies an ex-
isting session by new parameters specified in the
‘connection address’ field of the session description
protocol (SDP) and new ‘Contact’ field in the SIP
header.

The SIP mid-call mobility is illustrated in
Figure 2, where the UE and the CH first establish a
session through the standard SIP call setup procedure,
and then the UE moves to a visited network, and re-
establishes this session with the following steps.

Step B.1. When the UE moves, it initiates the SIP
mid-call mobility mechanism by sending a SIP re-
INVITE request to the CH. In this request, the contact
field in the SIP header and the SDP connection address
field are updated to the UE’s new IP address.

Step B.2. When the CH receives this request, it
replies a SIP 200 OK response.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM

Step B.3. The UE replies with an SIP ACK message
to notify the CH that it has received the SIP 200 OK
response.

Step B.4. The CH modifies the session parameters
according to the new connection address in the SDP
content, and then the media data transmission is re-
established between the CH and the UE with its new
address.

The format of a SIP re-INVITE request is identi-
cal to a SIP INVITE request. Thus it is unnecessary to
modify the SIP protocol or create a new SIP method.
Moreover, SIP terminal mobility can fit the require-
ments of fast handoff, low latency, and high bandwidth
utilization [15,16].

The above examples assume that both the UE and
the CH utilize IPv6 as the underlying protocol. If
the visited network is a private IPv4-only network
(e.g., some GPRS networks), the UE must first obtain
IPv6 connectivity before it proceeds to utilize SIP ter-
minal mobility mechanism. In Reference [8] an ex-
tended mechanism based on mobile IPv6 was pro-
posed to support the handoff of a mobile node from
its IPv6 home network to any private IPv4-only net-
works. However, in 3GPP IMS, SIP terminal mobil-
ity is believed to be a better mobility solution than
mobile IPv6, because SIP is the native protocol sup-
ported in the IMS. We shall illustrate how to adopt SIP
terminal mobility to support UE roaming and hand-
off, and utilize Teredo mechanism to provide IPv6
connectivity.

The Teredo SIP terminal mobility solution is illus-
trated in Figure 4. In this figure, the UE and the CH are
the two communication ends as described in the previ-
ous examples. The UE hands off from an IPv6 UMTS

589

network to a private IPv4-only GPRS network with an
NAT. The UE utilizes Teredo and SIP terminal mobility
mechanisms with the following steps:

Steps C.1 and C.2. The UE hands off to a private
IPv4-only GPRS network. It utilizes the Teredo mech-
anism to obtain IPv6 connectivity (details will be elab-
orated in Section 3).

Step C.3. The UE and the CH utilize the Teredo
mechanism to send and receive IPv6 packets. They per-
form the SIP terminal mobility procedure as described
in Steps A.1-A.5 and Steps B.1-B.4, for pre-call and
mid-call scenarios, respectively.

Step C.4. After execution of the SIP terminal mo-
bility procedure, the UE and the CH can communicate
successfully with the help of IPv6 packet relay function
provided by Teredo.

Details of the Teredo mechanism will be elaborated
in the following section.

3. Teredo mechanism

By tunneling IPv6 packets over IPv4 UDP through
NATs, Teredo provides IPv6 connectivity for dual-
stack nodes within private IPv4 networks. The Teredo-
supported UEs, therefore, are able to access the
[Pv6-only IMS from a private IPv4-only GPRS
network.

The Teredo architecture is illustrated in Figure 5,
which consists of a Teredo server (Figure 5(a)), sev-
eral Teredo clients Figure 5(b)) and Teredo relays Fig-
ure 5(c)). A Teredo client is implemented at a dual-
stack node in a private IPv4 network (i.e., a GPRS

PFLV:ttv%:(M Plrizlti\(::vclnfllm IPv6 network
| [|| |
| UE || NAT | [Teredo| CH

request IPv6 connectivity @

obtain an IP\6 address @

| SIP terminal mobility (3) |

|

A 4

¢

media session @ 4

Fig. 4. The Teredo SIP terminal mobility solution.

Copyright © 2006 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

590 S.-M. HUANG ET AL.

@ Public IPv4 network (@)
qualification @

\ Teredo server
UDP: 3544

= (a) | pw 3333

J IPV6: 2001:3:3:3:3

H Address ing table on NAT 1
[UDP | 19216802 | 4096 | 11471 | 7863 |;

@

(b) Private IPv4
GPRS network

Teredo client (d)
UDP: 4096
IPv4: 192.168.0.2

Public IPv4: 1.1.1.1 |
((YNAT) oivate 1Pua: 192.168.0.1

Pv6: 2001:0000:0303:0303:8000:E148:FEFE.FEFE

(c)

advertisement

Teredo relay 3FFE:831F:/32| (h)

UDP: 3544
IPv4:2.2.2.2
IPv6: 2001:2:2:2::2

IPv6 host
IPv6: 2001:4:4:4::4

IPv6 network

(9)

Fig. 5. Teredo architecture.

transport
protocol

private IPv4
address

private port

public IPv4

address public port

Fig. 6. An entry in the address mapping table.

