
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 397

Asynchronous Parallel Discrete Event Sirnullation
Yi-Bing Lin and Paul A. Fishwick, Senior Member, ZEEE

Abstruct- Complex models may have model components dis-
tributed over a network and generally require significant ex-
ecution times. The field of parallel and distributed simulation
has grown over the past fifteen years to accommodate the need
of simulation the complex models using a distributed versus
sequential method. In particular, asynchronous parallel discrete
event simulation (PDES) has been widely studied, and yet we en-
vision greater acceptance of this methodology as more readers are
exposed to PDES introductions that carefully integrate real-world
applications. With this in mind, we present two key methodologies
(conservative and optimistic) which have been adopted as solutions
to PDES systems. We discuss PDES terminology and methodology
under the umbrella of the personal communications services
application.

I. INTRODUCTION

UR purpose is to introduce the basic technical concepts 0 of distributed simulation of event-based models (so
called discrete event models), and to tie these generic concepts
to a specific application: personal communications services
(PCS). Several introductory articles have been presented in
the literature such as Fujimoto [l], Nicol et al. 121 and
Richter et al. [3]. These papers have helped to disseminate
the asynchronous parallel discrete event simulation (PDES)
methodology for a wide readership. Our approach is similar
but stresses a single real world application for discussing the
methodology of PDES. By defining the methodology and all
PDES terminology within the context of the PCS application,
this paper serves both as a tutorial to PDES and as an
introduction to PCS simulation modeling. PCS is a rich enough
application to illustrate most basic PDES concepts.

The processing elements in PDES can either be of a parallel
or distributed nature. An MIMD machine with multiple asyn-
chronous elements performing message passing is an example
of a parallel machine. Distributed elements normally refers to
local or wide area networks composed of inter-connected set
of heterogeneous workstations and computers. PDES is used
for one of two reasons: 1) one wants to execute a model faster
than is possible in a sequential machine, or 2) one must model
in a distributed fashion because of a constraint that a process

Manuscript received January 15, 1995; revised July 25, 1995. This work was
supported by the Rome Laboratory, Griffiss AFB, NY, under Contract F30602-
95-C-0267, and Grant F30602-95-1-003 1, the Department of the Interior
under Grant 14-45-0009- 1544- 154, and the National Science Foundation
Engineering Research Center (ERC) in Particle Science and Technology,
University of Florida (with Industrial Partners of the ERC), under Grant EEC-

Y:B. Lin is with the Dcpartment of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
(e-mail: liny@csie.nctu.edu.tw).

P. A. Fishwick is with the Department of Computer and Information
Sciences, University of Florida, Gainesville, FL 3261 1 USA (e-mail: fish-
wick@cis.ufl.edu).

94-02989.

Publisher Item Identifier S 1083-4427(96)0383S-6.

(i.e., computation) must be distributed rather ithan localized to
a single processor. One author (Lin) has demonstrated various
speedups possible on a distributed memory architecture for
the PCS application [4], [5]. There is no question that PDES
speeds up otherwise serial computations during a simulation.
The second reason for PDES (distributed model constraint)
is based on a situation where models for system components
are stored in physically different locations. The other author
(Fishwick) is building a prototype distributed simulation of
a process plant where each plant component is ultimately
co-located with the manufacturer of that component.

The paper proceeds as follows. First, in Section 11, we
define our terms within the PDES area and demonstrate the
generic approach to distributed simulation. In Section 111, we
introduce the PCS application and demonstrate the need for
synchronization of incoming messages to a given process.
There are two key approaches to synchronization. Method
1, defined in Section IV, is termed the conservative method
since it ensures that the causal relation among time consecutive
events will be maintained at all times during the simulation.
Method 2 is defined in Section V, and identifies the optimistic
method. In this approach, the causal relation can be broken
with subsequent fixing of state variables. We close in Section
VI with directions for the future of PDES.

Throughout this paper, we use three font styles to represent
different concepts. The typewriter type style represents
attributes or methods (e.g., SendMessage ()) of objects.
The italic type style represents variables such as LP or
p . The serif type style represents even1 types such as
Cal l A r r ival.

11. PARALLEL DISCRETE EVENT SIMULATION

A. Basic Terminology

We begin by defining terms which are commonly found in
the simulation and PDES fields. These terms will be revisited
in Section 3 when we assign the terms to the PCS application.
The study of any physical system to be simulated begins with
the creation of a model. Such a model can be in one of
several types [6]: 1) conceptual, 2) declarative, 3) functional,
4) constraint, 5) spatial or 6) multimodel. One begins with
a conceptual model which describes qualitative terms and
class hierarchies for the system. In many ways, the conceptual
model “organizes” the definition of attributes, methods and
general characteristics of each system component without
going so far as to ascribe dynamics to components. The next
four model types reflect an orientation to system construction;
a system may be constructed as a Petri net [7 1, queuing model
[8] or as a cellular automaton [9] for instance. The last model

1083-4427/96$05.00 0 1996 IEEE

39s IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

Output Channel
Buffers

Fig. 1. Anatomy of a logical process (LP).

type (multimodel) permits the integration of basic model types
to create a model composed of component models [101; [111
where each component model represents a level of abstraction
for the system.

The PCS area, to be discussed in Section 3, uses a spatial
model in that the system is viewed as a hexagonal discretiza-
tion of a large two-dimensional space representing an area
where cellular communications are to be implemented. Spatial
models can be executed in several ways including time slicing,
event scheduling and parallel and distributed. Our approach
will be to use a parallel and distributed approach to model
execution, while using the concept of event scheduling within
each process. Speaking of process, we must define this term
appropriately. Model components for a PCS implementation
will be a collection of hexagonal cells. Other model types,
such as a queuing model, are composed of other components
(facilities). A logical process (LP) is defined as a set containing
basic model components, so a PCS logical process will be a
set of hexagons, or just one hexagon. A physical process or
processor is a set of logical processes mapped in a way that
conforms to the architecture of the parallel/distributed system.

An LP contains several objects:
Local Virtual Time (LVT): time associated with the LP.
The LP does not know another LP’s time unless commu-
nicated via a message.
Future Event List (FEL): event list used when there are
internal events posted within the LP itself.
Event: an item within the FEL.
Message: an item sent from one LP to another.

The FEL is composed of events, where an event combines
the following objects: 1) time stamp, 2) token, 3) event type.
The time stamp reflects when the event is to occur. An
event’s occurrence correlates with the execution of an event
routine for that LP. The token is associated with whatever is
flowing through the network of LP’s. For the PCS application,
portables (i.e., mobile phones) flow through the system. An
event type specifies what will happen to the token (arrival,
boundary crossing, departure, incoming call). An LP has input
channels and output channels where each channel has a first-
in/first-out (FIFO) buffer associated with it. A message is
equivalent to an event that must be moved from one LP

to another. Messages which simply enter an FEL and are
processed are generally called events. When an event must be
issued to another LP, it becomes a message. The relationship
among the above terms is shown in Fig. 1.

