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Abstract—The rapid progress of wireless communication and embedded microsensing MEMS technologies has made wireless

sensor networks possible. In light of storage in sensors, a sensor network can be considered as a distributed database, in which one

can conduct in-network data processing. An important issue of wireless sensor networks is object tracking, which typically involves two

basic operations: update and query. This issue has been intensively studied in other areas, such as cellular networks. However, the in-

network processing characteristic of sensor networks has posed new challenges to this issue. In this paper, we develop several tree

structures for in-network object tracking which take the physical topology of the sensor network into consideration. The optimization

process has two stages. The first stage tries to reduce the location update cost based on a deviation-avoidance principle and a highest-

weight-first principle. The second stage further adjusts the tree obtained in the first stage to reduce the query cost. The way we model

this problem allows us to analytically formulate the cost of object tracking given the update and query rates of objects. Extensive

simulations are conducted, which show a significant improvement over existing solutions.

Index Terms—Object tracking, in-network processing, sensor network, data aggregation, mobile computing.
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1 INTRODUCTION

THE rapid progress of wireless communication and
embedded microsensing MEMS technologies has made

wireless sensor networks possible. Such environments may
have many inexpensive wireless nodes, each capable of
collecting, processing, and storing environmental informa-
tion, and communicating with neighboring nodes. In the
past, sensors are connected by wire lines. Today, this
environment is combined with the novel ad hoc networking
technology to facilitate intersensor communication [11],
[12]. The flexibility of installing and configuring a sensor
network is thus greatly improved. Recently, a lot of research
activities have been dedicated to sensor networks [4], [5],
[6], [7], [8], [9], [13], [14].

Object tracking is an important application of wireless

sensor networks (e.g., military intrusion detection and

habitat monitoring). Existing research efforts on object

tracking can be categorized in two ways. In the first

category, the problem of accurately estimating the location

of an object is addressed [1], [10]. In the second category, in-

network data processing and data aggregation for object

tracking are discussed [8], [15]. The main theme of this

paper is to propose a data aggregation model for object

tracking. Object tracking typically involves two basic

operations: update and query. In general, updates of an

object’s location are initiated when the object moves from

one sensor to another. A query is invoked each time when

there is a need to find the location of an interested object.

Location updates and queries may be done in various ways.
A naive way for delivering a query is to flood the whole
network. The sensor whose sensing range contains the
queried object will reply to the query. Clearly, this approach
is inefficient because a considerable amount of energy will
be consumed when the network scale is large or when the
query rate is high. Alternatively, if all location information
is stored at a specific sensor (e.g., the sink), no flooding is
needed. But, whenever a movement is detected, update
messages have to be sent. One drawback is that when
objects move frequently, abundant update messages will be
generated. The cost is not justified when the query rate is
low. Clearly, these are trade-offs.

In [8], a Drain-And-Balance (DAB) tree structure is
proposed to address this issue. As far as we know, this is
the first in-network object tracking approach in sensor
networks where query messages are not required to be
flooded and update messages are not always transmitted to
the sink. However, [8] has two drawbacks. First, a DAB tree
is a logical tree not reflecting the physical structure of the
sensor network; hence, an edge may consist of multiple
communication hops and a high communication cost may
be incurred. Second, the construction of the DAB tree does
not take the query cost into consideration. Therefore, the
result may not be efficient in some cases.

To relieve the aforementioned problems, we propose a
new tree structure for in-network object tracking in a sensor
network. The location update part of our solution can be
viewed as an extension of [8]. In particular, we take the
physical topology of the sensor network into consideration.
We take a two-stage approach. The first stage aims at
reducing the update cost, while the second stage aims at
further reducing the query cost. For the first stage, several
principles, namely, deviation-avoidance and highest-
weight-first ones, are pointed out to construct an object
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tracking tree to reduce the communication cost of location
update. Two solutions are proposed: Deviation-Avoidance
Tree (DAT) and Zone-based Deviation-Avoidance Tree (Z-DAT).
The latter approach tries to divide the sensing area into
square-like zones, and recursively combine these zones into
a tree. Our simulation results indicate that the Z-DAT
approach is very suitable for regularly deployed sensor
networks. For the second stage, we develop a Query Cost
Reduction (QCR) algorithm to adjust the object tracking tree
obtained in the first stage to further reduce the total cost.

The way we model this problem allows us to analytically
formulate the update and query costs of the solution based
on several parameters of the given problem, such as rates
that objects cross the boundaries between sensors and rates
that sensors are queried. We have also conducted extensive
simulations to evaluate the proposed solutions. The results
do validate our observations.

Several other tracking-related problems have also been
studied, but they can be considered independent issues from
our work. The authors in [14] explored a localized prediction
approach for power efficient object tracking by putting
unnecessary sensors in sleep mode. Techniques for co-
operative tracking by multiple sensors have been addressed
in [1], [3], [10], [15]. In [3], a dynamic clustering architecture
that exploits signal strength observed by sensors is proposed
to identify the set of sensors to track an object. In [15], a
convoy tree is proposed for object tracking using data
aggregation to reduce energy consumption.

The rest of this paper is organized as follows: Prelimin-
aries are given in Section 2. DAT, Z-DAT, and QCR
algorithms are presented in Section 3. Performance studies
are conducted in Section 4. This paper concludes with
Section 5.