network in Figure 5(d)) that connects to public IPv4
network Figure 5(e)) through NAT Figure 5(f)). A
Teredo server assists a Teredo client to obtain an
IPv6 address for IPv6 network access. A Teredo re-
lay establishes IPv4 UDP tunnels with the Teredo
clients using the designated port 3544, and relays
IPv6 packet between the Teredo clients and the IPv6
network. For IPv6 packets sent from the IPv6 net-
work and destined to a Teredo client, the Teredo re-
lay encapsulates these packets in IPv4 UDP and for-
wards them to the destination Teredo client in a pri-
vate IPv4 network. In the reverse direction, the Teredo
relay decapsulates IPv4 UDP packets sent from the
Teredo client to the IPv6 network Figure 5(g)). To
broadcast its identity, every Teredo relay advertises
an IPv6 address prefix 2001:0000::/32 to the IPv6
network (path @ in Figure 5). Through the adver-
tisement, the IPv6 hosts (Figure 5(h)) select appro-
priate Teredo relays such that all IPv6 packets sent
from these IPv6 hosts to a Teredo client are routed
to Teredo relays closest to the packet sources. There-
fore the traffic load to a Teredo client can be dy-
namically adjusted among Teredo relays with optimal
routing.

The Teredo client in Figure 5 represents a dual-stack
UE with Teredo client software running on it; the NAT
is most likely to be implemented at the GGSN, and
thus the public IPv4 network is the PDN connected to
the GGSN.

In Figure 5, the IPv4 address of the Teredo server
is 3.3.3.3. The NAT is equipped with two network
interfaces: the WAN interface (to the public network)
has the public IPv4 address 1.1.1.1, and the LAN
interface (to the private network) has the private

Copyright © 2006 John Wiley & Sons, Ltd.

IPv4 address 192.168.0.1. The Teredo client is
assigned the private IPv4 address 192.168.0.2. The
NAT performs private—public address translation for
all pass-through packets according to an address-
mapping table. Suppose that the NAT is a full cone
NAT?® [17]. The fields of an entry in the NAT address-
mapping table are illustrated in Figure 6. In this table,
the ‘private IPv4 address’ and the “private port’ fields
store the private transport address of the private end
(i.e., IPv4 address plus TCP/UDP port, whose values
are 192.168.0.2 and 4096 for the example in Figure 5).
The ‘transport protocol’ field stores the transport proto-
col type (TCP or UDP). The ‘public IPv4 address’ and
the ‘public port’ fields store the public transport address
assigned by the NAT. The values in these fields (IPv4
address 1.1.1.1 and port 7863 in this example) are used
to replace the private transport address. This public
transport address of a private IPv4 host is crucial
for translating IPv4 UDP packets passing through
the NAT. When a host in the public IPv4 network
sends an IPv4 UDP packet to this transport address
(1.1.1.1:7863), the NAT dispatches this packet to the

$When an internal host within a private network sends a
packet to an external host, an NAT maps the private trans-
port address of the internal host to a unique public transport
address. Thereafter, a public host can send packets to the
private host by delivering them to the mapped public trans-
port address. However, different types of NAT's have different
rules to handle incoming packets. The full cone NAT allows
packets from all public hosts to pass through, while a re-
stricted cone NAT allows an external host (with IP address
X) sending a packet to the private transport address only if
the private transport address had previously sent a packet to
IP address X.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 591

Teredo server IPv4

2001:0000::/32 address

Obfuscated Obfuscated mapped
mapped .
Flag ublic UDP public
p IPv4 address
port

&——— 32 bits ——Pl———— 32 bits ——P{«t— 16 bits —»>«t— 16 bits —»-|¢——— 32 bits ——»|

Fig. 7. Teredo IPv6 address format.

designated private IPv4 host (192.168.0.2:4096) with
the help of the address-mapping table.

As an automatic tunneling mechanism, Teredo em-
beds the NAT traversal information in its 128-bit IPv6
address. A Teredo IPv6 address format consists of
the fields illustrated in Figure 7. The 2001:0000::/32’
field specifies the IPv6 address prefix for Teredo. The
‘Teredo server IPv4 address’ field indicates the IPv4 ad-
dress of a Teredo server (e.g., 3.3.3.3 in Figure 5). The
‘Flag’ field indicates the type of NAT (full cone or not)
[17]. The ‘Obfuscated mapped public UDP port’ and
the ‘Obfuscated mapped public IPv4 address’ fields in-
dicate the public transport address assigned by the NAT.
This transport address is mapped to the Teredo client’s
private transport address. The obfuscation mecha-
nism is needed because some NAT products provide
‘generic’ application layer gateway (ALG) functional-
ity. The generic ALG hunts for IPv4 addresses, either
in text or binary formats within a packet, and rewrites
them if they match a binding in the address-mapping
table. When this ‘smart NAT” handles the payload of
pass-through IPv4 packets, it translates any occurrence
of IPv4 address in the payload that matches the address
to be translated in the IPv4 header (or translates any
occurrence of port number in the payload that matches
the port to be translated in the TCP/UDP header). Such
action certainly interferes with normal Teredo opera-
tions. To prevent the smart NAT from modifying the
Teredo IPv6 addresses in the encapsulated IPv4 UDP
packets, obfuscation performs bitwise XOR operation
on the original value with 1 to protect it.

