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Abstract—The cellular neural network (CNN) is a powerful
technique to mimic the local function of biological neural cir-
cuits, especially the human visual pathway system, for real-time
image and video processing. Recently, many studies show that
an integrated CNN system can solve more complex high-level
intelligent problems. In this brief, we extend our previously pro-
posed multi-CNN integrated system, called recurrent fuzzy CNN
(RFCNN) which considers uncoupled CNNs only, to automatically
learn the proper network structure and parameters simultane-
ously of coupled CNNs, which is called recurrent fuzzy coupled
CNN (RFCCNN). The proposed RFCCNN provides a solution to
the current dilemma on the decision of templates and/or fuzzy
rules in the existing integrated (fuzzy) CNN systems. For compar-
ison, the capability of the proposed RFCCNN is demonstrated on
the same defect inspection problems. Simulation results show that
the proposed RFCCNN outperforms the RFCNN.

Index Terms—Cellular neural network (CNN) template design,
defect inspection, fuzzy clustering, fuzzy neural network.

I. INTRODUCTION

HE two-dimensional (2-D) inputs and outputs of the cel-
lular neural network (CNN) [1], [2] make it very suitable
for image processing. Besides some basic image processing
tasks, the CNN has been used to mimic the local function
of biological neural circuits, especially the human visual
pathway system [3]. A current biological study [4] shows that
mammalian visual systems process the world through a set of
separate parallel channels. Each subchannel can be regarded
as a unique CNN. The output of these subchannels is then
combined to form the new channel responses. As a result, it is
widely accepted that using a set of CNNs in parallel can achieve
higher level information processing and reasoning functions
either from biologics or application points of views. Such an
integrated CNN system can solve more complex intelligent
problems.
For designing an integrated CNN system, in addition to the
determination of a set of templates, another kernel problem is
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the way of integration. To solve this problem, the fuzzy in-
ference system (FIS) can play an important role to integrate a
set of CNNss into a system. To make a set of CNNs in parallel
achieve higher level information processing, several integrated
CNN systems are proposed [4]-[7]. They have two common
characteristics. First, they all used many CNNs in parallel to
solve a complex problem. Second, they all used FIS to make a
decision. The common drawbacks of these approaches are that
they all need to assign the corresponding templates of CNNs
in advance (i.e., templates cannot be learned) and they all need
to take the fuzzy rules manually by domain experts. Although,
according to Nossek’s survey [8], the template coefficients of a
CNN can be found by design [8], [9] or by learning [8], [10],
these techniques cannot be applied to the design or learning of
an integrated CNN system directly.

To cope with these drawbacks, we proposed anovel framework
for automatically constructing a multiple-CNN integrated neural
system in the form of a recurrent fuzzy neural network (FNN)
[11], [12]. This system, called recurrent fuzzy CNN (RFCNN)
[13], can automatically learn its proper network structure and
parameters simultaneously. The structure learning includes the
fuzzy division of the problem domain and the creation of
fuzzy rules and CNNs. The parameter learning includes the
tuning of fuzzy membership functions and CNN templates. In
the RFCNN, each learned fuzzy rule corresponds to a CNN.
Hence, each CNN takes care of a fuzzily separated problem
region, and the functions of all CNNs are integrated through the
fuzzy inference mechanism. However, since the RFCNN only
considers the learning of uncoupled CNN templates, its ability
to solve more complex high-level machine vision problems is
quite limited. In this brief, we extend our previously proposed
RFCNN to automatically learn the proper network structure
and parameters simultaneously of coupled CNNs. Due to the
inclusion of coupled CNNs, the proposed recurrent fuzzy coupled
CNN (RFCCNN) has shown more powerful abilities in detecting
the fine detailed defects of color filters, compared with the
previous RFCNN, in the simulations.

This brief is organized as follows. Section II describes the
structure and functions of the proposed RFCCNN. Section III
briefly describes the online learning algorithm for the RFCCNN.
Section IV gives simulation results and discussions. Finally,
conclusions are summarized in Section V.