2 PRELIMINARIES

We consider a wireless sensor network deployed in a field
for the purpose of object tracking. Sensors’ locations are
already known at a special node, called sink, which serves as

the gateway of the sensor network to the outside world. We
adopt a simple nearest-sensor model, which only requires the
sensor that receives the strongest signal from the object to
report to the sink (this can be achieved by [3]). Therefore, the
sensing field can be partitioned into a Voronoi graph [2], as
depicted in Fig. 1a, such that every point in a polygon is
closer to its corresponding sensor in that polygon than to
any other. In practice, a sensor under our model may
represent the clusterhead of a cluster of reduced-function
sensors. In this work, however, we are only interested in the
reporting behavior of these clusterheads.

Our goal is to propose a data aggregation model for
object tracking. We assume that whenever an object arrives
at or departs from the sensing range (polygon) of a sensor, a
detection event will be reported (note that this update
message are not always forwarded to the sink, as will be
elaborated later). Two sensors are called neighbors if their
sensing ranges share a common boundary on the Voronoi
graph; otherwise, they are nonneighbors. Multiple objects
may be tracked concurrently in the network, and we
assume that from mobility statistics, it is possible to collect
the event rate between each pair of neighboring sensors to
represent the frequency of objects travelling from one
sensor to another. For example, in Fig. 1a, the arrival and
departure rates between sensors are shown on the edges of
the Vonoroi graph. In addition, the communication range of
sensors is assumed to be large enough so that neighboring
sensors (in terms of their sensing ranges) can communicate
with each other directly. Thus, the network topology can be
regarded as an undirected weighted graph G ¼ ðVG;EGÞ
with VG representing sensors and EG representing links
between neighboring sensors. The weight of each link
ða; bÞ 2 EG, denoted by wGða; bÞ, is the sum of event rates
from a to b and b to a. This is because both arrival and
departure events will be reported in our scheme. In fact, G
is a Delaunay triangulation of the network [2]. Fig. 1b shows
the corresponding Delaunay triangulation of the sensor
network in Fig. 1a.
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Fig. 1. (a) The Voronoi graph of a sensor network. The arrival and departure rates between sensors are the numbers associated with arrows. (b) The

graph G corresponding to the sensor network in (a). The number labeled on each edge represents its weight.



In light of the storage in sensors, the sensor network is
able to be viewed as a distributed database. We will exploit
the possibility of conducting in-network data aggregation
for object tracking in a sensor network. Similar to the
approach in [8], a logical weighted tree T will be
constructed from G. For example, Fig. 2a shows an object
tracking tree T constructed from the network G in Fig. 1b.
Movement events of objects are reported based on the
following rules. Each node a in T will maintain a detected
list DDLa ¼ ðL0; L1; . . . ; LkÞ such that L0 is the set of objects
currently inside the coverage of sensor a itself, and
Li; i ¼ 1; � � � ; k, is the set of objects currently inside the
coverage of any sensor who is in the subtree rooted at the
ith child of sensor a, where k is the number of children of
a. When an object o moves from the sensing range of a to
that of b (ða; bÞ 2 EG), a departure event depðo; a; bÞ and an
arrival event arvðo; b; aÞ will be reported by a and b,
respectively, alone the tree T . On receiving such an event, a
sensor x takes the following actions:

. If the event is depðo; a; bÞ, x will remove o from the
proper Li in DDLx such that sensor a belongs to the
ith subtree of x in T . If x ¼ a, o will be removed from
L0 in DDLx. Then x checks whether sensor b belongs
to the subtree rooted at x in T or not. If not, the event
depðo; a; bÞ is forwarded to the parent node of x in T .

. If the event is arvðo; b; aÞ, x will add o to the proper
Li in DDLx such that sensor b belongs to the
ith subtree of x in T . If x ¼ b, o will be added to L0

in DDLx. Then x checks whether sensor a belongs to
the subtree rooted at x in T or not. If not, the event
arvðo; b; aÞ is forwarded to the parent node of x in T .

The above data aggregation model guarantees that,
disregarding transmission delays, the data structure DDLi
always maintains the objects under the coverage of any
descendant of sensor i in T . Therefore, searching the
location of an object can be done efficiently in T ; a query
is only required to be forwarded to a proper subtree and no
flooding is needed. For example, Fig. 2a shows the

forwarding path of a query for Car1 in T . Fig. 2b shows

the reporting events as Car1 and Car2 move and the

forwarding path of a query for the new location of Car1.
Our goal in this paper is to construct an object tracking

tree T ¼ ðVT ; ET Þ that incurs the lowest communication cost

given a sensor network G ¼ ðVG;EGÞ and the corresponding

event rates and query rates, where VT ¼ VG and ET consists

of jVT j � 1 edges with the sink as the root. Intuitively, T is a

logical tree constructed from G, in which each edge ðu; vÞ 2
T is one of the shortest paths connecting sensors u and v in

G. Therefore, the weight of each edge ðu; vÞ in T , denoted by

wT ðu; vÞ, is modeled by the minimum hop count between u

and v in G. The cost function can be formulated as

CðT Þ ¼ UðT Þ þQðT Þ, where UðT Þ denotes the update cost

and QðT Þ is the query cost.
Table 1 summaries the notations used in this paper.