At start-up, a Teredo client (i.e., a UE) obtains a
Teredo IPv6 address by performing the qualification
procedure with the Teredo server (path OENOEN
in Figure 5). From this procedure, the Teredo client de-
tects the NAT type and learns its mapped public trans-
port address from the Teredo server. As long as the
Teredo clients obtain Teredo IPv6 addresses, they are
able to communicate with the IPv6 network with the
help of Teredo servers and Teredo relays. In the ex-
ample of Figure 5, the Teredo client uses UDP port
4096 to initiate the qualification procedure with the
Teredo server. When this UDP request arrives at the
NAT (path @in Figure 5), the NAT dynamically allo-

Copyright © 2006 John Wiley & Sons, Ltd.

cates an available UDP port (e.g., 7863 in this example)
for this connection, and creates an entry in the address
mapping table with protocol type UDP, private trans-
port address 192.168.0.2:4096 and public transport ad-
dress 1.1.1.1:7863. Then the UDP request is sent to
the Teredo server (path ®in Figure 5), and the Teredo
server replies a UDP response containing the public
transport address (e.g., 1.1.1.1:7863 in this example)
observed by the Teredo server (path ® in Figure 5).
The Teredo client repeats this process following the
NAT type detection algorithm in Reference [17], and
then calculates its Teredo IPv6 address by determining
the value of each field as follows:

¢ Prefix (32 bits) = 0x20010000

e Teredo server IPv4 address (32 bits) = 3.3.3.3 =
0x03030303

¢ Flag (16 bits) = 0x8000 (full cone NAT)

® Obfuscated mapped public UDP port (16 bits) =
7863 @ OxFFFF = 0x1EB7 & OxFFFF = 0xE148

® Obfuscated mapped public IPv4 address (32
bits) = 1.1.1.1 & OxFFFFFFFF = 0x01010101 &
OxFFFFFFFF = OxFEFEFEFE

Therefore, the Teredo IPv6 address obtained by
this Teredo client is 2001:0000:0303:0303:8000:E148:
FEFE:FEFE.

After qualification, communication between the
Teredo client and an IPv6 host can be established. Fig-
ure 8 illustrates how an IPv6 packet is delivered from
an [Pv6 host to a Teredo client with the following steps
(see path O @5 @in Figure 8).

Step D.1. The IPv6 packet is sent from the IPv6
host to the Teredo relay. (The IPv6 host selects
this Teredo relay according to the IPv6 address pre-
fix 2001:0000::/32 advertisement; see path @® in
Figure 5.)

Step D.2. The Teredo relay encapsulates the IPv6
packet in an IPv4 UDP packet. The source address is
the IPv4 address of the Teredo relay (2.2.2.2), and the
source UDP port is 3544. The destination IPv4 address
and UDP port of this packet are determined based on
the IPv6 address of this Teredo client as follows. The

Wirel. Commun. Mob. Comput. 2006; 6:585-599

592 S.-M. HUANG ET AL.

Teredo server
UDP: 3544
IPv4:3.3.3.3

(Public [Pv4 network :

IPv6: 2001:3:3:3::3

H Address ing table on NAT '
1 ubpP 192.168.0.2 4096 1.1.1.1 7863 H

Private IPv4
network

Teredo client
UDP: 4096
IPv4: 192.168.0.2

Public IPv4: 1.1.1.1 I
Private |Pv4: 192.168.0.1

Pv6: 2001:0000:0303:0303:6000:E148:FEFE:FEFE

Teredo relay
UDP: 3544

IPv4:2.2.2.2
IPv6: 2001:2:2:2::2

IPv6 host
IPv6: 2001:4:4:4::4

IPv6 network

Fig. 8. Communication between a Teredo client and an IPv6 host.

destination address is the restored value derived from
the 32-bit ‘Obfuscated mapped public IPv4 address’
field of destination IPv6 address (OxFEFEFEFE &
OxFFFFFFFF = 0x01010101 = 1.1.1.1), and the des-
tination UDP port is the restored value derived from
the 16-bit ‘Obfuscated mapped public UDP port’
field of destination IPv6 address (OxE148 & OxFFFF =
0x1EB7 = 7863). The Teredo relay sends the IPv4
UDP packet to the NAT (1.1.1.1:7863) through the IPv4
network.

Step D.3. When the NAT receives this IPv4 UDP
packet, it translates the destination IPv4 address and
UDP port from 1.1.1.1:7863 to 192.168.0.2:4096 ac-
cording to the address mapping table, and then sends it
to the Teredo client in the private [Pv4 network.

Upon receipt of the packet, the Teredo client decap-
sulates the IPv4 UDP packet to obtain the IPv6 packet.
With the above steps, IPv6 packets sent from the IPv6
host can successfully pass through the NAT. For IPv6
packet delivery from a Teredo client to an IPv6 host,
please refer to the Teredo specification [13]. The above
example assumes a full cone NAT server. Details of
packet transmission for other types of NATS can also
be found in the Teredo specification [13].