Messages arrive in one of several input channel buffers and
are routed directly to the LP’s FEL. Note that simple LP’s may
involve a calculation such as 1) taking the timestamp from
an incoming message, 2) adding a value to this timestamp,
and 3) sending the new message to the output buffers. Such
an LP would not have any need of an FEL and would
be a “pure” distributed simulation. This kind of technique,
however, is wasteful of the computing elements since there
will be a large price to pay in communications overhead
among inter-LP communication. A simple addition is not
sufficient to warrant a distributed approach. On the other
hand, if the processing element can be made to do work
then the communications overhead becomes less critical. The
kind of work ideally suited in simulation is a sequential
simulation within the LP, composed of the usual FEL and
event routines. Thus, the distributed simulation is hybrid in
form with sequential simulation coinciding-and synchronized
with-distributed simulation. The LVT of this more substantial
LP is updated by removing the highest priority event (lowest
timestamp) from the FEL and executing the associated event
routine. Some (or all) of these event routines will contain
scheduling commands to place events with new times back
into the FEL. Some event routines will involve messages to
be issued through the output buffer(s) to a target LP.

B. Object Oriented Implementation

A PDES consists of several PDES objects or LP’s. These
LP’s execute asynchronously with coordination to complete
a simulation run. To implement the objects in an LP (as
described in Section 11-A), the attributes and methods of the
LP are classified into four categories (see Table I):

A clock mechanism indicates the progress of the LP.
An attribute LVT represents the timestamp of the event
that just occurred in the LP. The LVTUpdate () method
updates LVT to advance the “clock” of the LP.
A FEL mechanism processes the events occurring in
the LP. The FEL is basically a priority queue with one

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 399

Mechanism
Clock
FEL

TABLE I
ATTRIBUTES AND METHODS OF AN LP

Attributes Methods
LVT LVTUpdateO
eventList Enqueue()

Synchronization

I 1 Dequeue0
Cancel()
ReceiveHessageO
SendMessageO - 1 ExecuteMessageO

Application 1 to be elaborated 1 to be elaborated

attribute and three methods. An attribute eventLis t
maintains the events to occur in the future. The
Enqueue () method inserts a time-tagged event into
eventList so that eventList maintains its ordered
sequence. The Dequeue () method deletes the event
with the minimum timestamp in eventlist. The
Cancel () method deletes the event with a specified
timestamp in eventlist.
A synchronization mechanism interacts with other
LP’s to coordinate the execution of PDES. The R e -
ceiveMessage () method receives messages from
other LP’s (these messages will be inserted into the
FEL for processing). The method ExecuteMessage ()
executes events in the FEL. The SendMessageO
method sends output message (generated by the execution
of events) to their destination LP’s.
It is probably more appropriate to consider Exe-
cuteMessage () as a method of the FEL. However,
this method is affected by the PDES synchronization
mechanisms to be described later. Thus the method is
classified as part of the synchronization mechanism.
An application mechanism represents a sub-model for a
specific simulation application to be simulated by the LP
(to be elaborated).

C. PDES Implementation Platforms

PDES systems have been implemented in different paral-
lel architectures such as BBN Butterfly [121-1 141, Sequent
[15]-[17], JPL Mark I11 [lS] , Simulated Stanford Dash Multi-
processor [19], Transputers [20], [21], CM-l/CM-5 [22], KSR
1231, and iPSC/S60 1241. PDES has also been implemented
in workstations connected by a local area network [4] which
is widely available in both the industrial and the academic
environments.

111. PERSONAL COMMUNICATION SERVICES

We use personal communication sewice (PCS) network
simulation to illustrate PDES functionality. A PCS network
[25], [26] provides low-power and high-quality wireless access
for PCS subscribers or portables. The service area of a PCS
network is populated with a number of radio ports. Every
radio port covers a sub-area or cell. The port is allocated a
number of channels (time slots, frequencies, spreading codes
or a combination of these). A portable occupies a channel
for an incoming/outgoing call. If all channels are busy in
the radio port, the call is blocked. In PCS network planning,

PCS network modeling (usually conducted by simulation
experiments) is required to investigate the usage of radio
resources. Since PCS network simulation is time-consuming,
PDES effectively speeds up the process of PCS network
simulation. Specifically,

The size of the PCS network under stud;! is usually large
(e.g., thousands of cells). A typical sequential PCS sim-
ulation run takes over 20 hours, while the corresponding
PCS PDES takes less than 3 hours using 8 processors [4]
Another popular parallel approach, the parallel indepen-
dent replicated simulation [27]-[29] (running multiple
simulation replications concurrently) does not work for
PCS simulation. In most cases, the PCS designer is
interested only in the behavior of the PCS network at
the engineered workload (e.g., the workload at which the
blocking probability is 1%). To calibrale the simulation
at the engineered workload, the setup of input parameters
for the next simulation run is dependenl on the previous
run.

Now we describe the PCS model and its mapping to the
corresponding PDES. For demonstration purposes, we describe
a simplified PCS model without considering the details of the
radio signal propagation issues (such as Rayleigh fading, co-
channel interference, and so on). We assume that there are
S cells in the PCS network, and on the average, there are
n portables in a cell. Every port is allocated some number of
channels. A portable resides at a cell for a period of time which
is a random variable with some distribution (e.g., exponential
1301-[32]). Then the portable moves to a neighbor cell based
on some routing function (e.g., equal routing probabilitiec for
all neighbors). The call arrivals to a portable is a random
process (e.g., Poisson), and is independent of the portable’s
movement. A call is connected if a channel is available.
Otherwise, the call is blocked. When a portable moves from
one cell to another while a call is in progress, the call requires
a new channel (in the new cell) to continue. This procedure of
changing channels is called handoff or automatic link transfer
(ALT). Several handoff schemes have been proposed in the
literature 1331-[35]. In this paper, we constder the simplest
scheme called nonprioritized scheme. In this scheme, if no
channel is available in the new cell, then the call will be
dropped or forced terminated immediately.

The PCS example is probably more realistic to the reader if
we add some geometry to these moving vehicles (portables).
Unfortunately, whether a vehicle moves from one cell to an-
other cannot be simply determined by the physical movement
of the vehicle. We also need to consider the radio propagation.
It is possible that the connection to a vehicle (changes from one
port to another even if the vehicle is stationary-the change of
radio signal strength may result in re-connecting the vehicle to
a different port. According to the PCS network measurement
methods, we determine that the movement (in the cense of port
connection) of a vehicle is best characterized by the residence
time’ distribution and the destination cell routing probability.
The reader may image that this movement model is equivalent
to a simple path approach where a vehicle maves straight with

‘Residence time refers to the time that a portable rerides within a cell.

400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

Cells

U (Hexagonal PCS Network Model)

I
I
I
I
I
I
I
I

I
I
I
I

I

I
I
I
I
I
I ,

I I Logical Processes

I I (Parallel Simulation Software)

I
I
I

I I

Processors (Physical Processes) o=o
(Multiprocessor Hardware)

Fig. 2. Cells, logical processes, and processors. A PCS cell is represented
by a logical process (LP) in PDES. More than one LP may be mapped to a
processor for execution.

an angle. The angle determines the destination cell and the
residence time is the product of a constant speed and the
diameter of the cell’.

