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Abstract —This work proposes and implements a novel and 

robust adaptive speech enhancement system, which contains 
both time domain and frequency domain beamformers using 
H∞ filtering approach to provide a clean and undisturbed 
speech waveform and improve the speech recognition rate in 
vehicle environments. A microphone array data acquisition 
hardware is also designed and implemented for the proposed 
speech enhancement system. Mutually matched microphones 
are needed for traditional multidimensional noise reduction 
methods, but this requirement is not practical for consumer 
applications from the cost standpoint. To overcome this issue, 
the proposed system adapts the mismatch dynamics to 
maintain the theoretical performance allowing unmatched 
microphones to be used in an array. Furthermore, to achieve 
a high speech recognition performance, the speech recognizer 
is usually required to be retrained for different vehicle 
environments due to different noise characteristics and 
channel effects. The proposed system using the H∞ filtering 
approach, which makes no assumptions about noise and 
disturbance, is robust to the modeling error in a channel 
recovery process. Consequently, the real vehicular 
experimental results show that the proposed frequency domain 
beamformer provides a satisfactory speech recognition 
performance without the need to retrain the speech 
recognizer.1 
 

Index Terms —Human Machine Interaction, Speech 
Enhancement, Automatic Speech Recognition, H∞ filtering.  

I. INTRODUCTION 
Electronic systems in vehicles are increasingly popular. 

Given concerns over driving safety and convenience, these in-
vehicle electronic devices such as global positioning system 
(GPS), CD or VCD player, air conditioner, etc. should not be 
accessed by hands while driving. Therefore, intelligent human-
computer interaction interfaces with speech recognition have 
recently been proposed [1]-[3] to control these in-vehicle 
devices through voice. However, the poor speech quality, 
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acoustic echo of the far-end speech, and environmental noises 
degrade the speech recognition performance, resulting in a low 
acceptance of the speech recognition technology by consumers. 
Therefore, speech enhancement techniques such as single 
channel [4]-[5] and multi-channel [6]-[13] noise suppression 
approaches have been introduced to overcome these issues. 
Although using a single channel approach can reduce the 
hardware complexity, the performance degrades due to various 
problems, such as musical tones [12].  

The work in [12] demonstrates that applying a high-pass 
filter with the cut off frequency of 240Hz can significantly 
improve the speech recognition rate, when dual channel 
microphones are used. This is because the vehicular noise 
caused by driving is dominated by low frequency components, 
i.e., 50-800 Hz from the engine, air flow, tire noise, road 
noise, and so on. However, the low frequency components 
contain useful information about speech characteristics. 
Consequently, applying the high-pass filter may cause speech 
distortion and requires extra training processes in a car for the 
speech recognizer to obtain a good recognition rate. Moreover, 
when the in-car audio system is turned on, the spectrum of the 
environmental noise exhibits a wide band behavior instead of a 
lower frequency one. Consequently, the dual channel noise 
suppression method with a high-pass filter cannot provide a 
satisfactory performance. 

To overcome this limitation, microphone array based noise 
suppression approaches, such as Frost beamformer [6], 
generalized sidelobe canceller (GSC) [7], [9], and robust 
adaptive beamformer [8] have been proposed to achieve better 
performance than the single and dual channel cases. However, 
these methods also have limitations. For example, the 
microphones must to be mutually matched and have no 
coherent interference signal. Dahl et al. [10] proposed a finite 
impulse response (FIR) based normalized least-mean-square 
(NLMS) filtering approach to perform indirect microphone 
calibration and to minimize the speech distortion due to the 
channel effect by using pre-recorded speech signals and a 
desired signal which are acquired when the environment is 
quiet. Because the variation between pre-recorded speech 
signals and the desired signal contain useful information about 
the dynamics of channel, electronic equipments uncertainties, 
and microphones’ characteristics, the method in [10] 
outperforms other un-calibrated algorithms in real applications 
[11]. However, the FIR filter using a finite number of taps is 
unlikely to characterize the full channel dynamics between 
sound sources and microphone arrays in an enclosure [14]. 
Moreover, the NLMS based formulation assumes that the 
disturbance is uncorrelated to the source, zero mean and 
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Fig. 1. Overall System Architecture 

Gaussian distributed. These assumptions limit speech 
enhancement performance.  