4. Three Teredo Implementations

We implemented NICI-Teredo [18] on Linux in year
2003. In the same year, an independent implementation
for FreeBSD was also developed by 6WIND, LIP6 and
Euronetlab [19]. In year 2004, Miredo-Teredo was de-
veloped on Solaris, FreeBSD, and Linux [20]. In this
section, we illustrate the software architectures of these
Teredo implementations.

NICI-Teredo supports the Teredo server and Teredo
relay functions that can be installed on a single host
or independently on multiple hosts. The Teredo server

Copyright © 2006 John Wiley & Sons, Ltd.

function is implemented as a user-level daemon, which
is illustrated in Figure 9 (a). The Teredo relay function
is developed with a combination of a user-level
program and a kernel-level module as illustrated in
Figure 10 (a). The user-level program deals with the
NICI-Teredo configuration, while the kernel-level
module supports high-speed IPv6 packet relaying.
The NICI-Teredo server (Figure 9(a)) invokes an
IPv6 raw Ethernet socket (Figure 9(b)) and two IPv4
UDP sockets (Figure 9(c)) at the Linux kernel to send
and receive packets. The NICI-Teredo server consists
of four components. The packet processor (Figure 9
@) handles IPv6 packet encapsulation and IPv4 UDP
packet decapsulation. The dispatcher (Figure 9 @)
checks the IPv6 packets delivered from the packet pro-
cessor and dispatches them to the proper functions. The
qualification function (Figure 9 \2)) performs the qual-
ification procedure for Teredo clients. This function
helps the Teredo client to discover the type of NAT and
the mapped public transport address, as described in
Section 3. The Teredo server interacts with the Teredo
clients for qualification through path OENOEN(ONEN
® - ®in Figure 9. For a Teredo client that attempts
to communicate with an IPv6 host, the ICMPv6 relay
function (Figure 9 @) helps to locate a Teredo relay
closest to the destination IPv6 host. This discovery
task is achieved by the ICMPv6 echo request sent from
the Teredo client to the destination IPv6 host through
path @ ® 5 ® 5 @ip Figure 9 and the response
sent from the IPv6 host to the Teredo client following
path OO Oin Figure 8. From the response
message, the Teredo relay is located for the communi-
cation between the Teredo client and the IPv6 host. As
the other two implementations of Teredo servers, both
6WIND and Miredo have similar architecture designs
as NICI-Teredo server, and the details are omitted.
The NICI-Teredo relay (Figure 10(a)) provides the
IPv6 packet relay function by utilizing the IPv6 and
IPv4 forwarding mechanisms (Figure 10(b) and (c)) at

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 593

NICI-Teredo server ()

D

O,

gualification

packet
processor @'ﬁ dispatcher

{D_b fum:ﬂnn@

ICMPvo relay
@ l'un;liun%

User lavel

Kernel level A
UDP socket
C__ e

IPvd forwarding

physical interface
module

physical interface

IPvd4 netwark

(SOCK_DGRAM)

Raw Ethernet

(b)) socket

(SOCK_RAW)

|PvE forwarding

physical interface
module
physical interface

IPvE network

Fig. 9. Software architecture of the NICI-Teredo server.

the Linux kernel. This Teredo relay consists of three
modules. The prefix advertisement module (Figure 10
@) advertises the IPv6 address prefix 2001:0000::/32
to the IPv6 network so that the IPv6 packets destined to
the Teredo clients can be routed to the nearest Teredo
relay. The routing management module (Figure 10 @)
initializes the packet forwarding plans at the Linux ker-
nel. It configures the IPv6 forwarding plan to route the

IPv6 packets to the Teredo clients (i.e., for the packets
with the destination IPv6 addresses matching the
IPv6 address prefix 2001:0000::/32) through the relay
module, and configures the IPv4 forwarding plan to
dispatch the IPv4 UDP packets from the Teredo clients
(i.e., for the packets with destination port matching the
designated port 3544) to the relay module. The relay
module (Figure 10 @) provides packet encapsulation

NICI-Teredo Refay ()
prefix advertisement

module @

routing management

*configuration”
Liser lavel :

module @ i

relay module @

decapsulation

1
o-—@

physical interface
module

physical interface

IPvd network

advertisement
2001:0000::/32

configuration :

physical interface
module

physical interface

IPvE network

advertisernent
2001:0000::/32

Fig. 10. Software architecture of the NICI-Teredo relay.

Copyright © 2006 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

594

S.-M. HUANG ET AL.