To map the PCS model into PDES, the cells in the PCS
network are represented by cell objects derived from the PDES
objects (i.e., LP’s). These LP’s are then mapped to processors
for execution (see Fig. 2). A cell LP has the following
attributes and methods (i.e., the application mechanism of
a general LP): A constant attribute channelNo represents
the total number of channels in a radio port. An attribute
idleChannelNo represents the number of idle radio chan-
nels. A portableList collects the information of all porta-
bles reside in the cell. There are five methods in the cell object:
CallArrival(), CallCompletion(), Portable-
MoveIn () , PortableMoveOut () , and Handof f () .
These methods will be elaborated later.

The portables in the PCS network are represented by the
portable objects. A portable object consists of four attributes:

* The busy attribute indicates the status of the portable. If
busy=YES then the portable is in a conversation.
The callArrivalTime attribute represents the next
call arrival time.

* The callCompletionTime attribute represents the
completion time of the current phone call when
busy=YES. If busy=NO, the callCompletionTime
attribute is meaningless.

* The portableMoveOutTime attribute represents the
time when the portable moves out of the current cell.

There are two categories of events in a PDES. An internal
event is scheduled and executed at the same LP (the event

’But note that our movement model is practical-it is used to approximate
real radio systems, unlike the simple path approach.

represents the interaction between a cell and a portable within
the cell in our PCS example), and an external event is
scheduled by one LP and is executed by another LP. Thus,
after its creation, an internal event is inserted in the FEL
by using the Enqueue () method, and an external event is
considered as a message, and is sent to the destination LP by
using the Senmessage () method. In the PCS PDES, there
are three internal event types and one external event type. The
internal event types are described below.

CallArrival: Either the port (the cell) or the portable
initiates a call setup. A radio link is required to connect
the port and the portable. If no radio link is available or
the portable is already busy with another conversation,
the call is dropped.
Callcompletion‘: A phone call completes, and the ra-
dio link between the port and the portable is disconnected.
PortableMoveOut: The portable moves out of a cell.
If the portable is in a conversation, the radio link between
the portable and the port is disconnected.

We treat the CallArrival event type as an internally gen-
erated event based on a probability distribution. This is just an
abstraction of the actual situation where arrivals are sent from
outside the LP to one of the LP’s input channels. Therefore,
a more detailed simulation would involve “electromagnetic
messages” reflecting the true nature of incoming calls. The use
of a probability function is an abstraction for this underlying
process.

The external event type is described below.
PortableMoveIn: A portable moves in a new cell. If
the portable is in a conversation, then a new radio link
between the cell (port) and the portable is required. If no
radio channel is available, the call is forced terminated.

In PDES, the execution of a PortableMoveOut event at
a logical process LPA always results in the scheduling of a
PortableMoveIn event for the destination logical process
LPB. This event type is external (to LPB) , and the scheduling
of the event requires communication between LPA and LPB.

An event/message m is of the format

m = (timestamp, p , eventType)

where eventType represents the type of the event, timestamp
represents the (simulated) time when the event occurs, and
p is the pointer which points to the corresponding portable
p . The execution of the event message m at a cell object
LP is described as follows. The LP. ExecuteMessage ()
method invokes different methods according to the event type
of m (the Pascal-like “case” statement is used in the definition
shown at the bottom of the next page). The methods invoked in
ExecuteMessage () are described below. When the event
type of m is CallArrival, the following action is taken.
CallArrival (p) {

if p.busy=YES then
/* A call is already in progress when the new */
/* call arrives at LVT. In other words, a busy line */
/* occurs and the new call arrival is ignored. */
update the busy line statistic;

else /* I.e., p.busy=NO. */

LIN AND FISHWICK ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 40 1

if idleChannelNo = 0 then
/* The call arrival is blocked. */
update the blocking statistic;

else /* I.e., idleChannelNo> 0. */
idleChannelNo t idleChannelNo -1;
p.busy + YES;
generate the call holding time t , and

p.callComp1etionTime + LVT + t;
end if

end if
generate the next inter-call arrival time t’ and compute
the next call arrival time as

invoke ScheduleNewEvent (p) ;
I* Schedule a new event (to be described). */

p.callArrivalTime +- LVT + t’.

1
Note that the busy line and call blocking statistics are output
measures of the PCS simulation (not shown in our PDES
exarnp~e)~.

When the event type of m is CallCompletion, the
following action is taken.
Callcompletion (p) {

/* Release occupied channel at call completion. */
idleChannelNo+-idleChannelNo+l;
p. bu s y=NO ;
invoke ScheduleNewEvent (p) ;
/* Schedule a new event (to be described). */

1
When the event type of M is PortableMoveIn, the follow-
ing action is taken.
PortableMoveIn (p) {

if p.busy=YES then /* A handoff occurs. */
invoke Handof f (p) ; /* To be described. */

end if
generate the portable residence time t and compute the
next move time p.portableMove0utTimet LVT+t;
invoke ScheduleNewEvent (p)
I* Schedule a new event (to be described). */

}
The method Handof f () is described below.
Handoff (p) {

if idleChannelNo=O then
/* No channel is available to connect the */
/* handoff call i.e., the handoff fails. */

Call blocking is a major performance measure of a PCS network. A PCS
network is usually engineered at 1% or 2% blocking probabilities.

update the forced termination statistic
(not shown in our PDES example);
p.busy=NO;

id1 eChanne lNot id1 eChanne 1No- 1;
else /* The handoff succeeds. */

end if
}
If the event type of m is PortableMoveOut, the following
action is taken.
PortableMoveOut (p) {

if p.busy=YES then
idleChannelNo+idleChannelNo+l;
/* When a communicating portable moves */
/* to a new cell, it releases the occupied */
/* channel of the old cell. */

end if
determine the destination cell (LP’) to which the
portable moves;
generate an output message
m’ = (LVT,p,PortableMoveIn) ;
invoke SendMessage (m’, LP‘) ;
/* A PortableMoveIn event is scheduled for LP’. */

}
Note that the timestamp of m’ is the same as; that of m.

In our implementation, the execution of the event message
m results in the scheduling of exactly one future event
m’. When m is executed, one or more attributes of the
corresponding portable are updated. Then the next event for
the portable is determined based on the updated values of the
attributes. If the event type of m is PortableMoveOut,
then a PortableMoveIn event message with the same
timestamp is scheduled for the destination LP as described
in the definition of PortableMoveOut (: I . For the other
three event types, the message m’ = (t s , 0, eventType’) is
determined by invoking ScheduleNewEvent (:
ScheduleNewEvent (p) {

if p.busy=NO then
I* The portable is idle at LVT. The next *I
/* event occurring to p is either a call arrival */
/* or a cell crossing movement. */
ts t min(p. CallArrivalTime,

p.portableMoveOutTime);
if t s = p. callArrivalTime then

m’. eventType’ tCallArriva1;
else m’. eventType’ t Portabl eMoveOut ;
end if

~

ExecuteMessage (m) {
LVTUpdate(m. timestamp)
/* I.e., LVTt m.timeStamp. */
case (m. eventType) of

