
Product Codes and Parallel Concatenated Product
Codes

Tina D.-H. Huang, Chi-Yuan Chang, Yan-Xiu Zheng and Yu T. Su
Department of Communications Engineering

National Chiao Tung University
Hsinchu, 30056, TAIWAN,

Email: ytsu@mail.nctu.edu.tw

Abstract— We study the decoding of product codes and a
class of parallel concatenated product codes (PCPC). PCPC
improves the minimum distance while retaining the merit of low
decoding complexity of turbo product codes (TPC). We prove
that using the Fibonacci interleaver does help increasing the
minimum distance. The regularity of the interleaver also reduces
the implementation complexity and makes parallel interleaving
feasible. We show that Pyndiah’s algorithm for decoding product
codes produce an annealing effect similar to that of the so-called
annealed belief propagation (ABP) algorithms which adjusts the
“temperature” of an augmented cost surface. Decoding methods
based on modified Pyndiah and annealed BCJR algorithms for
both PC and PCPC are proposed and their performance is
compared.

I. INTRODUCTION

The Product code concept is very simple and relatively
efficient for building very long block codes using two or more
short block codes. Fig. 1 shows a typical (two-dimensional)
product coding scheme that arranges the information symbols
in a rectangular array and encodes each row and column
individually by two linear block codes C1 and C2. The resulting
augmented rectangular array of Fig. 1 forms a codeword of
the product code C1 ⊗ C2 with rows and columns being C1

and C2 codewords.
Pyndiah [3] proposes an iteratively decoding method that

applies the Chase-II algorithm [5] to each component code
to generate extrinsic information. The resulting turbo-decoded
performance is quite impressive, considering the low complex-
ity of the overall decoding algorithm as low minimum distance
linear block code applied. As moderate minimum distance
linear block code applied, such as double error-correcting
(BCH) code, cyclic searching or parity check searching are not
usable for candidate codewords search; the overall complexity
grows fast.

The class of parallel concatenated product codes (PCPCs) is
an extension of the product codes (PCs). Its structure is similar
to that of a classic turbo code [2], replacing the constituent
convolutional codes in a turbo code by product codes. The
code can use simple component codes to pertain high free
distance without significant decoding complexity increase. [1]
has studied the same structure applying single parity check
code as linear product code.

We extend the idea of [1] and use extended Hamming codes
as the component codes of the associated product codes. The

availability of low-complexity soft output decoding algorithm
for extended Hamming codes and flexible choices of code rates
and codeword lengths make PCs and PCPCs attractive options
for high speed wireless communication applications.

We use Fibonacci interleaver for PCPCs for it has a regular
structure and renders simple implementation. It will be shown
that this class of interleavers guarantees that the resulting
PCPC has a minimum distance larger than that of its con-
stituent product codes if a proper component codeword length
is selected.

As the soft-output algorithm of [3] does not explicitly
consider the a priori information, we modify the decoding
algorithm using a new metric and derive a new extrinsic
information formula. Hanzo et al. [6] used maximum a BCJR-
based iterative decoding algorithm to decode PCs. However, as
a PC has a girth of four only, the sum-product decoder does
not offer near-optimal performance and is outperformed by
Pyndiah’s algorithm in high signal-to-noise ratio (SNR) region.
We show that Pyndiah’s list decoding approach undergoes a
cooling process similar to that of annealed belief propagation
(ABP) algorithms [7] and demonstrate that incorporating dy-
namic temperature(s) in the BCJR-based approach also result
in improved performance.

The rest of this paper is organized as follows. Section 2
describes a modified Pyndiah-Chase algorithm and Hanzo’s
BCJR-based PC decoding algorithm, and an annealed version
of the BCJR-based decoder. Performance comparison of all
three TPC decoders is given as well. In Section 3, we present
the encoder and decoder structures of PCPCs and the special
interleaver used. We also describe the corresponding decoding
schedule. A lower bound for the minimum distance of a PCPC
using the Fibonacci interleaver is derived. The last section
presents some simulated performance of various PCs and
PCPCs.