6WIND-Teredo Relay (@)

prefix advertisement
module

routing management

advertisement

2001:0000::/32

Liser level

module ©) e

Kemel keval

encapsulation
UDP socket [l &) Gecansulation

IPv4 forwarding

J IPvE fcrmrardir{g] |

physical interface
madule

physical interface

IPvd network

physical interface
module

physical interface

IPv6 network

advertiserent
2001:0000::/32

Fig. 11. Software architecture of the 6WIND-Teredo relay.

and decapsulation functions by two callback func-
tions, udpip6_tunnel xmit () (Figure 10 @)
and udpip6_rcv () (Figure 10). These functions
are invoked by the IPv6 and the IPv4 forwarding
mechanisms, respectively. From the IPv6 forwarding
mechanism, the relay module receives IPv6 packets for
IPv4 UDP encapsulation, and then passes them to the
IPv4 forwarding mechanism by IPTUNNEL_XMIT!
(Figure 10 @). The encapsulated packets are then de-
livered to the Teredo clients. In the reverse direction, the
tunneled IPv4 UDP packets are decapsulated into IPv6
by this module, and then passed to the IPv6 forwarding
mechanism (i.e., via the Linux functionnetif _rx ())
for delivery to the IPv6 networks (Figure 10 @).

The 6WIND-Teredo relay (Figure 11(a)) utilizes net-
graph, a FreeBSD in-kernel networking subsystem,
and the IPv6 forwarding mechanism (Figure 11(b))
and socket functions (Figure 11(c)) at the FreeBSD
kernel to provide packet relay function. Unlike the
NICI-Teredo relay that utilizes a single kernel-level
module to provide all packet-processing functions, the
6WIND-Teredo relay relies on the cooperation of sev-

I According to the Linux programming convention, the up-
percase name IPTUNNEL_XMIT () refers to a macro, while
the lowercase name such asudpip6 _rcv () refersto afunc-
tion. The same convention is used in the 6WIND implemen-
tation on FreeBSD.

Copyright © 2006 John Wiley & Sons, Ltd.

eral netgraph submodules and a kernel IPv4 UDP
socket to handle the packets. The 6WIND-Teredo relay
consists of three components. The prefix advertisement
module (Figure 11 @) advertises the IPv6 address pre-
fix 2001:0000::/32 to the IPv6 network, which provides
similar functions as the prefix advertisement module
in the NICI-Teredo relay. The routing management
module (Figure 11 @) initializes the IPv6 forwarding
plan to route the IPv6 packets to the Teredo clients
through the netgraph module. The netgraph module
(Figure 11 @) utilizes three submodules to deal with
IPv6 packet processing. The netisr_dispatch()
and ng_iface_output () functions of the ngN
submodule connect to the IPv6 protocol stack to
deliver IPv6 packets; the so_pru_sosend() and
so_pru_soreceive () functions of the ksocket sub-
module utilize a kernel IPv4 UDP socket with port
3544 to deliver the encapsulated packets with the
Teredo clients, where the IPv4 UDP socket provides
packet encapsulation and decapsulation functions.
These two netgraph submodules interact with each
other through the ng_teredo submodule. Specifically,
the ng_teredo submodule uses NG_SEND_DATA () and
ng_teredo_rcvdata () todeliver IPv6 packets be-
tween the ngN and the ksocket submodules. Through
cooperation of these three submodules in the netgraph
module, IPv6 packets received by the ngN submodule
are written to the kernel IPv4 UDP socket by the ksocket
submodule, and vice versa.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 595
Miredo-Teredo Relay (@) | advertisement
prefix advertisement 2001:0000::/32
module

routing management
module

User lewvel

packet processing

®

module
I

Karmel level

E

UDP socket
(SOCK_DGRAM)

configuration

[IPv4 forwarding] [tun module

d’r;(iPvs fomm-.r(.E’J

physical interface

module

physical interface

IPvd network

physical interface

module

physical interface

IPv6 network

advertiser;enl
2001:0000::/32

Fig. 12. Software architecture of the Miredo-Teredo relay.

The software architecture of the Miredo-Teredo
relay (Figure 12(a)) is quite different from the previous
two implementations. Specifically, the Miredo-Teredo
relay relies on the IPv6 forwarding mechanism
(Figure 12(b)), an IPv4 UDP socket (Figure 12(c)) and
a tun module (Figure 12(d)) to provide IPv6 packet
relay function. Unlike the NICI-Teredo relay that uses
a kernel-level packet relay module, the Miredo-Teredo
relay uses a user-level packet-processing module
to send and receive the encapsulated packets. This
Teredo relay consists of three components. The prefix
advertisement module (Figure 12 @) advertises the
IPv6 address prefix to the IPv6 network, and the
routing management module (Figure 12 @) initializes
the IPv6 forwarding plan to route the IPv6 packets
to the Teredo clients through the fun module. The

UDP:4098
IPvd:192.168.0.2

(IPwE:2001:0000:0503:0303:8000:E148:FEFE:FEFE)
IPva:182.168.0.1

IPv6 host [Teredo client
(a)

MNIC1

functions of these two modules are similar to those
of NICI-Teredo relay and 6WIND-Teredo relay.
The packet-processing module (Figure 12 \2)) cre-
ates and maintains an IPv4 UDP socket for packet
delivery with the Teredo clients, and utilizes the
tun module for connection with the IPv6 protocol
stack. This module delivers an IPv6 packet as the
encapsulated datagram through the IPv4 UDP socket
which binds to the port 3544. The packet-processing
module provides IPv6 packet relay function by using
memcpy () and socket functions (sendto () and
recvirom()) for IPv6 packets delivery between the
tun module and the IPv4 UDP socket (see Figures 12
@ and @). This architecture is clearly different
from those of NICI-Teredo relay and 6WIND-Teredo
relay.