CallArrival: invoke CallArrival (m.p) ;
Callcompletion: invoke Callcompletion (m.p) ;
Port ableMove In: invoke Port ableMove In (m.p) ;
Port ab1 eMoveOu t : invoke Port ableMoveOu t (m.p ;

end case
}

402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

\ /

Legend:

portable (cross-boundary) movement call m'va l call completion

Fig. 3. A simple PCS example.

else /* I.e., p.busy=YES. The portable is busy at */ callCompletionTime= ?,
portableMoveOutTime=16 /* LVT. The next event occurring to p is either a */

/* call arrival, a call completion or a cell crossing */ and an event
/* movement. */
t s + min(p. callArrivalTime,

p.callCompletionTime,
p.portableMove0utTime);

if t s = p . callArrivalTime then
m' . eventType' +C a1 1Ar r iva 1;

else if t s = p . callCompletionTime then
m'. eventType' teal lcompl e t i on;

else m'. eventType' i- Por t ableMoveOut ;
end if

end if
1

Consider the example illustrated in Fig. 3. In this figure,
a portable is represented by a car (although in many PCS
systems, portables are carried by pedestrians). A call arrival is
represented by a phone connected to the car. A call completion
is represented by a cross (disconnection) on the phone line.

At time 0, portable p l is at cell A. At time 10, a phone call
for p l occurs. The call completes at time 13, and the portable
moves to cell B at time 16. At time 20, another phone call
for p l arrives. At time 24, p l moves to cell C (and a handoff
occurs).

In PDES, cells A . l?, and C are simulated by logical process
LPA. LPB, and LPc respectively. At the beginning of the
simulation, the attributes of p l are

busy = NO,
callArrivalTime = 10,

ml = (1O,pl, CallArrival)

is scheduled and inserted in the FEL of LPA. When the LVT
of LP;1 advances to 10, ml is executed by invoking LPA.
CallArrival (p l) . Suppose that an idle channel exists. The
call is connected and the call holding time for the conversation
is generated (which is 3, or the call completion time is
10 + 3 = 13). The next call arrival time is also generated
(which is 20 in Fig. 3). Thus the attributes of p l are modified
as

busy = YES,
callArrivalTime = 20,
callCompletionTime = 13,
portableMoveOutTime =16

and a new event

m2 = (13,&, CallCompletion)

is scheduled and inserted in LPA' s FEL. When the LVT of
LPA advances to 13, m2 is executed. The method LPA.
Callcompletion (P I) is invoked and the attributes of p 1
are modified as

busy = NO,
callArrivalTime = 20,
callCompletionTime=?,
portableMoveOutTime=16

and a new event

m3 = (16, PI , PortableMoveOut)

403 LIN AND FISIIWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION

Fig. 4. PDES synchronization problem

is scheduled. At LVT 16, rn3 is executed. The method LPA.
PortableMoveOut (p l) is invoked to determine the desti-
nation cell (which is B in Fig. 3), and a message

rnl = (16, i PortableMoveIn)

is sent from LPA to LPB by invoking
LP,4.SendMessage(mJ4, LPB). Note that the portable
p l migrates to LPB when rn4 is sent. (In GITBellcore’s
PCS implementation 141, a message is part of a portable
object, and sending a message automatically migrates the
corresponding portable object.) When LPB’s LVT advances
to 16, it executes m4. The next portable move time is
generated (which is 24). The attributes of pl are modified as

busy = NO,
callArrivalTime = 20,
callCompletionTime=?,
portableMoveOutTime= 24

and a new event rn5 = (20,pl, CallArrival) is scheduled.
A PDES is correct if the following rule is satisfied.
Locul Causality Constraint Every LP processes events in

nondecreasing timestamp order.
The major problem of PDES is that the logical processes

are executed at different speeds. Consider the scenario in Fig.
4 that portable pl moves from cell A to cell B at time 20
with an ongoing phone call (i.e., a handoff call), and portable
p2 moves from cell C to cell B at time 13 with an ongoing
phone call (see Fig. 4(a)).

Consider the PDES scenario in Fig. 4(b). LPA sends a
PortableMoveIn event (message) ml (for p 1) with time-
stamp 20 to LPB. Later LPc sends m2 (for p ~) with time-
stamp 13 to LPB. If LPB executes ml before m2 arrives,
then the modifications to LPB. idleChannelNo is out of
the timestamp order, and the local causality rule is violated.
Thus the simulation result is not correct.

To solve this problem, the executions of the logical pro-
cesses must be synchronized. The remainder of this paper
describes two popular asynchronous synchronization mecha-
nisms, the conservative and the optimistic methods.

(a) (b)

Fig. 5.
time when the portable crosses the cell boundary.

The input waiting rule. In (a), the number below a car represents the

two rules: the input waiting rule and the output waiting rule.
It also assumes that

the messages are received in the order they are sent (the
FIFO communication properly), and
the communication channels among LP’s are fixed and
never change during the simulation. In Fig. 4(b), LPA
(LPc) has one output channel directed to LPB, and LPB
has two input channels (one from LPA and one from
LPC).

A. Basic Synchronization Mechanism
In a conservative simulation, every logical process LP

Step 1. LP waits to select an input message m from
its input channels (extra data structures are required to
implement input channels in a logical process) by invoking
LP.ReceiveMessage () . This method is implemented
based on the input waiting rule to be described. The method
inserts m into LP’s FEL.
Step 2. Let t s be the timestamp of rn.
LP.ExecuteMessage () is invoked to process
all events in the FEL with timestamps no larger than t s in
nondecreasing timestamp order. The execution may invoke
LP.SendMessage () to send output messages. This
method is implemented based on the outpiit waiting rule to
be described. If the termination condition is satisfied (e.g.,
LP.LVT>5000), then exit the loop. Otherwise go to Step 1.
The waiting rules are described as follows.
The Znput Waiting Rule: An LP does not process any input

message until it has received at least one message from each
of its input channels. The input message with the smallest
timestamp is selected for processing. Fig. 5 shows how the
input message is selected for the PCS simulation.

Fig. 5(a) illustrates a PCS system where 6 portables
p 1 , p a , p 3 , p4, p5, and p6 move from cells B, (2, D, E, F, and G
to cell A at times 30, 10, 26, 4, 12, and 14, respectively. In the
PDES model (see Fig. 5(b)), the PortableMoveIn events
of p l , p6 are represented by the messages rnl, m6 sent
to LPA. By the input waiting rule, rn4 is Ihe next message
to be executed in LPA.

Assume that all messages sent from one LP to another
are in nondecreasing timestamp order (this property will be

repeats the following two steps.

1V. CONSERVATIVE METHOD
The conservative simulation [36] is conservative in the sense

that it does not execute an event before it ensures that the local
causality rule is satisfied. The conservative simulation follows v - -

404 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A. SYSTEMS AND HUMANS, VOL. 26, NO. 4. JULY 1996

30 20 10 36 29 24
b

pomble am’vals portable deparmres

LVT: 0
FEL: emDh

LVT: 10
FEL: (m’,,29)

Step 1. Before ml is processed Step 2. After rnl is processed

LVT 20
FRL lm’,,24l (m’,,ZP)
LVT 20
FRL lm’,,24l (m’,,ZP)

W
Step 3. After rn2 is processed Step 4. After rn3 is processed

ib)

Fig. 6. The output waiting rule.

guaranteed by the output waiting rule to be described next),
then the input waiting rule ensures that the timestamp of the
selected message is no larger than any input messages to be
processed in the future.