This work presents two beamformers using H∞ filtering 
approach to suppress environmental noises and decrease the 
speech distortion caused by the channel effect. The two 
beamformers using H∞ filtering approach are robust to the 
modeling error caused by the finite tap length of FIR filters 
and make no assumptions regarding the characteristics of 
environmental noises [15], [16]. Furthermore, the pre-recorded 
speech signals and the desired signal can be adopted to 
suppress the gain from noises to the output especially in low 
frequencies and the characteristics of the received multi-
channel signals can be automatically adjusted to those of the 
desired signal. Consequently, high-pass filtering and extra 
retraining processes for a speech recognizer in vehicles are not 
needed in this work. In this work, a time domain beamformer 
using H∞ filtering approach is proposed to produce a clean and 
undisturbed speech waveform. On the other hand, for speech 
recognition applications, a frequency domain beamformer 
using H∞ filtering approach is proposed to reduce the effect of 
uncertainty in signal transformation between the time domain 
and the frequency domain by treating several frames as a 
single block. The proposed beamformers using two 
microphones outperform dual channel delay-and-sum 
beamformer with a high-pass filter introduced in [12] 
especially when the in-car audio system plays music which 
acts like a broadband disturbance. This work compares the 
performance of different numbers of the microphones and the 
experimental results show that using more microphones 
improves the performance. 

The remainder of this work is organized as follows. The 
proposed speech enhancement system and the designed 
microphone array data acquisition hardware are introduced in 
section 2. Section 3 presents the two proposed beamformers 
using H∞ filtering approach in both the time and frequency 
domains. Section 4 presents several representative experiments 

in a real vehicle and discusses the experimental results. 
Conclusions are finally drawn in the last section. 

II. SPEECH ENHANCEMENT SYSTEM AND MICROPHONE 
ARRAY DATA ACQUISITION HARDWARE IMPLEMENTATION 

The overall system architecture can be illustrated as Fig. 1 
and can be divided into two sub-systems. The first sub-system 
consists of a microphone array whose geometry can be flexibly 
arranged and a data acquisition electronics prototype designed 
by this work. The main feature of this design is its ability to 
digitalize the received sound signals and transmit them in real-
time via a USB interface. The second sub-system is the speech 
enhancement system. 

A. Microphone Array and Microphone Array Data 
Acquisition Board 
The microphone array consists of M  omni-directional 

condenser microphones and a headset microphone. The 
frequency response of the microphone ranges from 50 Hz to 
16 kHz. The microphone array acquisition board comprising a 
four-layer board can be divided into three parts. The first part 
includes microphone amplifiers and filters. The second part is 
digitization. The third part contains control and 
communication. 

In the first part, the microphone signals are amplified and 
filtered by six amplifiers and six band-pass filters designed by 
taking the microphone sensitivity and anti-aliasing into the 
consideration. The gains of the M  microphones and the 
headset microphone are respectively set to 60dB and 20dB. 
The second part comprises six sample-and-hold circuits (S/H), 
one analog switch, and one analog-to-digital (A/D) converter. 
By acquiring the six channel sound signals with one analog 
switch and one A/D converter, the system can significantly 
reduce the power consumption requirement and improve the 
flexibility for portable consumer applications. 
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Fig. 2. Microphone array data acquisition board 

The third part contains the control and data transmission 
lines, which are controlled by the USB interface. The USB 
interface platform can control the timing of the sample-and-
hold circuits, analog switch, and A/D converter through the 
control line. The switching frequency and the timing of the 
system can be flexibly selected, and the sampling frequency is 
set to 8 kHz in this work. The converted 16-bit digital data are 
transmitted in real-time through the USB interface with timing 
controlled by a micro-controller. The picture of the 
microphone array data acquisition board is shown in Fig. 2. 
Fig. 3 shows the installation of the array inside the vehicle. 
Note that the headset microphone is used only to collect the 
desired signal, i.e., the user does not need the headset 
microphone during the online applications. 

M icrophone A rray H eadset M icrophone

Fig. 3. Installation of the array inside the vehicle 

B. Speech Enhancement System 
The Speech Enhancement system is separated into two stages, 

namely the silent and speech stages, by a voice activity detector 
(VAD) that identifies speech in the received signals. The voice 
activity detection algorithm can be found in [17] and [18]. If the 
result of the VAD equals to zero, which means that no speech exists, 
the system will be run in the silent stage. The system can be switched 
to the speech stage when the result of the VAD equals to one. 