II. TURBO PRODUCT CODES

A. Product codes

Consider the product code C1 ⊗ C2 shown in Fig. 1, where
C1 and C2 are (n1, k1, δ1) and (n2, k2, δ2) systematic linear
block codes. The product code P = C1 ⊗ C2 has a length
of n = n1 × n2 bits with k = k1 × k2 information bits and
minimum Hamming distance δ = δ1 × δ2. Its code rate R is
given by R = R1×R2, where Ri = ki/ni is the code rate of

1525-3511/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

94

Information symbols

Check s on columns

 Check s
 on
 rows

 Check s
 on
 check s

n2

k2

k1

n1

Fig. 1. A typical two-dimensional product code, P = C1 ⊗ C2.

the component code Ci. The k1×k2 matrix within the product
codeword is called the information array and the remaining
entries form the codeword parity part.

B. A modified Pyndiah-Chase algorithm

There are a variety of soft-decision decoding algorithms
for block codes. The Chase algorithm and its variations
offer a good balance and tradeoff between complexity and
performance. List-decoding often consists of two stages: (i)
finding candidate codewords based on the received samples
and (ii) generating soft output. As in a turbo decoder, the soft
output is then passed to the ensuing decoding round as the
extrinsic (a priori) information. For convenience of reference
we summarize the Chase list decoding algorithm for a linear
block code as follows.

1) Selecting candidate codewords: Suppose an (n, k, δ)
linear block code C is BPSK-modulated and transmitted over
an additive white Gaussian noise (AWGN) channel. X =
(x1, · · · , xl, · · · , xn) and R = (r1, · · · , rl, · · · , rn) denote
the transmitted codeword and received vector, where xl ∈
{+1,−1}. Then R = X + E, where the noise vector is
E = (e1, e2, · · · , en) in which ei are i.i.d. zero-mean Gaussian
random variables with variance σ2. A = (a1, · · · , al, · · · , an)
denotes the a priori information of the codeword bits where

al = ln
Pr{cl = +1}
Pr{cl = −1} . (1)

Following the spirit of Chase’ list decoding approach, we pro-
pose the following three-step algorithm, which is a modified
version of Pyndiah’s algorithm [3].
A1. Use R and A, if available, to obtain the hard decision

vector Y = (y1, y2, · · · , yn) as well as their reliability
(extrinsic information). Determine the p = �δ/2� posi-
tions associated with the least reliable binary elements
of Y, where the reliability of yj is given by Λ(xj) and
is related to the log-likelihood ratio (LLR) via

Λ(xj) = ln
Pr{rj |xj = +1}
Pr{rj |xj = −1} + aj =

2
σ2

rj + aj (2)

A2. Bit-flipping the most unreliable p positions on Y to form
the set of 2p test patterns Tq (0 ≤ q ≤ 2p − 1).

A3. Form test sequence Zq where zq
l = yl ⊕ tql and decode

Zq using an algebraic (or hard) decoder. Denoted by
Ω the set of all decoded codewords, decision D =
(d1, d2, · · · , dn) of a row (or column) of the product
code is then obtained by applying decision rule:
D ∈ Ω is a local maximum likelihood codeword if

|R − D|2 ≤ |R − Ci|2 ∀ Ci ∈ Ω. (3)

where Ci = (ci
1 c1

2 · · · ci
n) and

|R − Ci|2 =
n∑

l=1

(rl − ci
l)

2

2σ2
− ci

l

2
al (4)

is the metric between R and Ci.

2) Soft output generation: The reliability of decision dj

about the transmitted symbol xj , given the observation R, is

Λ′(xj) = ln
(

Pr{xj = +1|R}
Pr{xj = −1|R}

)
(5)

Let S+1
j ⊂ C be the set of codewords whose jth coordinate

ci
j is +1 and S−1

j ⊂ C be the set of codewords with −1 in
their jth coordinate. Then we have

Pr {xj = +1|R} =
∑

Ci∈S+1
j

Pr
{
X = Ci|R}

(6)

Pr {xj = −1|R} =
∑

Ci∈S−1
j

Pr
{
X = Ci|R}

, (7)

and (5) becomes

Λ′(xj) = ln




∑
Ci∈S

+1
j

p{X=Ci|R}
∑

Ci∈Si
j

p{X=Ci|R}




≈ ln




∑
Ci∈S

+1
j

∩Ω

p{X=Ci|R}
∑

Ci∈S
−1
j

∩Ω

p{X=Ci|R}




≈ ln




max
Ci∈S

+1
j

∩Ω
p{X=Ci|R}

max
Ci∈S

−1
j

∩Ω
p{X=Ci|R}


 (8)