II. STRUCTURE OF THE RFCCNN

Here, the structure of the proposed RFCCNN shown in
Fig. 1 is introduced. For clarity, we consider a CNN, with
time constant = 1, time step = 1, and neighborhood within a
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Fig. 1. Structure of the proposed RFCCNN.

radius = 1, which is characterized by the following templates:
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I' = (1)

where A%, B*, and Z* are the feedback template, control tem-
plate, and bias of the sth CNN, respectively. By defining a CNN
as above, the six-layered RFCCNN network will realize a fuzzy
model of the following form:

Rule i : IF 21 is Mj and ...z;is M; ...
THEN y;(t + 1) is f'(A'y;(t) + B'u(t) + 2'()) (2)

and zg is Mg

or
Rulei: IF 2y is M{ and ...z;is M; ...
THEN y;(t 4+ 1) is
Flay _1yin(t) +alq oyio(t) + - 4 aq 19i9(t)
+bLq _11 ()b gz2(t) + b1 179(F) + 2 (1))
3)
where the current input vector is u = x; = [z1, .. . Tg 1%,
A'yi(t) is aly _1yia(t) + alygyi2(t) + -+ + ai1yi9(t),
Blu(t) is b’y _qz1(t) + b1y gz2(t) + - + by 129(t), f'isa
bipolar sigmoid function, M ; is a fuzzy set, and a’}m I bZ, ;> and
#' are consequent parameters representing feedback template,
control template, and bias of the ith CNN, respectively. The
RFCCNN is a six-layered network structure with one feedback
layer and can automatically learn its proper network structure
(the creation of fuzzy rules and CNNs) and parameters (the
tuning of fuzzy membership functions and CNN templates)
simultaneously. In this brief, as defined in (1)—(3), we extend
the RFCNN to RFCCNN including the structure and parameter

learning of coupled CNN cells. The six-layered network struc-
ture of the RFCCNN is mostly the same as that of the RFCNN,

and zg is Mg

except for the feedback layer. In the feedback layer of the
RFCCNN, the feedbacks are from coupled CNNs, i.e., Aly;(t)
is a"',lv,lyi,l(t) + ai,l_oyig(t) + -+ ail’lyi_rg(t), but, in the
feedback layer of the original RECNN, the feedbacks are from
uncoupled CNNs only, i.e., A'y;(t) is a oyi(t). The details of
the function of each node of the RFCNN are described in [13].

III. LEARNING ALGORITHMS FOR THE RFCCNN

Two types of learning, structure and parameter learning, are
used concurrently for the RFCCNN. In the REFCCNN, the struc-
ture learning includes the fuzzy division of the problem domain
(precondition structure identification) and the creation of fuzzy
rules and CNNs (consequent structure identification). The pre-
condition structure identification corresponds to the input-space
partitioning. As to the consequent structure identification, the
main task is to decide when to generate a new consequent term
(or a new CNN) for the output variable. In our system, we pro-
posed an online independent component analysis (ICA) mixture
model [13] to realize the precondition and consequent structure
identification part of the RFCCNN.

For the parameter learning, the parameters of each CNN tem-
plate in the consequent parts are adjusted by the ordered deriva-
tive algorithm to minimize a given cost function. The parameters
in the precondition part are adjusted by the online ICA mixture
model algorithm. The RFCCNN can be used for normal oper-
ation at any time during the learning process without repeated
training on the input—output patterns when online operation is
required. There are no rules (i.e., no nodes in the network except
the input—output nodes) in this network initially. They are cre-
ated dynamically as learning proceeds upon receiving online in-
coming training data by performing the following learning pro-
cesses simultaneously. The details of these learning processes
are described in the remainder of this section.

A. Structure Learning Algorithm of RFCCNN

Efficient partition of input—output data will result in faster
convergence and better performance for the RFCCNN. The
most direct way is to partition the input space into grid types,
with each grid representing a fuzzy if—then rule. This is called
grid-based partitioning. The major problem of this kind of
partitioning is that the number of fuzzy rules (and thus the
number of CNNs) increases exponentially if the number of
input variables or that of the partitions increases. A flexible
partition method, such as the clustering-based approach which
clusters the input training vectors in the input space, will
reduce the rule and CNN numbers. In this brief, our proposed
clustering method based on a new online ICA mixture model
is used to provide a better partition of the input—output space
for the proposed RFCCNN. The background and algorithm of
the proposed online ICA mixture model for clustering can be
found in [13] and [14].