The pre-recorded speech signals shown in the silent stage in 
Fig. 1 are collected when the environment is quiet and the 
speaker is at the desired location. The pre-recorded speech 
signals contain both the characteristics of microphones and the 
acoustical characteristics of the desired location. The desired 
signal, )(nd , is derived from a headset microphone when the 
pre-recoded speech signals are collected. Since the headset is 
close to the mouth, the desired signal contains little channel 
distortion. The desired signal only needs to be collected when 
the desired location varies, so the headset microphone is not 

needed during the online applications. In the silent stage, the 
environmental noises without speech signals are recorded 
online. The environmental noises are assumed to be additive, 
so the signals received when a speaker is talking in a noisy 
environment can be expressed as a linear combination of the 
speech signals and the environmental noises. Therefore, in this 
stage, the system combines the online recorded environmental 
noises, )(,),(1 nnnn MΛ , with the pre-recorded speech signals, 

)(,),(1 nsns MΛ , to construct the training signals, 
)(,),(1 nxnx MΛ . The weighting vector is derived from the 

training signals using H∞ based adaptive filtering approach. In 
the speech stage, the trained weighting vector is passed to the 
lower beamformer to purify and recover the noisy received 
signals, )(,),(1 nyny MΛ . 

C. Voice Activity Detection (VAD) Algorithm 
The VAD algorithm [17] in this work can adjust itself 

according to current environmental noise based on the 
estimation of the long-term spectral envelope (LTSE). The 
LTSE tracks the spectral envelope using long-term rectangular 
speech window information. Assume that )(nri , the received 
signal of the thi microphone, is utilized to detect the speech. 
Then, the J-order LTSE can be defined as: 

( ) ( ) Jj
Jji jkbRkb +=

−=+= },max{,LTSEJ
               (1) 

where ),( kbRi  denotes the amplitude spectrum of )(nri  at 
frame k  and frequency band b . In addition, the decision rule 
is formulated in terms of the long-term spectral divergence 
(LTSD). The J-order LTSD is defined as: 
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where B  means the number of frequency bands. ( )1,2 −kbN P  
is the noise spectrum for the band b .Then, the J-order LTSD 
is used to compare with an adaptive threshold γ to determine 
the existence of speech signals. The threshold γ is adapted 
depending on the value of noise energy E: 
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whereγ0 and γ1 are thresholds when the system is working in 
the quietest and noisiest conditions respectively. E0 and E1 are 
the noise energies. The result of VAD is set to 1 (i.e., speech 
signal is detected) when the value of LTSD is larger than the 
value of γ.  If the result of VAD equals to zero (i.e., no 
speech signal is detected), then the noise spectrum in (2) is 
updated: 

( ) ( ) ( ) ( )
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where ψ  is a weights and ),( kbNQ
 is the average noise 

spectrum magnitude at frequency band b  over ( )12 +Q  frame: 
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The flowchart of the VAD algorithm is illustrated as Fig. 4. 
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Fig. 4. Flowchart of the VAD algorithm 

III. PROPOSED SPEECH ENHANCEMENT APPROACHES  

A. Time Domain Beamformer Using H∞ Filtering Approach 
Based on the system architecture shown in Fig. 1, the 

formulation of microphone array speech enhancement system 
can be expressed as the following linear model: 

  e(n)nnd T += wx )()(                  (6) 

where M  denotes the number of microphones, P  denotes the 
filter order of each microphone, and the superscript T  denotes 
the transpose operation. )(nd  is the desired signal and 

[ ]TM nnn )()()( 1 xxx Λ=  is a 1×MP  training signal 
vector.  [ ])1()()( +−= Pnxnxn iii Λx  is a P×1  training 
signal vector and each component in the silent stage is 
constructed from the linear combination of the pre-recorded 
speech signals and the online recorded environmental noise as 

)()()( nnnsnx iii += . In addition, 

[ ]TMPMP wwww ΛΛΛ 1111=w  is the 1×MP  
unknown filter coefficient vector of the time domain 
beamformer that we intent to estimate. )(ne  is the unknown 
estimation disturbance, which may also include modeling 
error. In this work, italics fonts represent scalars, bold italics 
fonts represent vectors, and bold upright fonts represent 
matrices. 