At high SNRs, (8) can be approximated by

Λ′′(xj) = |R − C−1(j)|2 − |R − C+1(j)|2 (9)

where C+1(j) ∈ S+1
j ∩ Ω and C−1(j) ∈ S−1

j ∩ Ω are the
codewords with the minimum metric and one of C+1(j) and
C−1(j) is D. Substituting (4) into (9), we obtain

Λ′′(xj) =
2rj

σ2
+ aj + wj (10)

where the extrinsic information wj is

wj =
n∑

l=1,l �=j

(
2
σ2

rl + al

)
c
+1(j)
l pl. (11)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

95

if there is a competing codeword at position j, i.e., there exists
codewords in Ω whose jth coordinate differs from dj , and

pl =

{
0, if c

+1(j)
l = c

−1(j)
l

1, if c
+1(j)
l �= c

−1(j)
l

. (12)

We compute extrinsic information for a position without
competing codeword by

wj(β) = β × w, j �∈ V, (13)

where 0 < β < 1 and

w =
1
|V |

∑
j∈V

|wj |. (14)

V = { j | ∃ Ci ∈ Ω s.t. ci
j �= dj} (15)

An iterative decoder then use the extrinsic information w
(m)
j

obtained at the mth decoding round (DR) as the a priori
information for the (m + 1)th DR by (see also Fig. 4)

a
(m+1)
j = w

(m)
j (β(m))

Λ(m+1)(xj) =
2
σ2

rj + α(m)a(m+1)
j , (16)

0 < α(m) ≤ 1 is a weighting factor which is often chosen as
a monotonic increasing function of m.

C. BCJR-based TPC decoding algorithm

Hanzo et al. [6] suggested an iterative decoding algorithm
for PCs by using a modified BCJR algorithm to calculate
extrinsic information. Incorporating the parity check bit in
calculating the LLR of a decoded bit (see Fig 2(a)), they obtain
the a-posteriori LLR

Λ′(xj) = ln


∑

(ś,s)⇒xj=+1 γ
(+1)
k (ś, s) · [(αeβe + αoβo)·∑

(ś,s)⇒xj=−1 γ
(−1)
k (ś, s) · [(αeβo + αoβe)·

P (rn|xn = +1) + (αeβo + αoβe) · P (rn|xn = −1)]
P (rn|xn = +1) + (αeβe + αoβo) · P (rn|xn = −1)]

]
(17)

where the superscript e(o) indicates the path arriving at this
state gives an even (odd) number of +1 bits. Note that the
forward and backward conditional probabilities αk(s) and
βk(s) are separated into two groups; see Fig. 2 (b).

1) Annealed BCJR based TPC decoding algorithm: Our
simulation concludes that the bit error rate (BER) performance
of the BCJR-based approach is worse than that of the Pyndiah-
Chase algorithm in high SNR region, although it is known that
the BCJR algorithm, being an MAP decoding rule, gives the
best BER performance when decoding the component block
codes. This is due to the fact that the BCJR-based PC decoder
follows the conventional BP schedule which yields inferior
performance if the corresponding factor graph has short cycles.
To remedy this shortcoming, we borrow the concept of the
recently developed ABP algorithm [7].

The ABP approach incorporates a dynamic temperature
into the free energy formulation so that message passing is
performed on a dynamic surface of energy cost. A proper

(a)

(b)

)(),(1111 ss e
k

o
k ′′ −− αα

)(),(2121 ss e
k

o
k ′′ −− αα

)(),(ss e
k

o
k αα

),(1
1 ssk ′+γ

),(1
1 ssk ′+γ

),(2
1 ssk ′−γ

),(2
1 ssk ′−γ

)(skα

)(11 sk ′−α

)(21 sk ′−α

+1

- 1

Fig. 2. (a) Forward recursion of the BCJR algorithm,(b) Forward recursion
of modified BCJR (MAP) algorithm. ś1 and ś2 are particular states of ś,
where ś and s represent states in time k − 1 and k, respectively.

cooling process is in place to randomize the BP schedule over
an ensemble of codes and to help BP converge to a stable
fixed point with lower energy value, which gives more accurate
global minimum estimations.

1.0 1.5 2.0 2.5 3.0 3.5
1E-6

1E-5

1E-4

1E-3

0.01

0.1

B
it

s
er

ro
r

ra
te

E
b
/N

0
 (dB)

(32,26,4) 2TPC R=0.66
8 iterations (16 decoding rounds)

 Pyndiah-Chase algorithm
 BCJR-based algorithm
 A-BCJR-based algorithm

Fig. 3. Performance of Pyndiah-Chase algorithm, BCJR based algorithm,
and Annealed BCJR (A-BCJR) based algorithm.