The Output Waiting Rule: An LP does not send an output
message to another LP until it ensures that no output messages
with smaller timestamps will be scheduled (at LP) in the future.
Assume that all input messages are handled in nondecreasing
timestamp order (the property is guaranteed by the input
waiting rule). The output waiting rule is satisfied if an LP
only sends output messages with timestamps no larger than its
current LVT value.

Consider the following PCS example. Portables p l , p2 and
p~ move into cell A at times 10, 20, and 30, and move out
of the cell at times 29, 24, and 36, respectively (see Fig.
6(a)). This situation occurs since a portable, once inside cell A,
may take a dramatically different from other portables. Some
portables may stay in the same physical location for a period
while other portables continue moving toward an adjacent cell
to A.

In PDES, ml. m2, and m3 are input messages representing
the arrivals of p 1 , p z and p3, respectively (see Step 1 in
Fig. 6(b)). When ml is processed, a move event mi for p l
is scheduled with timestamp 29 (see Step 2 in Fig. 6(b)).
In the conservative simulation, mi cannot be sent to the
destination LP immediately, or the output waiting rule may
be violated. In our PCS PDES implementation, the portable
move is simulated by two types o f events: a Portable-
MoveOut event and a PortableMoveIn event. In Fig. 6(b),
rn; and mt represent the PortableMoveOut event and
PortableMoveIn event of portable p, , respectively. When
the event m; is scheduled, it is inserted in LP;l’s FEL. When
the LVT of LPA advances to the portable “move time” (i.e., the
timestamp of ml), rn; is processed, which results in sending

LVT: 0
FEL: empty

FEL: (m1,8)

LVT 0

LW. 0
FEL: empty

E L : (mlb)
LVT 0

E L : empty

ic)

LVT 6
FEL: empty

E L : (ml,8)

LVT: 12
FEL: empty

LW. 6
FEL: empty

LVT: 0
FEL: (m,,S)

LW. 0
FEL. empty

id)

LVT 6
FEL: empty

LVT: 18
FEL: empty

LVT 12
FEL: empty

(e) (0
Fig. 7. Deadlock and deadlock resolution.

the PortableMoveIn event rnt (with the timestamp of m;)
to the destination. In Fig. 6(b), rn; and my are sent after Step
(3) and before Step (4); i.e., when LP;l is sure that next input
message to be handled has timestamp larger than mi and m;.
Note that m i is sent before my is.

Since the output waiting rule is guaranteed by using the
two “move” event types, the conservative SendMessage ()
method simply sends the output message to the destina-
tion. Note that for other applications, a different conservative
SendMessage () method may be required to implement the
output waiting rule.

The correctness of the conservative simulation can be
proved by induction on the interaction of the two waiting
rules.

B. Deadlock and Deadlock Avoidance

The input waiting rule may result in deadlock (LP’s are
waiting for input messages from each other and cannot
progress) even if the simulated system is deadlock free.

Consider a three-cell PCS network (see Fig. 7(a)).
There is one portable in the network, and the portable

moves in the path A i B + C + A. At time 0,

LIN AND FISHWICK ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 405

the portable is in cell A. The portable moves form cell
A to cell B at time 8. In the conservative simulation, a
PortableMoveOut event rnl is scheduled in LPA initially
(see Fig. 7(b)). By the input waiting rule, LPA waits for an
input message from LPc before it can process ml. Simi-
larly, LPc does not send out any output message before it
receives an input message from LPB, and LPB does not
send out any output message before it receives an input
message from LPA (i.e., before rnl is processed). Thus the
PDES is in the deadlock situation. Two deadlock resolutions
have been proposed: deadlock avoidance [36] and deadlock
detectiodrecovery [37], [38]. It has been shown [39] that
the cost of deadlock detection/recovery is much higher than
deadlock avoidance. This article will focus on the deadlock
avoidance mechanism.

In a PCS network, a portable is expected to reside in a
cell for a period of time before it moves. Assume that every
portable resides in a cell for at least six time units before
it moves to a new cell. The information that “a portable
resides in a cell for at least 6 time units” is used in the
deadlock avoidance mechanism to predict when an LP will
receive an input message, and “6 time units” is referred as the
lookahead value. The lookahead information is carried by the
control messages called null messages. A null message does
not represent any event in the simulated system. Instead, it is
used to break deadlock as well as to improve the progress of
a conservative simulation.

In Fig. 7(b), at the beginning of PDES, the LVT’s of the
three LP’s are 0, and a PortableMoveOut event ml with
timestamp 8 is in LPA’s FEL. At time 0, LPA sends a null
message with timestamp 0 + 6 = 6 (the LVT value plus the
lookahead value) to LPB (see Fig. 7(c)). The null message
implies that no portable will move in cell B earlier than time
6. Thus, the LVT of LPB advances to 6 when the null message
arrives (Fig. 7(d)). Since no portable arrives at cell B before
time 6, it implies that no portable will move out of cell B
before time 12 and LPB sends a null message with timestamp
12 to LPc . After the sending of several null messages, LPA
will eventually receive a null message with timestamp larger
than 8 (see Fig. 7(e)) , and by the input and output waiting rules,
rnl is sent from LPA to LPB and the deadlock is avoided
(see Fig. 7(f)).

C. Exploiting Lookahead
It is important to exploit the lookahead to improve the

progress of a conservative simulation. Experimental studies
have indicated that the larger the lookahead values, the better
the performance of the conservative simulation [39]. Based
on the techniques proposed in [40]-[42], we give three PCS
examples for lookahead exploration. The first two examples
assume single cell entrance and exit. The single entrancelexit
PCS model has been used in modeling highway cellular
phone systems [43]. The results can be easily generalized for
multiple entrances and exits. The techniques introduced can
be combined to exploit greater lookahead.

1. Lookahead Method 1 (FIFO): In a large scale PCS
network, a cell may only cover a street, and the portables

leave the cell in the order they move in (the FIFO
property; see Fig. 8(a)).
Consider the corresponding FIFO LP for cell A in
PDES. The lookahead for the LP can be derived by
a presampling technique proposed by Nicol [41]. The
idea is to presample the residence tirnes of the arrival
portables.
If the FEL is not empty, then the next departure time
can be easily computed. In the PCS PDES, the move-
out timestamp of a portable is computed and stored in
portableMoveOutTime of the portable object at the
time when the PortableMoveIn event is processed.
The FIFO property guarantees that the next departure
time is the minimum of the portableMoveOutTime
values of portable objects in the FEL. ‘Thus, the precom-
puted next departure times can be used as the lookahead.
If the FEL of the LP is empty at tiniestamp LP.LvT,
then the lookahead can be generated by the same pre-
sampling technique. Since the portalole will arrive at
the cell later than LP.LvT, it will leave the cell later
than LP.LVT + t (where t is the prcsampled portable
residence time). The FIFO property guarantees that after
time LP.LvT, no portables will depart earlier than
L P . L v T + ~ , and the LP may send null messages with
this timestamp to the downstream LP’s.