3 TREE CONSTRUCTION ALGORITHMS

This section presents our algorithms for constructing

efficient object tracking trees. In Section 3.1, we develop

algorithm DAT targeted at reducing the update cost. Then,

in Section 3.2, based on the concept of divide-and-conquer,

we devise algorithm Z-DAT to further reduce the update

cost. In Section 3.3, algorithm QCR is developed to adjust

the tree obtained by algorithm DAT/Z-DAT to further

reduce the total cost.

3.1 Algorithm DAT (Deviation-Avoidance Tree)

Object tracking typically involves two basic operations:

update and query. Based on the aggregation model in

Section 2, updates will be initiated when an object o moves

from sensor a to sensor b. It can be seen that both the

departure event depðo; a; bÞ and the arrival event arvðo; b; aÞ
will be forwarded to the root of the minimum subtree

containing both a and b. Therefore, the update cost UðT Þ of

a tree T can be formulated by counting the average number

of messages transmitted in the network per unit time:
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Fig. 2. (a) An object tracking tree T , where the dotted lines are the forwarding path of a query for Car1. (b) The events generated as Car1 moves from

sensor K to G and Car2 moves from H to C.



UðT Þ ¼
X

ðu;vÞ2EG
wGðu; vÞ

� ðdistT ðu; lcaðu; vÞÞ þ distT ðv; lcaðu; vÞÞÞ; ð1Þ

where lcaðu; vÞ denotes the root of the minimum subtree in
T that includes both u and v (from now on, we will call
lcaðu; vÞ the lowest common ancestor of u and v), and
distT ðx; yÞ is the sum of weights of the edges on the path
connecting x and y in T . For example, in Fig. 2a,
distT ðF;KÞ ¼ wT ðF; IÞ þ wT ðI; JÞ þ wT ðJ;KÞ ¼ 3. In order
to identify which factors affecting the value of UðT Þ, we
show that UðT Þ also can be formulated in a different way as
follows:

Theorem 1. Given any logical tree T of the sensor network G, we
have

UðT Þ ¼
X

ðpðvÞ;vÞ2ET
wT ðpðvÞ; vÞ �

X
ðx;yÞ2EG^x2SubtreeðvÞ
^y =2 SubtreeðvÞ

wGðx; yÞ

0
B@

1
CA;

ð2Þ

where SubtreeðvÞ is the subtree of T rooted at node v and pðvÞ
is the parent of v.

Proof. This can be proved by observing which events will be
reported along an edge in T . Given ðpðvÞ; vÞ 2 ET , for any
ðx; yÞ 2 EG, where x 2 SubtreeðvÞ and y =2 SubtreeðvÞ,
since the lowest common ancestor of x and y must not
in SubtreeðvÞ, any event generated on ðx; yÞ will be
transmitted from v to pðvÞ. Otherwise, no message will be
transmitted from v to pðvÞ. This leads to the theorem. tu

From (1) and (2), we make three observations about
UðT Þ:

. Equation (1) contains the factor distT ðu; lcaðu; vÞÞ. Its
minimal value is distGðu; lcaðu; vÞÞ, which denotes
the minimum hop count between sensor u and
sensor lcaðu; vÞ in G. Therefore, we would expect
that distT ðu; sinkÞ ¼ distGðu; sinkÞ for each u 2 VG;
otherwise, we say that u deviates from its shortest
path to the sink. If distT ðu; sinkÞ ¼ distGðu; sinkÞ for
each u 2 VG, we say that tree T is a deviation-
avoidance tree. Fig. 3 shows four possible object
tracking trees for the graph G in Fig. 1b. The one in
Fig. 3b is not a deviation-avoidance tree since

distT ðE;AÞ ¼ 3 > distGðE;AÞ ¼ 2. The other three
are deviation-avoidance trees.

. Equation (2) contains the factor wT ðu; vÞ. Its minimal
value is 1 when u 6¼ v. Consequently, it is desirable
that each sensor’s parent is one of its neighbors.
Only the tree in Fig. 3d satisfies this criterion. By
selecting neighboring sensors as parents, the average
value of distT ðu; lcaðu; vÞÞ þ distT ðv; lcaðu; vÞÞ in (1)
can be minimized. For example, the average values
of distT ðu; lcaðu; vÞÞ þ distT ðv; lcaðu; vÞÞ are 3.591,
2.864, and 2.227 for the trees in Fig. 3a, Fig. 3c, and
Fig. 3d, respectively.

. In (1), the weight wGðu; vÞ will be multiplied by
distT ðu; lcaðu; vÞÞ þ distT ðv; lcaðu; vÞÞ. For two edges
ðu; vÞ and ðu0; v0Þ 2 EG such that wGðu; vÞ > wGðu0; v0Þ,
it is desirable that

distT ðu; lcaðu; vÞÞ þ distT ðv; lcaðu; vÞÞ
< distT ðu0; lcaðu0; v0ÞÞ þ distT ðv0; lcaðu0; v0ÞÞ:

Combining this observation with the second obser-
vation, an edge ðu; vÞ with a higher wGðu; vÞ should
be included into T as early as possible and pðvÞ
should be set to u if distGðu; sinkÞ < distGðv; sinkÞ,
and vice versa. We call this the highest-weight-first

principle.