Following the concept of the ABP algorithms, we replace
the branch metric of the BCJR algorithm in log-domain
(denoted by ∗) by

γ∗
k, 1

T1
, 1

T2
(ś, s) ≡

(
1
T1

)
xkLa(xk)

2
+

(
1
T2

)
Lc

2
(rkxk)

= γm
µk, 1

T1

+ γ
1

T2
k (18)

where Lc = 4Es/N0, La(x) stands for the extrinsic infor-
mation of x, and T1, T2 are the temperature parameters such
that 0 < 1/T1, 1/T2 < 1. γ∗

k, 1
T1

, 1
T2

(ś, s) degenerated to the

conventional transition probability γ∗
k(ś, s) = xkLa(xk)/2 +

Lc(rkxk)/2 when T1 = T2 = 1.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

96

Note that the parameters 0 < α(m), β(m) < 1 used in (16),
(17) play the same roles as 1/T1 and 1/T2 do in the annealed
BCJR algorithm for cooling the associated cost function.
Fig. 3 reveals that both A-BCJR based algorithm and Pyndiah-
Chase algorithm outperform the BCJR-based algorithm by 0.5
dB at BER = 2 ∗ 10−6. The performance of the A-BCJR-
based algorithm can be further improved by fine-tuning the
temperatures.

III. PARALLEL CONCATENATED PRODUCT CODES

A. Encoder

The structure of parallel concatenated product code (PCPC)
is similar to that of the classic turbo code in which the
component recursive systematic convolutional encoders are
replaced by PCs. shown in Fig. 1. A codeword consists of
the PC codeword of the upper branch and the parity part of
the lower branch output. The only interleaver considered here
will be the Fibonacci interleaver.

B. Decoder

The decoder consists of four a posteriori probability (APP)
component decoders, each is responsible for decoding a com-
ponent block code. Fig. 4 depicts the structure of a component
decoder which is similar to that presented in [3]. Denote by
[R] the receiving matrix and by [Wt(m)] the output extrinsic
information matrix of the tth APP decoder at the end of the
mth APP decoding round. The a priori information matrix
given at input of the tth APP decoder is

Wsum(m) =
∑
l �=t

Wl(m). (19)

APP t`

[R]

[Wsum(m)] [Wt`(m +1)]

[α (m)]

Fig. 4. Block diagram of elementary APP decoder APPt‘.

The message passing operations among these four APP
decoders is shown in Fig. 5, where I and P are extrinsic
information corresponding to information bits and parity check
bits, respectively. A complete iteration follows the APP de-
coding schedule: APP0 → APP1 → APP2 → APP3. Each
APP decoder also sends related extrinsic information to the
other two decoders that do not sit next to it in the schedule.
Decoding of a component TPC usually converges after 8 APP
decoding rounds but a PCPC may takes an average of 16 APP
decoding rounds to converge.

Similar to [3], the choice of the weighting factor α and reli-
ability factor β is very critical in determining the performance.
The sets of α and β we used for different decoding rounds
are given by

α(m) = [0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0]. (20)

β(m) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0]. (21)

and

α(m) = [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 1.0]. (22)

β(m) = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 1.0]. (23)

APP 0 APP 1

APP 2 APP 3

I+P

I+P

I+P

I+P

I I I I

I
I

I
I

Fig. 5. An flow chart showing the message-passing of various component
APP decoders and related decoding schedule.

C. Fibonacci interleaver

The position of each bit in the (k1×k2) information array is
represented by (̄i, j̄), where 0 ≤ ī < k1 and 0 ≤ j̄ < k2. Using
the definition |W |Z = W (mod) Z, the Fibonacci interleaver
is characterized by the permutation rule

(̄i, j̄) → (|̄i + j̄|k1 , ||̄i + j̄|k1 + j̄|k2). (24)

For a PC with extended Hamming codes as component codes,
a minimum-weight codeword has nonzero entries at the same
locations of some four nonzero-weight rows and columns
within the information array, i.e., the parity part of the prod-
uct codeword has weight 0. The basic requirement of the
interleaver used in a PCPC is to make sure the interleaved
information array will not contain such a 4× 4 all-1 subarray.
The Fibonacci interleaver does possess such a desired property.
In particular, one can show that

Lemma 1: A PCPC using (n1, k1, 4) × (n2, k2, 4) product
codes as constituent codes has a minimum Hamming distance
greater than 16 if k1 or k2 is not a multiple of 4.