To apply the adaptive H∞ filtering approach, the linear 
model, as in (6), is transformed into its state space form:  
  )()1( nn ww =+   

  )()()()( nennnd T += wx                    (7) 

  with ww =)(n  

To find the optimal estimation, the criterion in the sense of H∞ 
based filtering is: 
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where 0µ  is a weighting parameter and )(ˆ nw  is the 1×MP  

estimated filter coefficient vector. 2⋅  denotes the square of the 
2-norm. According to [19], the solution of )(ˆ nw  can be 
approximated by the iteration: 

  I211 )()()()1( −−− −+=+ ξnnnn TxxMM                (9) 
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  I)()0(   ,)0(ˆ 21
0

1 −−− −== ξµM0w             (11) 

where )(nM is an MPMP×  matrix and 1)( −⋅  denotes the matrix 
inverse operation. In order to ensure that )(nM  remains 
positive definite, ξ  should be chosen such that 

0)()()( 21 >−+ −− Iξnnn TxxM . For this reason, ξ is selected as 
11 ))()()((eig −− + nnn TxxMδ  during the iteration, where 

)(zeig  denotes the maximum eigenvalue of z and 1>δ  in 
order to keep ξ  greater than the minimum value.  

The adaptation of the filter coefficient vector is performed 
in the silent stage. When the system is switched to speech 
stage, the adaptation stops and the filter coefficient vector is 
passed to lower beamformer. The output of the speech 
purification system can be calculated by 

  )(ˆ)()(ˆ nnny T wy=                 (12) 
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where )(ˆ ny  is the purified result, and 

[ ]TM nnn )()()( 1 yyy Λ=  is the 1×MP online recorded 
polluted speech signal vector acquired by the microphone 
array, where [ ])1()()( +−= Pnynyn iii Λy . 

B. Frequency Domain Beamformer Using H∞ Filtering 
Approach 
For the automatic speech recognition (ASR) application, the 

purified spectrum data should be computed directly to save 
computation effort, since most speech recognition algorithms 
are performed in the frequency domain. In this case, the 
parameters can be updated on a block of data. Hence, the 
problem is transformed into the frequency domain by using 
short time Fourier transform (STFT). Consequently, the linear 
convolution is implemented by padding the unknown 
estimation disturbance shown in (7) with zeros to make it 
twice as long as the window length. The unknown estimation 
disturbance at frame k  and frequency ω  can be written as: 

( )),(),(),(),(             
),(),(),(),(

kkkkD
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H
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ωωωω
ωωωω

NSW
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with )(),( ωω WW =k  

where ),( kD ω is the desired signal in the frequency domain and 
)(ωW  denotes the 1×M  unknown filter coefficient vector at 

frequency ω . The superscript H denotes Hermitian 
operation. [ ]TM kXkXk ),(),(),( 1 ωωω Λ=X , 

[ ] T
M kNkNk  ),(),(),( 1 ωωω Λ=N  and 

[ ] T
M kSkSk  ),(),(),( 1 ωωω Λ=S  represent the frequency 

domain training signal vector, the online recorded 
environmental noise vector, and the pre-recorded speech signal 
vector, respectively.  

In conjunction with the spectrum-based ASR, the window 
size in the STFT has to equal to that in ASR in order to obtain 
a more accurate result. However, the window size may be too 
small to capture the acoustic channel response. For this reason, 
a previous work [11] proposed an approach called soft penalty 
frequency domain block beamformer (SPFDBB). SPFDBB 
takes the frame average over several frames as a block 
improving the approximation of the channel response. The 
number of frames in a block is denoted as the frame number 
L . However, the NLMS algorithm used in [11] limits its 
performance, because it contains inherent assumptions on the 
disturbances and channel dynamics. Consequently, the H∞ 
based filtering approach is adopted to improve the 
performance further. The performance index of the frequency 
domain beamformer using H∞ filtering approach can be 
formulated as: 

  