2. Lookahead Method 2 (Minimum Inter-Boundary Cross-
ing Time): Consider the example in Fig. 8(b) where
the FIFO portable movement property in the previous
example does not hold. In practice, the inter arrival
times to the cell (for the portables from the same
entrance) cannot be arbitrary small. Instead, a minimum
cell crossing time I- is assumed. Let p i (i = 1 , 2 , 3 , . . .)
be the ith portable arrival after time LP.LvT. The
portable residence time for p i is ti. Then the departure
time of p i is later than LP.LVT + (i - 1)‘ + t i , and
the next departure time at the cell after LP.LVT is later
than LP.LVT + A where

l<i<CC
A = rnin [(i - I)‘+ t i] . (1)

Since T > 0, there exists j such that

1SiS j
j~ 2 min [(i - 1)‘ + t;] = A.

In other words, to compute A it suffices to consider
the first j presampled residence timestamps in (1). Fig.
9 displays a situation where we employ formula (1).
Four portables arrive using times llD, 14, 19 and 22.
Let I- = 3 so that we know that n’o two consecutive
portable arrivals will be less than 3 . The residence
times for the portables are placed in parentheses in Fig.
9. The variable j is increased by 1 until the above
inequality is satisfied. Suppose that LPA needs to send
a null message to its downstream before it receives the
PortableMoveIn event for p l . The residence times
of the subsequent arriving portables are pre-samples as
t l = 9 , t2 = 4,t3 = l ; t 4 = 5 . . . Our algorithm
proceeds as follows:
(a) For j = I, 1 x 3 2 min[0 + 91 = 9 ? NO.
(b) For j = 2, 2 x 3 2 min[0 + 9 , 3 + 41 = 7 ? No.

406 lhEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL 26, NO 4, JULY 1996

t portable am’vals

(b)

Fig. 8. Examples for lookahead exploiting.

pomblc om’volr \ / p o d l e d e p a m r r e s

Fig. 9. Portables entering and leaving cell A

(c) For j = 3, 3 x 3 2 min[0 + 9 , 3 + 4.6 + 11 = 7

From this procedure, we derive A = 7 by using the first
three pre-sampled residence times.

3. Lookahead Method 3 (Minimum Residence Time): If the
FIFO portable movement property does not preserve, and
‘T does not exist (or is too small to be useful), then the
technique proposed in the previous example may not
work. In a PCS simulation, the total number N = S x 7 1

of portables is an input parameter. To compute the next
lookahead value for an LP, it suffices to sample the next
N portable residence times, and (1) is re-written as [42]

? Yes.

A = min t ,
l<i<N

The last two examples may require a large number of opera-
tions to generate a lookahead value. In [40], O(1) algorithms
have been proposed to generate the lookahead values.

When the ExecuteMessage () method processes a null
message in an LP, it invokes a method ComputeLooka-
head () to compute the timestamp of the output (null) mes-
sages. The ComputeLookahead () method may implement
the lookahead exploiting techniques described above. Then the
new null message is sent to some or all output channels by
invoking the SendMessage () method.

V. OPTIMISTIC METHOD
The optimistic simulation [44] is optimistic in the sense that

it handles the arrival events aggressively. When a message m
arrives at an LP, LP.ReceiveMessage () simply inserts
m in the input queue (the optimistic simulation terminology
for the FEL). The logical process assumes that the events
already in its input queue are the “true” next events. The Exe-
cuteMessage () method proceeds to execute these events in

timestamp order, and SendMessage () is invoked whenever
an output message is scheduled. When a message arrives at the
LP, the timestamp of the message may be less than some of the
events already executed. (This arrived message is referred to
as a straggler.) The optimism was unjustified, and therefore a
method Rollback () is invoked by ExecuteMessage ()
to cancel the erroneous computation. To support rollback, data
structures such as the state queue and the output queue are
required (to be elaborated).

Several strategies for cancelling incorrect computation were
surveyed by Fujimoto [45]. Two popular cancellation strategies
called aggressive cancellation [44] and lazy cancellation [46]
are described in this section.

A. Cancellation Strategies

Consider the example in Fig. 10. For simplicity, assume that
cell C has one radio channel (i.e., LPc.channelNo= 1 in
PDES). In this example, portable p2 moves from cell B to cell
C at time 10 (event l), and make a phone call at time 13. The
call is completed at time 21. Portable 1 moves from cell A to
cell C at time 16 (event 2), and attempts to make a phone call at
time 20. Since the only radio channel is used by portable 2, the
call attempt from portable 1 is blocked. Portable 1 moves from
cell C to cell D at time 24. Figs. 1 1, 12, and 13 illustrate the
data structures of LPc (the logical process corresponding to
cell C) assuming that message ‘m1 (the message that represents
event 2) arrives at LPc earlier than message mg (the message
that represents event 1) does. In LPc, a state queue and an
output queue are maintained to supported rollback. In our
example, the state variable (attribute) for LPc is the number
of idle channels LPc.idleChannelNo. The state variable
is checkpointed and saved in the state queue from time to
time. The snapshots in the state queue are used to recover the
state of LPc when rollbacks occur. The output queue records
the anti-messages of the output messages that have been sent
from LPc. The anti-messages are used to annihilated false
messages sent in the incorrect computation.

In Fig. l l (a) , LPc receives m1 that is inserted in LI‘c’s
input queue. Initially, the output queue of LPc is empty,
and the value of LPc.idleChannelNo at timestamp 0 is
saved. After ml is executed, the system state at timestamp
16 is checkpointed, and a call arrival event (message m2)
is scheduled for LPc itself (see Fig. 11 (b)). Note that after
its execution, ml is kept in the input queue (this message
may be re-executed if a rollback occurs). A pointer in the
input queue indicates the next event to be executed. The
anti-message m; of m2 is saved in LI‘c’s output queue.
The message my is identical to m.2 except that it includes
a destination field (in the original optimistic or Time Warp
algorithm [44], the sender and the destination are recorded in
both the output message and the corresponding anti-message
for flow control). To summarize, the ExecuteMessage ()
method for the optimistic simulation saves the system state
after an event execution (note that the state may be saved
after several event executions), and the executed event is not
deleted from the input queue. The SendMessage () method
saves the anti-messages in the output queue when it sends an
output message.

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 407

Portall

Legend:

a
portable movement call am'val call completion call blocking

Fig. 10. A PCS example for optimistic PDES. Events 1 and 2 will be
represented by messages mg and rnl respectively in the optimistic PDES
(see the next figures).

W W
oointer

timestamp

pointer

I mr I
event WtLq

aim timestamp

portable timestamp

no. idle ch. om
event mvvc

no. timestamp idle ch. m
-.--.

--
timestamp

portable

event call

I ""11 I destination
.--a

(a) (b)

Fig. 11. The data structures of LPc before/after rollback.

After m2 is executed, the number of idle channel is decre-
mented by 1 , and

LPc.idleChannelNo = 0

is saved in the state queue. A PortableMoveOut event
m3 is scheduled at timestamp 24, and its anti-message ms is
stored in the output queue (see Fig. 12(a)).

n

timestamp

portable

event

pointer pointer

1

timestamp

portable

event

oortabk

Fig. 12. The data structures of LPc before/after rollback (cont.).