Based on above observations, we develop our algorithm
DAT. Initially, DAT treats each node as a singleton subtree.
Then we will gradually include more links to connect these
subtrees together. In the end, all subtrees will be connected
into one tree T . The detailed algorithm is shown in
Algorithm 1, where notation rootðxÞ represents the root of
the temporary subtree that contains x. To begin with, EG is
sorted into a list L in a decreasing order of links’ weights.
Based on the third observation, algorithm DAT will
examine edges in L one by one for possibly being included
into tree T . For each edge ðu; vÞ in L being examined by
algorithm DAT, ðu; vÞ will be included into T only if u and v

are currently located in different subtrees. Also, ðu; vÞ will
be included into T only if at least one of u and v is currently
the root of its temporary subtree and the other is on a
shortest path in G from the former node to the sink (these
conditions are reflected by the if statements in lines 5 and
7). An edge in G passing these checks will then be included
into T . Note that without these conditions, deviations may
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TABLE 1
Summary of Notations



occur. It can be seen that T is always a subgraph of G and

wT ðu; vÞ ¼ 1 for all ðu; vÞ 2 ET . For example, Fig. 4a is a

snapshot of an execution of DAT. When ðF;GÞ is examined

by DAT, it will not be included into T because neither F nor

G is the root of its temporary subtree. Another snapshot is

shown in Fig. 4b. When ðB;DÞ is examined, it will not be

included into T . Although D is the root of its temporary

subtree, B is not on the shortest path from D to A, i.e.,

distGðD;AÞ 6¼ distGðB;AÞ þ 1. ðA;DÞ will be then examined

after ðB;DÞ. ðA;DÞ can be included into T , because D is the

root of its temporary subtree and A is on the shortest path

from D to A.
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Fig. 3. Four possible location tracking trees for the graph in Fig. 1(b).

Fig. 4. Snapshots of an execution of DAT. Solid lines are those edges that have been included into T .



Algorithm 1 DAT(G)

1: Let T ¼ ðVT ; ET Þ such that VT ¼ VG and ET ¼ �
2: Sort EG into a list L in a decreasing order of their event

rates.

3: for each ðu; vÞ 2 EG in L do

4: if ðrootðuÞ 6¼ rootðvÞÞ then

5: if ðu ¼ rootðuÞÞ ^ ðdistGðu; sinkÞ ¼ distGðv; sinkÞ þ 1Þ
then

6: Let ET ¼ ET [ ðu; vÞ and let the root of the new

subtree be rootðvÞ.
7: else if ðv ¼ rootðvÞÞ ^ ðdistGðv; sinkÞ ¼

distGðu; sinkÞ þ 1Þ then

8: Let ET ¼ ET [ ðu; vÞ and let the root of the new

subtree be rootðuÞ.
9: end if

10: end if

11: end for

Theorem 2. If G is connected, the tree T constructed by
algorithm DAT is a connected deviation-avoidance tree rooted
at the sink.

Proof. First, we show that T is connected. Each sensor is the
root of a singleton subtree in the beginning and we will
prove that only one senor will be the root in the ending.
SinceG is connected, when a sensor x 6¼ sink is the root of
a subtree (i.e., x ¼ rootðxÞ), it always can find a neighbor-
ing sensor y such that distGðx; sinkÞ ¼ distGðy; sinkÞ þ 1.
It is clear that rootðyÞ 6¼ x because

distGðrootðyÞ; sinkÞ � distGðy; sinkÞ:

Hence, edge ðx; yÞ can be included into T , and x will not
be the root anymore. By repeating such arguments, T
will be connected and rooted at the sink. Second, we
show that T is a deviation-avoidance tree. This can be
derived from two observations. First, when an edge ðu; vÞ
is included into T , DAT will choose v as the child of u if
distGðv; sinkÞ is larger than distGðu; sinkÞ, and vice versa.
Therefore, if the path from the sink to sensor u is one of
the shortest paths, the path from the sink to sensor v is
also one of the shortest paths. Second, assuming
distGðv; sinkÞ ¼ distGðu; sinkÞ þ 1, DAT will include
ðv; uÞ only when v itself is the root of a subtree. This
guarantees that all descendant nodes in SubtreeðvÞ will
not deviate from their shortest paths to the sink. Hence,
the theorem follows. tu

3.2 Algorithm Z-DAT (Zone-Based Deviation-
Avoidance Tree)

The Z-DAT is derived based on the following locality concept.
Assume thatu is v0s parent inT . According to (2), for any edge
ðx; yÞ 2 EG such that x 2 SubtreeðvÞ and y =2 SubtreeðvÞ,
arrival/departure events between x and y will cause a
message to be transmitted on ðpðvÞ; vÞ, thus increasing the
value of

P
ðx;yÞ2EG^x2SubtreeðvÞ^y =2SubtreeðvÞ wGðx; yÞ. Therefore,

the perimeter that bounds the sensing area of sensors in each
SubtreeðvÞ will impact the update cost UðT Þ. A longer
perimeter would imply more events crossing the boundary.
For example, in the three subtrees in Fig. 5, although all
subtrees have the same number of sensors, the perimeter of
the subtree in Fig. 5a is smaller than that in Fig. 5b, which is
in turn less than that in Fig. 5c. In geometry, it is clear that a
circle has the shortest perimeter to cover the same area as
compared with other shapes. Circle-like shapes, however,
are difficult to be used in an iterative tree construction. As a
result, Z-DAT will be developed based on square-like zones.