Proof: Since each component block code of a constituent
PC has minimum distance 4, we use a 4 × 4 matrix called
minimum-weight error event array to represent the nonzero
positions of a minimum weight product codeword. As it is
possible that all entries of this matrix lie within the information
array of a product codeword, we want the interleaver to
guarantee that the permuted information array will not produce
an all-zero parity part.

Without loss of generosity, let the nonzero positions be
located at the four columns (j̄, j̄ + g1, j̄ + g2, j̄ + g3) and four
rows (̄i, ī+h1, ī+h2, ī+h3), where 0 < h1 < h2 < h3 < k1

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

97

and 0 < g1 < g2 < g3 < k2. We have the error-position array
[γw,z]4×4


(̄i, j̄) · · · · · · (̄i, j̄ + g3)

...
. . .

...
...

. . .
...

(̄i + h3, j̄) · · · · · · (̄i + h3, j̄ + g3)


 (25)

where 1 ≤ w, z ≤ 4, γw,z = (̄i + uw, j̄ + vz), u =
(u1, u2, u3, u4) = (0, h1, h2, h3) and v = (v1, v2, v3, v4) =
(0, g1, g2, g3).

After Fibonacci interleaving, the positions will be permuted
to

γ̃w,z = (|̄i + uw + j̄ + vz|k1 , ||̄i + uw + j̄ + vz|k1 + j̄ + vz|k2).

which can be decomposed as

γ̃w,z = (|̄i + j̄|k1 , ||̄i + j̄|k1 + j̄|k2)⊕
k1×k2

(|uw + vz|k1 , ||uw + vz|k1 + vz|k2),

= γ̇w,z

⊕
k1×k2

γ̈w,z.

where
⊕

k1×k2
represents the operation that takes module k1

and k2 on the first and the second entries, respectively. Because
all entries of the array [γ̇w,z]4×4 are all the same, [γ̃w,z]4×4
does not form a matrix with all entries forming a 4 by 4
position array only if [γ̈w,z]4×4 does not. Therefore, we only
need to consider an error-position array

[γ̈w,z]4×4 = [|uw + vz|k1 , ||uw + vz|k1 + vz|k2]4×4 ,

= [γ̂w,z, γ̌w,z]4×4 .

where γ̂w,z and γ̌w,z represents the rows and columns of this
position array, respectively. As we know, the array [γ̈w,z]4×4
will form a 4 × 4 position array without generating parity
bits only if there are four distinct values in rows or columns.
Therefore, we firstly consider an array of the form

[γ̂w,z]4×4 =


|0|k1 |g1|k1 |g2|k1 |g3|k1

|h1|k1 |h1 + g1|k1 |h1 + g2|k1 |h1 + g3|k1

|h2|k1 |h2 + g1|k1 |h2 + g2|k1 |h2 + g3|k1

|h3|k1 |h3 + g1|k1 |h3 + g2|k1 |h3 + g3|k1


 .

If these 16 positions are permuted to the same four rows
0, g1, g2, g3, then h1, h2, h3 should be moved to g1, g2, g3. If
h1 is moved to g2 or g3, either h2 or h3 should be mapped
to g1, which is obviously a contradiction. Therefore, we have
h1 = g1. If h2 is mapped to g3 then h3 should be mapped to
g2, which is not possible, therefore, h2 = g2 and h3 = g3 and
the resulting array becomes

[γ̂w,z]4×4 =


|0|k1 |g1|k1 |g2|k1 |g3|k1

|g1|k1 |2g1|k1 |g1 + g2|k1 |g1 + g3|k1

|g2|k1 |g2 + g1|k1 |2g2|k1 |g2 + g3|k1

|g3|k1 |g3 + g1|k1 |g3 + g2|k1 |2g3|k1


 .

If γ̂w,w �= 0 for w = 2, 3, 4, then there are three entries γ̂w,z =
0, w �= z, 0 < w, z ≤ 4, which again is a contradiction.
Therefore, at least one of γ̂w,w is 0 for w = 2, 3, 4. We now
proceed to discuss these three cases.

1) |2g1|k1 = 0 : g1 = k1
2 implies g1 + g2 �= 0, g1 + g3 �= 0.