When m3 is executed, a PortableMoveIn message m4

is sent to LPD (see Fig. 12(b)). After rn4 is sent, the straggler
m5 (the event that p z moves in LPc at timestamp 10)
arrives. Since LP,.LVT= 24, the out-of-order execution is
detected (see Fig. 13(a)) by LPC.ReceiveMessage (1 , and
LPc.Rollback () is invoked. Two strategies for cancelling
incorrect computation are described below.

Aggressive Cancellation: When a straggler arrives, aggres-
sive cancellation assumes that the out-of-order computation, as
well as all other computations that may have been affected by
this computation are not correct. Thus, the out-of-order com-
putation is recomputed, and LPc.Rollback () cancels the
affected computations immediately by sending anti-messages.
In our example, a rollback of LPc at timestamp 10 occurs.
In Fig. 13(b), the anti-messages m; , m;, and m: are deleted
from the output queue, and are sent to their destinations to
annihilate false messages m2, m3, and m4, respectively. After
the rollback (see Fig. 13(c)), messages m2 and my (and m4 in
LPD) are removed from the input queue. The state of LPc at
timestamp 0 is re-stored. Then LPC.ExecuteMessage ()
resumes the simulation by executing m5.

Lazy Cancellation: It is possible that the erroneous compu-
tation still generated correct output messages. In that case, it is
not necessary to cancel the original message that was sent. In
lazy cancellation, logical processes do not immediately send
the anti-messages for any rolled back computation. Instead,
they wait to see if the reexecution of the computation causes
any of the same messages to be regenerated. If the same
message is recreated, there is no need to cancel the original.
Otherwise, an anti-message is sent. In our example, lazy
cancellation applies to three situations.

1) If portable p 2 arrives at cell C (LPc) at time 10 and
leaves cell C at time 28 without making any phone call

408 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

W
portable

event

~ m e s ~ m p

no. idle ch.

(a) (b)

Fig. 13. The data structures of LPc befordafter rollback (cont.).

reo1 tinre

10 12 14 16 20 23 24 v i r i u a l t i m c (t i m e s t ~ l p) i n ~ . P ,

(b)

real rime

10 16 17 20 21 22 24 vir iual t ime(t imes~p)inLPc

(c)

Fig. 14. Situations when lazy cancellation applies (in these situations,
t 2 > tl) .

(see Fig. 14(a)) then the arrival of m5 in Fig. 13(a) will
not affect the executions of ml, m2, and m3. (Note that

Fig. 15. An PCS example for fossil collection in optimistic PDES.

in PDES, whether a call for p2 occurs in the interval
[lo], [28] can be detected in the portable object.) Thus
messages ml, r n 2 , and r n g do not need to be reexecuted
after m5 is executed. This is called jump forward or
lazy reevaluation [11.

LIN AND FISHWICK ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 409

timestamp

portable

event

pointer

I f

timestamp

portable

event

pointer

timestamp
timestamp

portable
portable

event
destination

event
destination

timestamp

portable

event

pointer

1

Fig. 16. The optimistic PDES before fossil collection.

In this case, LPc.ReceiveMessage () simply inserts
m5 in the input queue, and the pointer of the input queue
points to m5. LPc.ExecuteMessage (executes m5
and the pointer jumps directly after m3 without re-
executing ml,mz, and m3.

2) The call for pa does not block the call for p1 if p2 ' s
call completes before p l ' s call arrives (see Fig. 14(b))
or pz ' s call overlaps p l ' s call but LPc has two or
more radio channels (i.e., LP.channelNo2 2; see Fig.
14(c)). In these cases, the channel utilization (not shown
as a state variable in our example) changes, but the
subsequent messages (i.e., m2, m3, and mq) scheduled
due to the execution of ml are not affected. Thus,
messages ml, mz, and m3 are re-executed to reflected
the correct channel utilization. No anti-messages need
to be sent (i.e., m,,m;, and m; are not sent out).
Like the previous case, LPC.ReceiveMessage ()
simply inserts m5 in the input queue. After m5 has
been executed, LPC.ExecuteMessage () will re-
execute ml,mz, and m3 without re-generating any
output messages.

timestamp

portable

event

If lazy cancellation does succeed most of the time, then
the performance of the optimistic simulation is improved
by eliminating the cost of cancelling the computation which
would have to be reexecuted. If lazy cancellation fails, then
the performance degrades, because erroneous computations are
not cancelled as early as possible. In our PCS simulation, we
may exploit situations that lazy cancellation does not fail (as
described above), and a logical process can be switched be-
tween aggressive cancellation and lazy cancellation to reduce
the rollback cost.

B. Memory Management

To support rollback, it is necessary to save the "history"
(the already executed elements in the input, the output, and
the state queues) of a logical process. However, it may not
be practical to save the whole history of a logical process
because memory is likely to be exhausted before the simulation
completes. Thus, it is important that we only save "recent
history" of logical processes to reduce the memory usage.

Memory management for the optimistic simulation is based
on the concept of global virtual time (GVT). The GVT at

410 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

timestamp

portable

event

pointer

timestamp

event

Fig. 17. The optimistic PDES after fossil collection

pointer

(execution) time t is the minimum of the timestamps of the not-
yet executed messages (these messages are either in the input
queue or are in transit) in the optimistic simulation at time t .
(Several other operational definition of GVT are given in [47],
[48].) It has been pointed out [44] that at any given time t.
a logical process cannot be rolled back to a timestamp earlier
than the GVT at t . Therefore the storage for all messages with
timestamps smaller than the GVT value can be reclaimed for
other usage. The process of reclaiming the storage for the
obsolete elements is called ,fossil collection.

The GVT computation is not trivial in a distributed system
because it may be difficult to capture the messages in transit.
Several CVT algorithms have been developed in the systems
with the FIFO communication property (491 or without the
FIFO communication property [50], [5 11.

In CIT/Bellcore PCS PDES (where eight workstations are
connected by a local area network), all logical processes
are frozen during GVT computation. By utilizing the low
level communication mechanism, all transient messages are
guaranteed to arrive at their destinations before the GVT
computation starts. The fossil collection procedure works as
follows. A coordinator initiates the procedure by freezing the
execution of every logical process. After all transient messages
arrive at their destinations, every logical process reports its
local minimum value (the minimum of the timestamps of all
unprocessed messages in the input queue) to the coordinator.
The coordinator then compute the GVT value as the minimum
of the received local minimums. The GVT value is broadcast
to all logical processes for fossil collection.

To illustrate the storage reclaimed in fossil collection,
consider the example in Fig. 15. In this example, we ignore
the phone call events and assume that all Portable-

pointer

c

DO 3 mow

MoveIn/PortableMoveOut events must be executed in
their timestamp order in the optimistic simulation. We further
assume that the state variable of a logical process is the
number of portables move in the corresponding cell after time
0. Portable 1 moves from cell C to cell A at time 4 and moves
from cell A to cell B at time 60. Portable 2 moves from cell
C to cell B at time 10. Portable 3 moves from cell B to cell
A at time 20. Portable 4 moves from cell A to cell C at time
8. Portable 5 moves from cell A to cell C at time 7. Portable
6 moves from cell A to cell B at time 1 and moves from cell
B to cell C at time 15.