Z-DAT is derived based on the deviation-avoidance
principle and the above locality concept. The algorithm
builds T in an iterative manner based on two parameters, �
and �, where � is a power of 2 and � is a positive integer. To
begin with, Z-DAT first uses ð�� 1Þ horizontal lines to
divide the sensing field into � strips. For each horizontal
line between two strips, we are allowed to further move it
up and down within a distance no more than � units. This
gives 2� þ 1 possible locations of each horizontal line. For
each location of the horizontal line, we can calculate the
total event rate that objects may move across the line. Then
we pick the line with the lowest total event rate as its final
location. After all horizontal lines are determined, we then
further partition the sensing field into �2 regions by using
ð�� 1Þ vertical lines. Following the adjustment as above,
each vertical line is also allowed to move left and right
within a distance no more than � units and the one with the
lowest total event rate is selected as its final location.

After the above steps are completed, the sensing field is
divided into �2 square-like zones. First, we run DAT on the
sensors in each zone. This will result in one or multiple
subtrees in each zone. Next, we will merge subtrees in the
above �2 zones recursively as follows: First, we combine
these zones together into �

2 � �
2 larger zones, such that each

larger zone contains 2� 2 neighboring zones. Then, we
merge subtrees in these 2� 2 zones by sorting all interzone
edges (i.e., edges connecting these 2� 2 zones) according to
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Fig. 5. Possible structures of subtrees with nine sensors.



their event rates into a list L and feeding L to steps 3 � 11 of
the original DAT algorithm. Second, we further combine the
above larger zones together into �

4 � �
4 even larger zones,

such that each even larger zone contains 2� 2 neighboring
larger zones. This process is repeated until one single tree is
obtained. The algorithm is summarized in Algorithm 2. An
illustrated example is shown in Fig. 6.

Algorithm 2 Z-DATðG;�; �Þ
1: Divide the network into �� � zones based on parameters

� and �.

2: Run DAT on the sensors in each zone.

3: i 1

4: while �
2i 6¼ 0 do

5: The network is divided into �
2i � �

2i zones.

6: Run DAT on each zone to merge its subtrees.

7: i iþ 1

8: end while

To summarize, Z-DAT is similar to DAT except that it
examines links of EG in a different order. By partitioning the
sensing field into zones, each subtree in T is likely to cover a
square-like region, thus avoiding the problem pointed out in
Fig. 5. Also, by using the parameter � to fine-tune the lowest-
level zones, Z-DAT tends to avoid high-weight links
becoming interzone edges. In fact, this is a consequence of
the highest-weight-first design principle.

Theorem 3. If G is connected, the tree T constructed by
algorithm Z-DAT is a connected deviation-avoidance tree
rooted at the sink.

Proof. Z-DAT will examine all links of G, but in a different
order from DAT. However, the proof of Theorem 3 is
independent of the order of the links being examined for
being included into T . Therefore, the same proof is still
applicable here. tu

3.3 Algorithm QCR (Query Cost Reduction)

The above DAT and Z-DAT only try to reduce the update
cost. The query cost is not taken into account. QCR is
designed to reduce the total update and query cost by
adjusting the object tracking tree obtained by DAT/Z-DAT.
To begin with, we define the query rate qðvÞ of each sensor v

as the average number of queries that refer to objects within

the sensing range of v per unit time in statistics.
Given a tree T , we first derive its query cost QðT Þ.

Suppose that an object x is within the sensing range of v.

When x is queried, if v is a nonleaf node, the query message

is required to be forwarded to v since pðvÞ only indicates

that x is in the subtree rooted at v. On the other hand, if v is

a leaf node, the query message only has to be forwarded to

pðvÞ because sensor pðvÞ knows that the object is currently

monitored by v. The following equation gives QðT Þ by

taking into account the number of hops that query requests

and query replies have to travel on T .

QðT Þ ¼ 2�

X
v2VT ^

v=2leaf node

qðvÞ � distT ðv; sinkÞ þ
X
v2VT ^

v2leaf node

qðvÞ � distT ðpðvÞ; sinkÞ

0
B@

1
CA:

ð3Þ

We make two observations on QðT Þ. First, because

distT ðpðvÞ; sinkÞ is always smaller than distT ðv; sinkÞ, (3)

indicates that placing a node as a leaf can save the query cost

instead of placing it as a nonleaf. For example, when query

rates are extremely high, it is desirable that every node will

become a leaf node and T will become a star-like graph.

Second, the second term in (3) implies that the value of

distT ðpðvÞ; sinkÞ should be made as small as possible. Thus,

we should choose a node closer to the sink as v0s parent

(however, this is at the expense of the update cost).
Based on the above observations, QCR tries to adjust the

tree T obtained by DAT or Z-DAT. In QCR, we examine T

in a bottom-up manner and try to adjust the location of each

node in T by the following operations.