B. Parameter Learning Algorithm of RFCCNN

After the network structure is adjusted according to the cur-
rent training pattern, the network then enters the parameter iden-
tification phase to adjust the parameters of the network opti-
mally based on the same training pattern. Notice that the fol-
lowing parameter learning is performed on the whole network
after structure learning, regardless of whether the nodes (links)
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are newly added or already existed. Since the RFCCNN is a
dynamic system with feedback connections, the back propaga-
tion learning algorithm cannot be applied to it directly. Also,
due to the online learning property of the RFCCNN, the offline
learning algorithms for the recurrent neural networks, like back
propagation through time and time-dependent recurrent back
propagation [12], cannot be applied here. Instead, the ordered
derivative [15], which is a partial derivative whose constant and
varying terms are defined using an ordered set of equations, is
used to derive our learning algorithm. The ordered set of equa-
tions, described in Section II in each layer, is summarized in
(5)—(10). Our goal is to minimize the error function
1 2

1
SWoue(t+1) = g3y (¢ + 1))

where y2, (t + 1) is the desired output, you: (¢ + 1) is the cur-
rent output, and e (¢ + 1) is (Yout (t + 1) — 9y, (¢t +1)). For each
training data set, starting at the input nodes, a forward pass is
used to compute the activity levels of all the nodes in the net-
work to obtain the current output y,,¢(¢ + 1). In the following,
dependency on time will be omitted unless emphasis on tem-
poral relationships is required.

Summarizing the node functions defined in Section II, the
function performed by the network is

E(t+1)=

yout t + 1 Z ’U/(S) (5)
uE ) = 0(4) =0 . p (6)
h .
where b — f[ul(?’)] _ H%@) %
) j

©_-_= _ 8
O Tipew ®
o' (t+ 1) = Abyi(t) + Bju(t) + 2'(t) )

and (1) is redefined as the following equation for clarity:

= [ai, a3, a3; af, a5, ag; az, ag, ag)

= [b, by, by; b, b, bg;; b7, b, b (10)

With the above formula and the error function defined in (4),
we can derive the update rules for the free parameters in the
RFCCNN as follows.

The update rule of aj- (the parameter of feedback template of
the sth CNN) is

; , OTE(t+1)
el =a (t) = p— 7 11
aj(t+1) =aj(t) —n o0l (11)
OYE(t+1) 0BE(t+1) OE(t+1) 0T yourk(t+1)
8(1; o aaj - Oout k(t + 1) 8(1;-
OE(t+1) 0T you(t+1)
= . (12)
ayout (t + 1) 3@3
where
E(t+1
OB+ _ yyyy (13)

8yout (t + 1)

a Yout (t+1) Zayout (t+1) a+0§(‘4)

8a 3024) aaé»

where
ayout(f + 1 (4)
(t+1)=1 (15)
Do 1(4) (4) Z
8+0(-4 8 (6) . . . .
i— = a7lop (Ajyi(t) + Bju(t) + 2 (t))]0'
da;; 8a;-[0" (AJyi(t) + Bju(t) + 2*(1))]

= hi(1+ 056))(1 — 01(6)) yilt) + a’ 6‘%—(#)] )

aa;
(16)

Hence, the parameter a’ is updated by
aj-(t +1)= a;»(t) —ne(t+1)
Jy;
{hl(l + o) (1 = o) |yi(t) + d’ gag )] } . an
J

Similarly, the parameter b; (the parameters of control tem-
plate of the +th CNN) is updated by

i i i 6 6
bi(t+1) = b (1) —ne(t+ )[R (1+0{P)(1— o)z (1)) (18)
and the parameter z; (the bias of the sth CNN) is updated by

Zt+1) =2 (t) —ne(t + DE (L + 01 = o). (19)

As shown in (14)—(16), the update rules are in recursive form.
The value (9% y/ 0a§») is equal to zero initially. For the remaining
free parameters in the RFCCNN, they are obtained during the
structure-learning phase by the online ICA mixture model algo-
rithm proposed in [13]. Notice that, according to the real-time
recurrent learning (RTRL) scheme, we can also obtain the same
parameter learning rules for the RFCCNN.