( )∑
=

−





























−−+

−−

K

k

H

k

k
k

k
k

k
0

22

21
0

2

),(

),(
),(

),(
),(

),(ˆ
2
1

)0,(ˆ)(
2
1 maxmin

ω
ω

ω
ω

ξωω

ωωµξ
ω

U
V

U
V

WW

WW
W

Λ

(14) 

where 0µ  is a weighting parameter, ),(ˆ kωW  is the 1×M  
estimated filter coefficient vector, and 
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where LI  is an identity matrix with dimension LL × .  
The H∞ iterative solutions can be shown as: 
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where the superscript * denotes the complex conjugate. 
),( kωH  is a ML ×+ )1( dimensional matrix at th k  block. MI  

is an identity matrix with dimension MM × . The value of ξ  
during the iteration is chosen as 

( )),(),(),(1 kkkeig H ωωωδ HHP +−  where )(zeig  denotes the 
minimum eigenvalue of z. δ  is a positive constant and lower 
than one to ensure that (17) is positive definite.Consequently, 
the purified output signal at th k  block can be obtained by the 
following equation: 

  ),(),(ˆ),(ˆ kkk H ωωω YWY =              (21) 

where [ ])1,(ˆ),(ˆ),(ˆ −+= LkYkYk ωωω ΛY  is the purified 
result and ),( kωY  is the LM × online recorded polluted 
speech signal matrix. 
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TABLE  I   
TEN EXPERIMENTAL CONDITIONS AND ISOLATED AVERAGE SNRS 

Condition 
Number 

Speed 
Power of In-car 
Audio System 

Average SNR 
(dB) 

Condition 
Number 

Speed 
Power of In-car 
Audio System 

Average SNR 
(dB) 

C1 20 km/h Off 4.20 C6 20 km/h On -0.08 
C2 40 km/h Off 2.84 C7 40 km/h On -2.19 
C3 60 km/h Off 2.72 C8 60 km/h On -2.28 
C4 80 km/h Off -1.90 C9 80 km/h On -4.75 
C5 100 km/h Off -3.04 C10 100 km/h On -5.40 

 

 
The step k is chosen as Λ,3 ,2 , ,0 LLL  to perform the 
adaptation process every L  frames. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Conditions and Parameters 
An experiment is performed on passenger seat of a mini-van 

vehicle instead of the driver’s seat due to the driving safety 
consideration. A uniform linear microphone array of five un-
calibrated microphones with 0.07 m spacing is mounted in 
front of the passenger seat. Additionally, the distance between 
the microphone array and the mouth of the speaker who sits in 
the passenger seat is about 0.62 m. The performance of the 
proposed approaches is demonstrated by 341 pairs of the 
vehicle identification numbers and ten conditions (C1-C10 of 
Table I). Table I shows the average SNRs in the ten conditions. 
A music piece containing vocal sound is played repeatedly 
from six build-in loudspeakers when the in-car audio system is 
turned on. The desired signal utilized in this experiment is 
derived from the headset microphone with the lowest channel 
distortion. The first and second microphones are utilized for 
the dual microphone case ( 2=M ) and the first, second, and 
third microphones are used when 3=M  and so on. The 
experimental results are compared with those of a delay-and-
sum beamformer with a high-pass filter (DS+HP) introduced 
in [12]. The related VAD parameters are listed in Table II. 

TABLE  II  
PARAMETERS OF THE VAD ALGORITHM 

Parameter Value Parameter Value 
J 6 E1 225 
Q 3 γ 36 
B 512 γ0 20 
E0 190 γ1 160 

ψ  0.95   

B. Time Domain Performance Evaluation 
Two performance indices, signal recover ratio (SRR) and 

noise power ratio (NPR), are defined and adopted instead of 
the signal to noise ratio (SNR) to evaluate the degree of signal 
distortion and noise suppression, because a higher SNR does 
not necessarily imply lower signal distortion. SRR is defined 
as: 
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where ( )⋅cov  is the iacovarnce operation. Further, NPR is 
defined as: 
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where V  in (25) denotes the length of the desired signal, )(nd . 
SRR is defined as the correlation coefficient between the 
desired signal, )(nd , and the recovered signal, )()( nn T sw . 
Consequently, a higher value of SRR indicates better speech 
recovery. NPR represents the ratio of the noise power after 
beamformer processing ( )()( nn T nw ) to the noise power 
measured at the silent stage (using microphone 1). A smaller 
value of NPR represents a cleaner speech signal.  