1. If a node v is not a leaf node, we can make it a leaf by
cutting the links to its children and connecting each
of its children to pðvÞ. (Note that we can do so
because T is regarded as a logical tree.) Let T 0 be the
new tree after modification. We derive that

CðT Þ � CðT 0Þ ¼ QðT Þ �QðT 0Þ þ UðT Þ � UðT 0Þ

¼ 2� qðvÞ þ
X

i2childrenðvÞ^
i2leaf node

qðiÞ

0
B@

1
CA

�
X

i2neighborsðvÞ
^i2SubtreeðvÞ

wGðx; iÞ

�
X

i2childrenðvÞ

X
ðx;yÞ2EG^y =2SubtreeðiÞ

^x2SubtreeðiÞ

wGðx; yÞ

0
B@

1
CA

þ
X

ðx;yÞ2EG^y =2SubtreeðvÞ
^x2SubtreeðvÞ^x6¼v

wGðx; yÞ:

ð4Þ

The derivation of (4) is in Appendix A. If the amount

of reduction is positive, we replace T by T 0.

Otherwise, we keep T unchanged. Fig. 7 illustrates

this operation.
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Fig. 6. An example of the Z-DAT algorithm with � ¼ 4. (a) In the first

iteration, we divide the field into �� � zones and adjust their boundaries

according to �. (b) In the second iteration, each 2� 2 neighboring zones

is combined into a larger zone.



2. If a node v is a leaf node, we can make pðvÞ closer to
the sink by cutting v0s link to its current parent pðvÞ
and connect v to its grandparent pðpðvÞÞ. Let T 0 be
the new tree. We derive that

CðT Þ � CðT 0Þ ¼ QðT Þ �QðT 0Þ þ UðT Þ � UðT 0Þ
¼ 2� qðvÞ þ q0ðvÞð Þ

� 2�
X

ðx;yÞ2EG^y=2SubtreeðvÞ^
x2SubtreeðvÞ^y2SubtreeðpðvÞÞ

wGðx; yÞ

0
B@

1
CA;

ð5Þ

where

q0ðvÞ ¼ 0 if pðvÞ has more than one child in T
qðpðvÞÞ otherwise:

�

ð6Þ

The derivation of (5) is in Appendix A. If the amount
of reduction is positive, we replace T by T 0.
Otherwise, T remains unchanged. Fig. 8 illustrates
this operation.

Note that (4) and (5) allow us to compute the reduction
of cost without computing UðT 0Þ and QðT 0Þ. This saves
computational overhead. Also note that T is examined in a
bottom-up manner in a layer-by-layer manner. Nodes that
are moved to an upper layer will have a chance to be
reexamined. However, to avoid going back and forth, nodes
that are not moved will not be reexamined.

For example, suppose that we are given a DAT tree in
Fig. 9a (which is constructed from Fig. 1b), where the
number labeled on each node is its query rate. When
examining the bottom layer, we will apply Step 2 to sensors
H, J , and K and obtain reductions of 1,974, -62, and -6,
respectively. Hence, only H is moved upward as shown in
Fig. 9b. When examining the second layer, we will apply
Step 1 to sensor G and I and apply Step 2 to sensors C, E,
and H. Only when applying to sensor H, it will result in a
positive reduction of 1; 970. This updates the tree to Fig. 9c.
Finally, sensors B, D, and F are examined. Only D has a
positive reduction of 1,842. Thus, D will become a leaf and
all its children are connected to D’s parent as shown in

Fig. 9d. Overall, the cost is reduced from 7,121 to 5,150,
3,180, and then 1,338 after each step, respectively.

4 SIMULATION RESULTS

We have simulated a sensing field of size 256� 256. Unless
otherwise stated, 4,096 sensors are deployed in the sensing
field. Two deployment models are considered. In the first
one, sensors are regularly deployed as a 64� 64 grid-like
network. In the second model, sensors are randomly
deployed. In both models, the sink may be located near
the center of the network or one corner of the network.

Event rates are generated based on a model similar to the

city mobility model in [8]. Assuming the sensing field as a
square of size r� r, the model divides the field into

2� 2 subsquares called level-1 subregions. Each level-1

subregion is further divided into 2� 2 subsquares called
level-2 subregions. This process is repeated recursively.

Given an object located in any position in the sensing field,

it has a probability p1 to leave its current level-1 subregion,
and a probability 1� p1 to stay. In the former case, the

object will move either horizontally or vertically with a

distance of r=2. In the latter case, the object has a probability
p2 to leave its current level-2 subregion, and a probability

1� p2 to stay. Again, in the former case, the object will

move either horizontally or vertically with a distance of
r=22, and in the latter case it may cross level-3 subregions.

The process repeats recursively. The probability pi is

determined by an exponential probability pi ¼ e�C�2
d�i

,
where C is a positive constant and d is the total number
of levels. In fact, the above behavior only formulates how
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Fig. 7. Making a nonleaf node v a leaf node.

Fig. 8. Connecting a leaf node vi to pðpðviÞÞ.

Fig. 9. An execution example of algorithm QCR.



objects move in the sensing field. After sensors are
deployed in the network (no matter the sensors are
deployed in a regular or random way), the movement
patterns of these objects will generate event rates between
neighboring sensors. Also, objects are queried by the sink
with the same probability. Since objects may be located at
different sensors with different probabilities, the query rates
may vary in different sensors.

We compare our schemes with a naive scheme and the
DAB scheme [8]. In the naive scheme, any update is sent to
the sink (i.e., there is no in-network processing capability).
In this case, the query cost is always zero, so it is preferable
when the query rates are relatively high. For the DAB
scheme, all sensors are considered leaf nodes, and a logical
structure is used to connect these leaf nodes. When two
subtrees are merged into one, the root of the subtree which
is closer to the sink will become the root of the merged tree
(note that this may still cause deviation).