IV. SIMULATION RESULTS AND DISCUSSIONS

The capability of the proposed RFCCNN is demonstrated on
the real-world defect inspection problems. Here we are inter-
ested in the defect inspection of color filter, which is one of
components in TFT-LCD array process and gives each pixel of
LCD its own color. The difficulties in the defect inspection of
color filter are its complex texture and demand for high-speed
processing. For the reasons of high-speed processing, and that
different kinds of defects in the color filter need different CNN
templates and some complex defects cannot be detected by a
single CNN, the proposed RFCCNN is a good alternative to de-
tect defects in color filter images. To train the RFCCNN, we use
a3 x 3 window to get the system inputs and set the whole image
as the inputs of the RFCCNN. The 3 x 3 window covers the cen-
tral pixel and its eight connected neighbors. The training image
and corresponding desired output are shown in Fig. 2(a) and (b).
As mentioned in Section III, there are no rules (and no CNNs) in
the RFCCNN initially. They are created dynamically as learning
proceeds upon receiving online incoming training data by per-
forming the learning processes. When the learning processes are
done, six clusters (six fuzzy rules and CNN templates) were ob-
tained. For the example of color filter, it takes approximately 90
s to learn the structure (interconnection set) and the parameters
with a Pentium IV 2.0-G PC. However, the training can be done
offline, so it is not a problem for the online processing of CNN.
For simulation in this brief, it causes approximately 9 s. After
the proposed RFCCNN is implemented by analog circuits in the
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(b)
Fig. 2. Training images. (a) Input image. (b) Desired output.
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Fig. 3. The outputs of layers 3 and 4 and the feedback layer for the training
image. (a) The output of the RFCCNN. (b)—(g) The outputs of the six layer-4
nodes, respectively. (h)—(m) The outputs of the six CNNs in the feedback layer,
respectively. (n)—(s) The outputs of the six layer-3 nodes, respectively (firing
strength of each rule).

future, we believe that the processing times will be much faster
than those of the simulation.

Fig. 3 shows the output of RFCCNN and the outputs of layers
3 and 4 and the feedback layer for the training image. Fig. 3(a)
shows the output of the RFCCNN. Fig. 3(b)-(g) shows the out-
puts of the six layer-4 nodes, respectively, i.e., the outputs of the
six CNNs in the feedback layer multiplied by the outputs of the
six layer-3 nodes (i.e., firing strength of each rule), respectively.
Fig. 3(h)—(m) shows the outputs of the six CNNs in the feed-
back layer, respectively. Fig. 3(n)—(s) shows the outputs of the
six layer-3 nodes, respectively (firing strength of each rule). The
sum of the outputs of the six layer-4 nodes [i.e., Fig. 3(b)-(g)]
forms the RFCCNN final output [Fig. 3(a)]. From Fig. 3(b)—(g),
we can see that CNNs 4 and 5 take care of the defect texture in
the right side of the training image, CNNs 1 and 6 mainly take
care of the defect textures in the left side of the training image,
and the other CNNs balance the output of the RFCCNN. The
template of each learned CNN is given as

[—0.34 —0.24 0
Al = | —0.20 0 0.39
| 0.60 043 0.19
[ 0.67 0.15 —0.03]
B'=|-031 —-054 0.09 |, 2'=0.90
| 0.10  —0.08 028 |
[—0.30 —0.23 0 ]
A2 =|-042 -0.39 -0.14
0 -0.12 0 |
[—0.50 —0.22 —0.01]
BZ=|-008 011 019 |, =22=0.10
| —0.06 025 0.07 |

(b) (c)

(e) (f)
(h) (i)
Fig. 4. Simulation (testing) results of the learned RFCCNN. (a), (d), (g) Input

testing images. (b), (e), (h) Corresponding detection results of RFCCNN. (c),
(), (i) Corresponding detection results of an uncoupled RFCNN.