UDP:3544
1Pyv4:2.222

1Pvd:1.1.1.1

NAT
(b}

IPv6:2001:2:2:2::2

Teredo relay

lc)

Fig. 13. The test environment.

Copyright © 2006 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

596 S.-M. HUANG ET AL.

—p— NICI-Teredo

—— EWIND-Teredo

Percentage (%)

II|
0 II i
I|
I|

Miredo-Teredo

Delay (us)

Fig. 14. IPv6 to IPv4 latency histograms of the Teredo relays (1280 bytes).

The Teredo relay design significantly affects the
packet transmission performance. The packet process-
ing latency of the NICI-Teredo relay is shorter because
there are no packet copying operations between the ker-
nel and the user levels. The performance comparison
of these Teredo implementations will be elaborated in
the next section.

As a remark, the NICI-Teredo relay is implemented
as a loadable kernel module [21]. Although kernel
hacking effort is required in developing the NICI-
Teredo relay, the installation process is very simple and
the users do not need to modify or re-compile the Linux
kernel.

5. Performance Evaluation of Teredo
Relay Implementations

Teredo relay handles large volume of network traffic
and therefore is likely to be the bottleneck component

Table I. Average processing latency.

in the Teredo mechanism. In this section, we investigate
the performance of the three Teredo relay implemen-
tations described in the previous section. The output
measurement is packet-processing latency, that is, the
processing time at the Teredo relay, which is either the
IPv6 to IPv4 latency (from a public IPv6 host to a pri-
vate Teredo client) or the IPv4 to IPv6 latency (from a
private Teredo client to a public IPv6 host).

The measurement environment consists of three
hosts as illustrated in Figure 13. This environment fol-
lows the testing architecture in RFC 2544 [22] where
a tester (Figure 13(a)) is configured as both the Teredo
client function and the IPv6 host. This IPv6 host runs
on Redhat Linux 9 with an IPv4 UDP daemon to simu-
late the Teredo client function. The NAT (Figure 13(b))
runs on Redhat Linux 9 with address mapping rules set
by iptables [23]. The devices under test (DUTs) are
the three Teredo relay implementations (Figure 13(c)):
NICI-Teredo (version 0.5), 6WIND-Teredo (version
1.13) and Miredo-Teredo (version 0.4.1). Both NICI-

Teredo relay Average IPv6 to IPv4 latency (js)

Average IPv4 to IPv6 latency (.s)

64 bytes 512 bytes 1280 bytes 64 bytes 512 bytes 1280 bytes
NICI 7.56 7.67 791 8.47 8.71 8.93
6WIND 13.30 13.53 14.00 14.34 14.62 14.80
Miredo 28.55 29.45 30.26 27.94 28.76 29.69

Copyright © 2006 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 597

70

50

—@— GWIND-Teredo
30

\ Miredo-Teredo

Percentage (%)

20

|

N e
*
|
|

0 5 10 15 20 25 30 35 40 45 50

Delay (us)
Fig. 15. IPv6 to IPv4 latency histograms of the Teredo relays (512 bytes).
Teredo relay and Miredo-Teredo relay run on Redhat In our measurement, a C program invoking pcap
Linux 9, while 6WIND-Teredo relay runs on FreeBSD library [24] is used for catching the packet receiving
4.9. The hardware for the Teredo relay in Figure 13 is and sending timestamps. We send one packet per

a personal computer with 1800+ AMD Athlon CPU, second to the Teredo relay from IPv6 to IPv4 or IPv4
256 MB SDRAM and two RealTek 8139 100BaseTx to IPv6, and measure the packet processing latency.

Ethernet cards. Tests are conducted with three different packet sizes
70
L 4
60
— 50
oe
a
b 40 ¢ —p—NICI-Teredo
.ﬁ —@— SWIND-Teredo
5 0 Miredeo-Teredo
o .
[V
o \ l * YL lk
10
0 Jw

0 3 10 15 20 25 30 33 40 45 0
Delay (us)
Fig. 16. IPv6 to IPv4 latency histograms of the Teredo relays (64 bytes).

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:585-599

598 S.-M. HUANG ET AL.

(64, 512, and 1280 bytes, where the 1280-byte packet
is the recommended IPv6 MTU size for Teredo [13]).
Each test generates 10000 packets to measure the
IPv6 to IPv4 and IPv4 to IPv6 latencies.