First, we observe the advantage of using in-network
processing to reduce update cost. Fig. 10 shows the result
under different values of C for regular and random sensor
deployment. As can be seen, a larger C implies a higher
moving locality, thus leading to a lower update cost. The
naive scheme has the highest update cost, which is
reasonable. By exploiting the concept of deviation avoid-
ance and taking the physical topology into account, DAT
and Z-DAT further outperform DAB.

Next, we investigate the effect of deployment models. By
comparing, the graphs in Fig. 10, we see that Z-DAT

outperforms DAT under regular deployment, but the
advantage is almost negligible under random deployment.
This is because maintaining the shapes of subtrees in Z-DAT
is difficult. For example, Fig. 11 shows snapshots of DAT
trees and Z-DAT trees under regular and random deploy-
ments. As can be seen, Z-DAT does exploit the locality of
sensors by partitioning sensors into zones under regular
deployment. However, this is not true for the random case.

To get further insight into the performance of Z-DAT, we
vary � and �, and show the results in Fig. 12, where a 4,096
and a 2,500-node sensor networks are simulated. Note that
when � ¼ 1 and � ¼ 0, Z-DAT is equivalent to DAT. For
regular deployment, Z-DAT performs well when � is larger
than 4. However, for random deployment, the Z-DAT does
not perform well because maintaining the shapes of
subtrees in Z-DAT is difficult. Furthermore, it can be seen
that when � ¼ 0, Z-DAT has better performance. This means
that a square-like zone is better than a rectangle-like zone.
Also, note that the trend in both 4,096 and 2,500-node
sensors networks (the latter has a nonpower-of-2 number of
nodes) are quite similar.

Next, we examine the query cost. The result is shown in
Fig. 13. In general, the query cost increases linearly with the
aggregate query rate. As mentioned earlier, the query cost of
the naive scheme is always zero. Both query costs for DAT
and Z-DAT are lower than that of DAB. This is attributed to
the fact that query messages are always transmitted along
the shortest paths between the sink and sensors in DAT and
Z-DAT. Also due to the similar reason, the query cost is
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Fig. 10. Comparison of update costs. In the Z-DAT scheme, � ¼ 8 and � ¼ 0. (a) Regular deployment, sink at a corner. (b) Regular deployment, sink
at the center. (c) Random deployment, sink at a corner. (d) Random deployment, sink at the center.



independent of the shape of T ; thus, DAT and Z-DAT
perform similarly despite the deployment models.

Finally, we examine the effectiveness of algorithm QCR
by showing the total update and query costs of different
schemes in Fig. 14. (For visual clarity, the cost of DAT are not
shown.) The naive scheme has a constant cost because it is
not affected by the query rate. The costs of DAB and Z-DAT
increase linearly with respect to the query rate. As a result,
they are outperformed by the naive scheme after the query
rate reaches a certain level. Our Z-DAT with QCR scheme
performs the best at all query rates. When the query rate is
low, it performs close to Z-DAT. On the other hand, when
the query rate increases, it works similar to the naive
scheme. This verifies the advantage of the proposed DAT/
Z-DAT with QCR schemes.

5 CONCLUSIONS

In this paper, we have developed several efficient ways to
construct a logical object tracking tree in a sensor network.
We have shown how to organize sensor nodes as a logical
tree so as to facilitate in-network data processing and to
reduce the total communication cost incurred by object
tracking. For the location update part, our work can be
viewed as the extension of the work in [8], and we enhance
the work by exploiting the physical structure of the sensor

network and the concept of deviation avoidance. In
addition, we also consider the query operation and
formulate the query cost of an object tracking tree given
the query rates of sensors. In particular, our approach tries
to strike a balance between the update cost and query cost.
Performance analyses are presented with respect to factors
such as moving rates and query rates. Simulation results
show that by exploiting the deviation-avoidance trees,
algorithms DAT and Z-DAT are able to reduce the update
cost. By adjusting the deviation-avoidance trees, algorithm
QCR is able to significantly reduce the total cost when the
aggregate query rates is high, thus leading to efficient object
tracking solutions.

APPENDIX A

In this appendix, we show how to derive (4) and (5). To
begin with, we present two implicit facts used in the
following derivations. First, according to Theorem 1, we can
conclude that if the members of SubtreeðvÞ are not changed,
the number of messages transmitted on edge ðv; pðvÞÞ 2 T
will be unchanged. Second, when a node v is being
examined by QCR, wT ðpðvÞ; pðpðvÞÞÞ must be 1. This fact
holds because the input of QCR algorithm is a DAT/Z-DAT
tree and the tree is examined in a bottom-up manner.

First, we derive the QðT Þ �QðT 0Þ in (4). When v becomes
a leaf and the queried object locates at the sensing field of v,
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Fig. 11. Snapshots of tree T obtained by DAT and Z-DAT under regular and random deployments. There are 1,024 sensors with the sink at the
lower-left corner. (ð�; �Þ ¼ ð8; 0Þ for Z-DAT.) (a) A DAT tree (regular deployment). (b) A Z-DAT tree (regular deployment). (c) A DAT tree (random
deployment). (d) A Z-DAT tree (random deployment).
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Fig. 13. Comparison of query costs. (C ¼ 1:0). (a) Regular deployment, sink at a corner. (b) Regular deployment, sink at the center. (c) Random

deployment, sink at a corner. (d) Random deployment, sink at the center.