The order of the time domain beamformer using H∞ 
filtering approach is set to 128, and 0µ  and ξ  are set to 
0.9 and 0.95 respectively. The values of SRR and NPR 
after the processes of the DS+HP and time domain 
beamformer using H∞ filtering approach for the ten 
testing conditions are illustrated in Fig. 5. As shown in 
Figs. 5 (a) and 5 (b), the SRRs of the proposed approach 
are higher than those of the DS+HP when adopting two 
microphones including the cases when the in-car audio 
system is turned on (conditions C6 to C10). This is 
because the proposed system can recover the channel 
distortion and is robust to modeling errors. Moreover, the 
high-pass filter in the DS+HP suppresses the magnitude 
of low frequency components of the speech signal, which 
may decrease the SRR further. The values of NPR of the 
proposed method are also better than those of the DS+HP 
in conditions C1 to C10. The values of NPR in C6 to C10 
are larger than those in C1 to C5 because switching the 
in-car audio system on raises the noise complexity. The 
improvement in SRR and NPR is consistent with the 
number of microphones used, which indicates that a 
larger number of microphones can improve speech 
quality. 
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(a) SRRs of conditions C1 to C5. 

 
(b) SRRs of conditions C6 to C10. 

 
(c) NPRs of conditions C1 to C5 

 
(d) NPRs of conditions C6 to C10 

Fig. 5. SRRs and NPRs of conditions C1 to C10 

C. Frequency Domain Performance Evaluation 
The results of the frequency domain beamformer using H∞ 

filtering approach are directly delivered to a benchmark speech 
recognizer, HMM toolkit (HTK) [20]. The related parameters 
of HTK are shown in Table III. In the experiments, 0µ  and ξ  
are set to 0.9 and 0.95 respectively and the soft penalty λ  is 
set to 2. In addition, the frame number L  is set to 40. The 
window contains 256 zero-padded samples and a 32ms speech 
signal, giving a total of 512 samples. Fig. 6 illustrates the 
processed frame and the overlapping condition.  

TABLE  III  
PARAMETERS OF HTK 

Recognition kernel HTK ver.3.0 
Model HMM 
Feature Vector 12 th order MFCC + 12th order ∆MFCC 
Training data Set 1001 clean pairs of vehicle identification numbers 
Recognition Task 341 pairs of the vehicle identification numbers 

Zero padding
256 Sam ples

Input Data
256 Sam ples

Input Data
256 Sam ples

Zero padding
256 Sam ples

Shift 10m s
80 sam ples

Processed frame
512 Samples

 
Fig. 6. Processed frame and overlapping condition 

The best possible recognition rate using the desired signal is 
97.15%. A baseline of the recognition rate is established using 
only the first microphone. As shown from Figs. 7 and 8, the 
baseline performance is poor, as would be expected. When 
only car noises are present (conditions C1-C5), the DS+HP 
improved the recognition rate by 15.52-25.25% over the 
baseline. Because the DS+HP only attempts to suppress the 
noises instead of dealing with the channel distortion, the 
performance cannot be satisfactory unless the recognizer is 
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retrained. As indicated in Fig. 7, the improvement over the 
DS+HP from the proposed method becomes more significant 
when the environmental noise is louder. The improvements are 
most significant when the music is turned on (Fig. 8). The 
DS+HP has a poor recognition rate for music, because it could 
only suppress a small part of the wideband music signal. A 
comparison of Figs. 7 and 8 indicates that the proposed 
method maintains a similar recognition performance at a given 
vehicle speed both with and without music playing in the 
background.

 
Fig. 7. Speech recognition rate of Conditions 1 to 5 

 
Fig. 8. Speech recognition rate of Conditions 6 to 10 

V.  CONCLUSION 
A speech enhancement system is proposed and implemented 

in this work. Because the system includes a self-calibration 
mechanism, unmatched microphones and electronic circuits 
can be utilized to reduce the hardware cost. The performance 
indexes (SRR, NPR, and speech recognition rate) of different 
numbers of microphones are introduced and compared to 
provide design tradeoff among the number of microphones, 
performance, and circuit complexity. The real in-vehicle 
experimental results demonstrate that the proposed system can 
significantly improve the speech quality and the speech 
recognition rate without requiring time-consuming retraining 
processes for the speech recognizer.  
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