[—0.25 —0.20 0.1
A3 = | —-046 —0.30 —0.06
| —0.05 —0.08 —0.09
[—0.03 0.13 —0.18
B*=1-0.39 049 —0.18]|, 2®=-0.05
| 026 022 0.51
[—0.11 0.01  0.28
A*= | -025 —026 —0.02
| —0.06 —0.06 0.11
[ 0.11 0.40 0.25
B*= [ —-0.08 061 0.39]|, 2*=0.33.
| 0. 0.01 0.07
- [-030 —034 —0.03
A% = | =027 —-0.16 —0.01
| 016 —0.10 0.18
- [0.64 -0.10 0.27
B>= (012 090 0.09 |, 2z°=-0.14.
0.08 054 —0.15
[—0.14 —0.09 0.06 ]
AS = | —037 —0.27 —0.14
| 0.03 0 0.12 |
[ 0.35  —0.17 —0.02]
B = |-0.57 —028 —0.03], 25=-0.16. (20)
| —0.64 —0.12 —0.20 |

Based on the learned structure and parameters of the
RFCCNN, we test several images and three of those images
as shown in Fig. 4. Fig. 4(a), (d), and (g) shows input testing
images. Fig. 4(b), (e), and (h) displays the corresponding
detection results of the RFCCNN. Fig. 4(c), (f), and (i) shows
the corresponding detection results of the uncoupled RFCNN.
From Fig. 4(b), (e), and (h), we can see that the learned structure
and CNN templates of the RFCCNN are well suited to detect
the defects of color filer images. It has also been confirmed
that detection results are still good if the images are shifted or
rotated. One of simulation results is shown in Fig. 5.

From Fig. 4, we can see some differences between the
RFCCNN (coupled RFCNN) and the uncoupled RFCNN for
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(a) (b)

(c) (d)

(M

Fig. 5. Simulation results of shifted and rotated images. (a), (c), (e) Input
testing images of original, shifted, and rotated ones, respectively. (b), (d), (e)
Corresponding detection results of the RFCCNN.

TABLE 1
COMPARISON OF DETECTION RATE
Detection rate of the [Detection rate of the
RFCCNN RFCNN
All defects 56% 43%
Large defects 76% 52%
Black defects 72% 51%

defect inspection of a color filter. First, as shown in Fig. 4(g)—(i),
the results of the coupled RFCNN is better than those of uncou-
pled RFCNN for detecting the large defects on the top-left of test
image shown in Fig. 4(g). Second, as shown in all test images
and corresponding detection results, the results of the coupled
RFCNN are better than those for the uncoupled RFCNN for de-
tecting the black defects. The results of the coupled RFCNN are
better for detecting the large defects in that the coupled RFCNN,
like the coupled CNN, has fully output feedback and will take
care of further neighboring pixels. Some quantity comparisons
are shown in Table I. Here detection rate is defined as the ratio
of detected defect pixel number to real defect pixel number. As
we can see from Table I, the detection rates of the RFCCNN are
better than those of the RFCNN, regardless of all defects, large
defects, or black defects.

The main idea of the proposed RFCCNN is an integrated
system of FIS and CNNs, which can construct fuzzy rules and
CNN templates automatically. A scheme to implement the
RFCCNN is described as follows. The circuit design technique
of a multilayer CNN (MLCNN) [16] can be applied to imple-
ment the multilayer structure of the proposed RFCCNN model
in Fig. 1. A CNN-based Gaussian function circuit as designed
in [17] can realize the Gaussian membership function required
in layer 2. The fuzzy logic operations in layers 3 and 4 can
be realized by analog CNN circuits as studied in [7] and [18].
Two other layers correspond to the CNN’s input and output,
respectively. Therefore, it is very promising and feasible to
implement the RFCCNN using high-speed analog circuits.

V. CONCLUSION

In this brief, we extended our previous work, called the
RFCNN, from considering uncoupled CNNs to coupled
CNNs, called the RFCCNN, for automatically constructing a
multi-CNN integrated neural system. This CNN-based fuzzy
neural network can automatically learn its proper network
structure and parameters simultaneously. In order to verify
the capability of the RFCCNN, a defect inspection problem
has been demonstrated and compared with the RFCNN. The
simulation results show that the performance of the proposed
RFCCNN is better than that of the RFCNN. In addition, a
scheme for hardware realization of the RFCCNN has been
proposed. We believe that such an integrated CNN system,
the RFCCNN, has potential to solve more complex intelligent
problems, and our future work is to apply it to more complex
real-world problems.
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