Fig. 12. Comparison of update costs under different ð�; �Þ for Z-DAT. Sinks are located at the center of the network. (a) Regular deployment, C = 0.1,
4,096 sensors. (b) Random deployment, C = 0.1, 4,096 sensors. (c) Regular deployment, C = 0.1, 2,500 sensors. (d) Random deployment, C = 0.1,
2,500 sensors.



the query only has to be sent to pðvÞ. In addition, when one

of v’s children, say i, is connected to pðvÞ and i is a leaf, pðvÞ
also can reply the query if the queried object locates at the

sensing field of i. Thus, we have

QðT Þ �QðT 0Þ ¼ 2� qðvÞ þ
X

i2childrenðvÞ
^i2leafnode

qðiÞ

0
B@

1
CA:

Now we derive the UðT Þ � UðT 0Þ in (4). The operation of

QCR ensures that when one of v0s children, say i, changes its

parent to pðvÞ, the update cost will be increased by

X
i2childrenðvÞ

X
ðx;yÞ2EG^y =2SubtreeðiÞ

x^2SubtreeðiÞ

wGðx; yÞ

0
B@

1
CA:

In addition, the events between v and i, where i 2
neighborsðvÞ and i 2 SubtreeðvÞ, will be reported to pðvÞ
rather than v when v becomes a leaf. Thus, v must forward

an additional message to pðvÞ. The increased cost is

X
i2neighborsðvÞ^
i2SubtreeðvÞ

wGðx; iÞ:

However, when v becomes a leaf, the event across an

edge ðx; yÞ 2 EG such that y =2 SubtreeðvÞ, x 2 SubtreeðvÞ,
and x 6¼ v will not be transmitted on ðv; pðvÞÞ. The cost is

reduced by

X
ðx;yÞ2EG^y =2SubtreeðvÞ
^x2SubtreeðvÞ^x 6¼v

wGðx; yÞ:

Combining above three factors, we have

UðT Þ � UðT 0Þ ¼ �
X

i2neighborsðvÞ
^i2SubtreeðvÞ

wGðx; iÞ

�
X

i2childrenðvÞ

X
ðx;yÞ2EG^y =2SubtreeðiÞ

^x2SubtreeðiÞ

wGðx; yÞ

0
B@

1
CA

þ
X

ðx;yÞ2EG^y =2SubtreeðvÞ
^x2SubtreeðvÞ^x 6¼v

wGðx; yÞ:

Next, we derive (5). To see QðT Þ �QðT 0Þ, observe that

when v changes its parent from pðvÞ to pðpðvÞÞ, the saved

query cost is qðvÞ. Furthermore, when pðvÞ has only one

child v, the adjustment of v will make pðvÞ a leaf. This saves

a query cost of qðpðvÞÞ. Therefore, we have

QðT Þ �QðT 0Þ ¼ 2� ðqðvÞ þ q0ðvÞÞ:

The value of UðT Þ � UðT 0Þ is affected by three factors,

when v changes its parent from pðvÞ to pðpðvÞÞ. The update

cost will be increased by

X
ðx;yÞ2EG^y =2SubtreeðvÞ

^x2SubtreeðvÞ

wGðx; yÞ:

LIN ET AL.: EFFICIENT IN-NETWORK MOVING OBJECT TRACKING IN WIRELESS SENSOR NETWORKS 1055

Fig. 14. Comparison of total costs (C ¼ 1:0). (a) Regular deployment, sink at a corner. (b) Regular deployment, sink at the center. (c) Random
deployment, sink at a corner. (d) Random deployment, sink at the center.



For edges that have one incident vertex in SubtreeðvÞ and
one incident vertex is in SubtreeðpðvÞÞ but not in SubtreeðvÞ,
the events across these edges cannot be absorbed by pðvÞ
after v changes its parent from pðvÞ to pðpðvÞÞ. The increased
update cost will be:

X
ðx;yÞ2EG^y =2SubtreeðvÞ^

x2SubtreeðvÞ^y2SubtreeðpðvÞÞ

wGðx; yÞ:

However, for edges that have one incident vertex in
SubtreeðvÞ and one incident vertex is not in SubtreeðpðvÞÞ,
the events across these edges will be transmitted on
ðv; pðpðvÞÞÞ rather than ðv; pðvÞÞ when we connects v to
pðpðvÞÞ. The update cost will be decreased by

X
ðx;yÞ2EG^x2SubtreeðvÞ
^y =2SubtreeðpðvÞÞ

wGðx; yÞ:

Combing these terms leads to the following equation:

UðT Þ � UðT 0Þ ¼ �
X

ðx;yÞ2EG^y=2SubtreeðvÞ
^x2SubtreeðvÞ

wGðx; yÞ

�
X

ðx;yÞ2EG^y =2SubtreeðvÞ^
x2SubtreeðvÞ^y2SubtreeðpðvÞÞ

wGðx; yÞ

þ
X

ðx;yÞ2EG^x2SubtreeðvÞ
^y =2SubtreeðpðvÞÞ

wGðx; yÞ

¼ � 2�
X

ðx;yÞ2EG^y =2SubtreeðvÞ^
x2SubtreeðvÞ^y2SubtreeðpðvÞÞ

wGðx; yÞ

0
B@

1
CA:
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