Thus g2 + g3 must be equal to 0 but then we have k1 >
g3 > g2 > g1 = k1

2 , a contradiction.
2) |g2|k1 = 0 : g2 = k1

2 implies g2 + g3 �= 0, g1 + g2 �= 0
and g1 + g3 = 0. Therefore v = (0, g1,

k1
2 , k1 − g1) and

[γ̂w,z]4×4 becomes


0 g1
k1
2 k1 − g1

g1 2g1 g1 + k1
2 0

k1
2 g1 + k1

2 0 k1
2 − g1

k1 − g1 0 k1
2 − g1 −2g1


 . (26)

Because there should be four entries equal to “k1
2 ”, 2g1

and −2g1 are equal to “k1
2 ” and g1 = k1

4 , hence v =
(0, k1

4 , k1
2 , 3k1

4).
3) |2g3|k1 = 0 : g3 = k1

2 implies g1 + g3 �= 0, g2 + g3 �= 0,
which forces g1 + g2 to be equal to 0 but then we have
the contradictory result, 0 < g1 < g2 < g3 = k1

2 .

Next let us consider the sixteen values of the columns error
position array [γ̌w,z]4×4 = [||vw + vz|k1 + vz|k2]4×4. By
substituting v = (0, k1

4 , k1
2 , 3k1

4) into the array, we have


0 |k1
2 |k2 |k1|k2 |3k1

2 |k2

|k1
4 |k2 |3k1

4 |k2 |5k1
4 |k2 |3k1

4 |k2

|k1
2 |k2 |k1|k2 |k1

2 |k2 |k1|k2

|3k1
4 |k2 |k1

4 |k2 |3k1
4 |k2 |5k1

4 |k2


 . (27)

There are four “|3k1
4 |k2”, three “|k1|k2”, three “|k1

2 |k2”, two
“|1k1

4 |k2”, two “| 5k1
4 |k2”, one “|6k1

4 |k2” and one “0” in these
entries. As only four distinct values are allowed for these
entries and |1k1

4 |k2 , | 5k1
4 |k2 and |6k1

4 |k2 can not be “0”, we
need only to consider the remaining possibilities.

1) |k1|k2 = 0 : k1 = l × k2, l ∈ Z.
0, | lk2

4 |k2 , | lk2
2 |k2 , |3lk2

4 |k2 should be different, which
immediately implies that l is odd.

2) |k1
2 |k2 = 0 : k1 = 2l × k2, l ∈ Z. This condition leads

to |k1
4 |k2 = |3k1

4 |k2 a contradiction.

Since neither k1 nor k2 is a multiple of 4, there is no weight-16
PCPC codeword.
Employing an analogous argument we can also prove

Lemma 2: A PCPC using (n1, k1, 4) × (n2, k2, 4) product
codes as constituent codes cannot have a minimum Hamming
distance equals to 17, 18 or 19.
Lemmas 1 and 2 then give us

Theorem 1: A PCPC using (n1, k1, 4)× (n2, k2, 4) product
codes as constituent codes has a minimum Hamming distance
no less than 20 if k1 or k2 is not a multiple of 4.

We apply an extra interleaver to enlarge free distance but
there exists at least one weight 31 codeword in PCPC for
all kinds of interleaver. We have done computer search on
a (8, 4, 4)4 PCPC and the resultant distance has codeword
weight 28. By the way, the number of the searched codeword

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

98

is 5. The upper and the searched codeword weights have a
difference by 3. It implies that Fibonacci interleaver renders
large distance property with small number codeword of neigh-
bor for PCPC although we do not provide a complete prove
up to codeword weight 28.

IV. SIMULATION RESULTS AND DISCUSSION

The performance of two PCPCs and two PCs is presented
in this section. The first PCPC uses (32, 26, 4) extended
Hamming code as its PC component code and is denoted by
(32, 26, 4)4, resulting in a code rate of 262/[2(322) − 262] =
.493. The second one, denoted by (64, 57, 4)2 × (16, 11, 4)2,
uses (64, 57, 4) and (16, 11, 4) extended Hamming codes and
has a code rate of (57× 11)/[2(64× 16)− (57× 11)] = .441.
We also examine the performance of two PCs. The first PC,
denoted by (16, 11, 4)2, uses (16, 11, 4) extended Hamming
code as its component code so that the code rate becomes .473.
The second PC, (32, 26, 4)2, uses the (32, 26, 4) extended
Hamming code and has a code rate of .66.