Figure 14 shows the 1280-byte IPv6 to IPv4 latency
histograms of the three Teredo relays. In this figure,
the x-axis represents the delay time (in pws) and
the y-axis represents the percentage of the packets
(out of the 10000 testing packets) that have this
delay value. The latency of the NICI-Teredo relay is
clustered around 7-9 ps and 12-13 ws. The latency
of the 6WIND-Teredo relay is around 12—16 ws. The
latency of the Miredo-Teredo relay is clustered around
27-31 ps and 33-35 ps. The 1280-byte IPv4 to IPv6
latency histograms are similar to those in Figure 14,
and the average packet processing latency of the three
Teredo relays are listed in Table I.

With different packet sizes (1280, 512, 64 bytes),
the IPv6 to IPv4 latency histograms of NICI-Teredo
relay and 6WIND-Teredo relay (see Figures 14-16)
have similar shapes, where the Miredo-Teredo relay has
longer latency than that of the NICI-Teredo relay. For
the 1280-byte IPv6 to IPv4 latency listed in Table I, the
latency improvement of the NICI-Teredo relay over the
6WIND-Teredo relay is around 44%, and the improve-
ment of the NICI-Teredo relay over the Miredo-Teredo
relay is around 74%.

6. Conclusion and Future work

This paper addressed the issues when dual-stack UEs
hand off or roam between the [Pv6 UMTS and the pri-
vate [Pv4 GPRS networks. Especially, we addressed the
NAT traversal issue between the GPRS (private IPv4)
and the UMTS (IPv6) networks. To solve this prob-
lem, we combined the SIP mobility mechanism and an
automatic IPv6 tunneling mechanism, called Teredo,
to support the handoff of a UE between different net-
works. As an NAT traversable automatic tunneling
mechanism, Teredo provides convenient IPv6 access
from the private IPv4 networks. We developed an effi-
cientimplementation for Teredo tunneling called NICI-
Teredo. To our knowledge, NICI-Teredo was the first
non-commercial Teredo implementation on Linux. Our
approach has shorter packet processing latency than
that of the 6WIND-Teredo relay (FreeBSD-based) and
the Miredo-Teredo relay (Linux-based). The advantage
of packet processing performance of the NICI-Teredo
relay makes it an appropriate IPv6 tunneling solution.

As a final remark, we point out that Teredo does not
work for all NAT servers. According to the rules for

Copyright © 2006 John Wiley & Sons, Ltd.

port mapping and access control in NAT [17], the four
major types are full cone NAT, restricted cone NAT, port
restricted cone NAT, and symmetric NAT. Although
Teredo can successfully traverse the first three types of
NATsS, it fails in traversing symmetric NAT. To enhance
Teredo for symmetric NAT is still an open issue for
further study.

References

1. Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson
J, Sparks R, Handley M, Schooler E. SIP: Session Initiation
Protocol. RFC 3261, June 2002.

2. 3GPP. 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; IP Multimedia Subsys-
tem (IMS); Stage 2 (Release 5). Technical Specification 3GPP
TS 23.228 V5.13.0 (2004—-12), December 2004.

3. 3GPP. 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; General Packet Radio
Service (GPRS); Service description; Stage 2 (Release 5). Tech-
nical Specification, 3GPP TS 23.060 V5.10.0 (2005-03), March
2005.

4. Lin Y-B, Huang Y-R, Pang A-C, Chlamtac I. ALL-IP approach
for UMTS third-generation mobile networks. IEEE Network
Magazine 2002; 16(5): 8-19.

5. Lin Y-B, Chlamtac I. Wireless and Mobile Network Architec-
tures. John Wiley & Sons: New York, 2001.

6. Chen Y-K, Lin Y-B. IP connectivity for gateway GPRS support
Node. IEEE Wireless Communications Magazine 2005; 12(1):
37-46.

7. Gilligan R, Nordmark E. Transition Mechanisms for IPv6 Hosts
and Routers. RFC 2893, August 2000.

8. Thakolsri S, Prehofer C, Kellerer W. Transition Mechanism in
IP-based Wireless Networks. In Proceedings of 2004 IEEE Inter-
national Symposium on Applications and the Internet Workshops
(SAINT Workshops 2004), 2004; pp. 112-119.

9. Carpenter B, Moore K. Connection of IPv6 Domains via IPv4
Clouds. RFC 3056, February 2001.

10. Durand A, Fasano P, Guardini I, Lento D. IPv6 Tunnel Broker.
RFC 3053, January 2001.

11. Srisuresh P, Holdrege M. IP Network Address Translator
(NAT) Terminology and Considerations. RFC2663, August
1999.

12. Levkowetz H, Vaarala S. Mobile IP Traversal of Network Ad-
dress Translation (NAT) Devices. RFC 3519, April 2003.

13. Huitema C. Teredo: Tunneling IPv6 over UDP through NATs.
RFC 4380, February 2006.

14. Liu M, Wu X, Cai Y, Jin M, Li D. Tunneling IPv6 with pri-
vate IPv4 addresses through NAT devices. draft-liumin-v6ops-
silkroad-03.txt (expired), July 2005.

15. Schulzrinne H, Wedlund E. Application-layer mobility using
SIP. ACM SIGMOBILE Mobile Computing and Communica-
tions Review 2000; 4(3): 47-57.