A decoding round (DR) is defined as one-pass decoding of
a product code APPi → APPi+1. A 4-iteration PC decoder
such as that given in [3] thus needs 8 decoding rounds.
PCPC requires more iterations. As expected, more DRs lead
to improved performance as is shown in Fig. 6 where the
performance of (32, 26, 4)4 is given.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1E-6

1E-5

1E-4

1E-3

0.01

0.1

B
it

s
er

ro
r

ra
te

E
b
/N

0
 (dB)

(16,11,4) 2TPC R=0.473
 8 decoding rounds

(32,26,4) 2TPC R=0.66
 8 decoding rounds

(32,26,4) 4PCPC R=0.493
 8 decoding rounds
 16 decoding rounds

(64,57,4) 2x(16,11,4) 2 R=0.441
 16 decoding rounds

Fig. 6. BER performance of various PCs and PCPCs.

We compare BER performance of two PCPCs in Fig. 6. The
one with the lower rate yields better performance. Performance
of two PCs are shown in the same figure. The two PCs provide
performance superior to PCPCs at lower SNR region while
PCPCs begin to show their advantage for BER < 10−5. Due
to larger free distances, PCPCs outperform PCs at high SNR.
Although the performance is not entirely fair as far as code rate

and codeword length are concerned, these performance curves
do serve to demonstrate the influence of a code’s distance
spectrum. It also indicates that there is much room left for
improving the performance of PCPCs.

Fig. 7 compares the performance of the A-BCJR based
algorithm and the conventional BCJR-based algorithm. The
former gives a 0.2 dB improvement at BER≈ 2 ∗ 10−5.
The effectiveness of the cooling mechanism during the turbo
decoding process seems not as impressive as that for PCs. Both
Figs. 6 and 7 show that the proposed decoding algorithms are
not capable of rendering ML performance of a PCPC that
has a relatively large free distance. Better performance can
be obtained if one optimizes the temperature parameters and
the decoding schedule of the A-BCJR algorithm. It is clear,
however, a better decoding algorithm for codes with short
cycles in general is still lacking.

1.0 1.5 2.0 2.5 3.0

1E-5

1E-4

1E-3

0.01

0.1

B
it

s
er

ro
r

ra
te

E
b
/N

0
 (dB)

(32,26,4) 4PCPC R=0.493
12 iterations (48 decoding rounds)

 BCJR-based algorithm
 A-BCJR-based algorithm

Fig. 7. Bit error rate performance of A PCPC using BCJR-based and A-BCJR
based algorithms.

REFERENCES

[1] D.M. Rankin and T.A. Gulliver, ”Serial and parallel concatenation of SPC
product codes,” Proc. IEEE Int. Symp. on Inf. Theory and Applications,
Honolulu, USA, pp 778-781, Nov. 2000.

[2] C. Berrou, A. Glavieux, ”Near optimum error correcting coding and
decoding: Turbo code,” IEEE Trans. Commun.,vol. 44, pp. 1261-1271,
Oct. 1996.

[3] Pyndiah, R.M, ”Near-Optimum Decoding of Product Codes: Block Turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003-1010, Aug. 1998.

[4] H. Burton, E. Weldon, Jr, “Cyclic product codes,” IEEE Trans. Inform.
Theory, vol. 11, pp. 433-439, Jul. 1965.

[5] D. Chase, ”A class of algorithm for decoding block codes with channel
measurement information,” IEEE Trans. Inform. Theory, vol. 18, pp.
170-182, Jan. 1972.

[6] L. Hanzo, T.H. Liew, B.L. Yeap Turbo Coding, Turbo Equalisation and
Space-Time coding, pp. 232-239, Jan. 1972.

[7] Yen-Chih Chen, Yu T. Su ”Constraint Relaxation and Annealed Belief
Propagation for Binary Networks,” submitted ISIT2007, Jan. 2007.

[8] J.-S. Liao, Y. T. Su and S.-C. Chen, “Type II ARQ schemes based on
turbo product codes,” in Proc. IEEE GlobeCom 2002, vol. 1, pp. 846-850,
Nov. 2002.

[9] M. Janani, A. Hedayat, T.E. Hunter, A. Nosratinia, ”Coded cooperation
in wireless communications: space-time transmission and iterative decod-
ing,” Signal Processing, IEEE Trans. on, vol. 52, no. 2, pp. 362-371, Feb.
2004 .

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

99