16. Banerjee N, Wu W, Das SK, Dawkins S, Pathak J. Mobility sup-
port in wireless Internet. IEEE Wireless Communications Mag-
azine 2003; 10(5): 54-61.

17. Rosenberg J, Weinberger J, Huitema C, Mahy R. STUN—
Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs). RFC 3489, March
2003.

18. Huang S-M, Wu Q-C. Implementation of Teredo—Tunneling
IPv6 through NAT. Technical Report for National Information
and Communication Initiative (NICI) IPv6 R&D Division, Tai-
wan, ROC, 2003.

19. Teredo for FreeBSD. http://www-rp.lip6.fr/teredo/

Wirel. Commun. Mob. Comput. 2006; 6:585-599

SIP MOBILITY IN IP MULTIMEDIA SUBSYSTEM 599

20. Miredo: Teredo for Linux. http://www.simphalempin.com/dev/
miredo/

21. Henderson B. Linux Loadable Kernel Module HOWTO. http://
www.linux.org/docs/ldp/howto/module-howto/

22. Bradner S, McQuaid J. Benchmarking Methodology for Net-
work Interconnect Devices. RFC 2544, March 1999.

23. The netfilter/iptables project. http://www.netfilter.org/

24. Tcpdump and libpcap. http://www.tcpdump.org/

Authors’ Biographies

Shiang-Ming Huang received his B.S.
and M.S. degrees from National Chiao
Tung University, Hsinchu, Taiwan, in
2003 and 2005 respectively. He wrote
the STUN protocol dissector in Ethereal,
which is a popular open source network
1i protocol analyzer distributed all over the
world. In 2003, he helped Computer and

«=2 Communication Research Laboratories
(CCL) to enhance a commercial SIP User Agent to support
STUN, which is an important mechanism proposed by In-
ternet Engineering Task Force (IETF) in RFC 3489. This
enhancement was then transferred to Industrial Technology
Research Institute (ITRI) later in the same year. After that,
he joined the National Information and Communications Ini-
tiative Committee (NICI) IPv6 deployment project in 2003,
where he implemented the first non-commercial Teredo IPv6
tunneling mechanism on Linux. Currently, he is working to-
wards his Ph.D. in Computer Science, National Chiao Tung
University, Hsinchu, Taiwan. His current research interests
include Internet Protocol version 6 (IPv6) and Session Initi-
ation Protocol (SIP).

Quincy Wu received his B.S. degree
in Mathematics from National Tsing
Hua University in 1992, and his Ph.D.
in Computer Science and Information

e Engineering from National Tsing Hua
| - University in 2000. He joined National

: Center for High-Performance Comput-

=y ing with the NBEN (National Broadband

x Experimental Network) project, where

he successfully designed and established the first island-wide
IPv6 network among universities. In 2002, he began serving
as a research assistant professor with National Chiao Tung

Copyright © 2006 John Wiley & Sons, Ltd.

University, and helped National Telecommunications Project
Office to deploy a SIP-based VoIP Platform across several
universities. Since 2004, he co-chairs the SIP-H323 Work-
ing Group of Asia-Pacific Advanced Network (APAN) and
helped Taiwan Academic Network (TANet) to design and
deploy VoIP services. He was appointed as an assistant pro-
fessor of Graduate Institute of Communication Engineering,
National Chi Nan University in 2005 and helped initiating the
VoIP over WiMAX project in National Chi Nan University.
His current research interests include session initiation pro-
tocol, open service architecture, Internet protocol version 6,
design and analysis of approximation algorithms, and service
creation on the third generation mobile network.

Yi-Bing Lin is chair professor and vice
president of Research and Development,
National Chiao Tung University. His cur-
rent research interests include wireless
communications and mobile computing.
Dr. Lin has published over 190 journal
/ articles and more than 200 conference
h“’l& papers. Lin is the co-author of the book

! Wireless and Mobile Network Architec-

ture (with Imrich Chlamtac; published by John Wiley Sons).
Lin is an IEEE fellow, an ACM fellow, an AAAS fellow, and
an IEE fellow.

Che-Hua Yeh received his B.S. degree

from National Chiao Tung University,

Hsinchu, Taiwan in 2004. He had rich

research experience on SIP instant mes-

saging and GSM short message ser-
) | vice. Since 2003, he joined the ‘Personal
! ol g Communication System’ research group
ﬂ Wil] {0 in National Chiao Tung University and
L | worked on the project ‘Instant Messag-
ing and Short Messaging Service Gateway’ (IM-SMS Gate-
way) which implemented a gateway converting instant mes-
saging service and short messaging service between IP net-
work and GSM network. After that, he developed the Intelli-
gent Notify Center (iNotify Center) which integrates SIP in-
stant messaging, SIP presence service, GSM short messaging
service, and E-mail service. He currently studies the subject
of Session Initiation Protocol (SIP) mobility and implements
SIP mobility in SIP user agent. He is now working towards
the Master degree in Computer Science and Information En-
gineering, National Chiao Tung University, Hsinchu, Taiwan.

Wirel. Commun. Mob. Comput. 2006; 6:585-599