Fig. 16 illustrates the elements in the input/output/state
queues of LP.4. LPB, and LPc after all transient messages
amve at their destinations, and the GVT value (which is
8 = min(60.20.8)) is found.

Fig. 17 illustrates the elements in the input/output/state
queues of LP.4. LPB, and LPc after the fossil collection
procedure is completed.

All messages with timestamps smaller than 8 were fossil
collected. Note that fossil collection for the state queue is not
exact the same as that for the input/output queues. In the state
queue, the element with the largest timestamp smaller than the
GVT value (i.e., 8) must not be removed (see Fig. 17). The
other elements with timestamps smaller than 8 are removed.

C. Performance Evaluation
The performance of an optimistic PCS PDES implementa-

tion has been investigated in [4]. In this study, a version of
Time Warp has been developed that executes on 8 DEC 5000
workstations connected by an Ethernet.

In the experiments, speedp was used as the output measure
where the sequential simulator used the same priority queue

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 411

8 , I

I I I I I I

5 10 1 5 20 25 30

f

p 5 S F==d
o: the niean cell residence time = 15 minutes

0: the mean cell residence time = 75 minutes

10 1 .i 20 25
1 30

(b)

Fig. 18. Speedup of the optimistic PDES (The call holding time is exponen-
tially distributed with mean 3 min. Eight processors are used in the parallel
simulation.) The expected number of portables per cell is 50 in (a), and 75
in (h).

mechanism as that of PDES for managing the pending set of
events, but did not have the state saving, rollback and fossil
collection overheads associated with the PDES implementa-
tion. The 1024 cells are simulated for 2.5 x lo5 simulated
seconds. Fig. 18 shows the performance of the optimistic
PDES. The figure indicates good performance of PDES for
the PCS application. PDES is particularly efficient when the
number of portables is large, the cell residence time is long,
and the call interarrival time is short.

VI. FUTURE DIRECTIONS FOR PDES

This paper describes the asynchronous parallel discrete
event simulation (PDES) mechanisms and optimization tech-
niques by examples of personal communications services
(PCS) network simulation. We described the conservative and
the optimistic PDES mechanisms and several optimizations
tailored for the PCS simulation. The performance of the op-
timistic method was briefly discussed. Since the conservative
optimizations (tailored for PCS) introduced in this paper are
new and were not previously reported, no performance studies
have been conducted. Investigating the performance of these
optimizations will be one of our future research directions.

The optimization techniques described in the paper are
general and apply to other simulation applications such as
battlefield simulation, VLSI simulation, queueing network
simulation and computer architecture simulation. However,

these optimization techniques may need to be tailored for
specific applications. Many studies have devoted to this issue
(see [l], [2], [52]-[54] and references therein). The PCS
example can be seen as being a member of a larger class of
simulation model where one first discretizes the spatial domain
into a grid, and then simulates moving entities from one grid
cell to another. In this sense, the PCS problem is isomorphic
to the problems of particleh-body simulation.

An important research direction that has not been fully
exploited is the building of user-friendly PDES environments.
Such an environment should provides convenient tools to
develop simulation application. Methods should also be pro-
vided to tailor general optimization techniques to fit a specific
simulation application. We anticipate that these user-friendly
environments can be constructed by the object-oriented models
described in [6].

ACKNOWLEDGMENT
C. Carothers and Y. C. Wong provided useful comments to

improve the quality of this paper.

REFERENCES

[I] R. M. Fujimoto, “Parallel discrete event simulation,” Comm. ACM, vol.
33, no. 10, pp. 31-53, Oct. 1990.

[2] D. M. Nicol and R. M. Fujimoto, “Parallel simulation today,” Ann. Oper.
Res., vol. 53, pp. 249-286, Dec. 1994.

131 R. Richter and J . C. Walrand, “Distributed simulation of discrete event
systems,” in Proc. IEEE, Jan. 1989, vol. 77, no. 1, pp. 99-113.

141 C. Carothers, R. M. Fujimoto, Y.-B. Lin, and P. England, “Distributed
simulation of PCS networks using time warp,” in Proc. lnt. Workshop on
Modeling, Anuly.~is and Simulation of Computer and Telecommunicarion
Systems, 1994, pp. 2-7.

[5] C. Carothers, Y.-B. Lin, and R. M. Fujimoto, “A re-dial model for
personal communications services network,” to appear in 45th Vehicular
Technology Conf, 1995.

[6] P. A. Fishwick, Simulation Model Design nnd Execution: Building
Digital World.r.

[7] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 198 I.

[8] A. M. Law and D. W. Kelton, Simulation Modeling & Analysis, 2nd ed.
New York: McGraw Hill. 199 1.

191 T. Toffoli and N. Margolus, Cellular Automata Machines: A New
Environmentfor Modeling, 2d ed. Cambridge, MA: MIT Press, 1987.

[IO] P. A. Fishwick and B. P. Zeigler, “A multimodel methodology for qual-
itative model engineering,” ACM Trans. Modeling Comp. Simulation,
vol. 2, no. 1 , pp. 52-81, 1992.

[I 11 P. A. Fishwick, “A simulation environment for multimodeling,” Discrete
Event Dyn. Syst.: Theory Appl., vol. 3, pp. 151-171, 1993.

121 M. Ebling, M. Di Loreto, M. Presley, F. Wieland, and D. Jefferson, “An
ant foraging model implemented on the time warp operating system,”
in Proc. 1991 SCS Multiconf on Distributed Simulation, Mar. 1991, pp.
21-26.

131 P. Hontalas, B. Beckman, M. Diloreto, L. Blume, F. Reiher, K. Sturde-
vant, L. Warren, J. Wedel, F. Wieland, and D. Jefferson, “Performance
of the colliding pucks simulation on the time warp operating systems
(Part 1: Asynchronous behavior & sectoring),” in Proc. 1989 SCS
Multiconference on Distributed Simulation, Mar. 1989, pp. 3-7.

141 R. M. Fujimoto, “Time warp on a shared memory multiprocessor,” in
Proc. 1989 Int. Con$ on Parallel Processing, Aug. 1989, vol. 111, pp.
242-249.

1.51 R. Ayani and H. Rajaei, “Parallel simulation of a generalized cube
multistage interconnection network,” in Proc. I 990 SCS Multiconference
on Distributed Simulation, Jan. 1990, pp. 60-63.

161 G. S. Thoinas and J. Zahorjan, “Parallel simulation of performance Petri
Net: Extending the domain of parallel simulation,” in Proc. 1991 Winter
Simulation CO$, 1991, pp. 564-573.

171 D. A. Reed and A. Malony, ”Parallel discrete event simulation: The
Chandy-Misra approach,” in Pruc. 1988 SCS Multicon$ on Distributed
Simulation, Feb. 1988, pp. 8-13.

Englewood Cliffs, NJ: Prentice Hall, 1995.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

E. Wieland, L. Hawley, A. Feinberg, M. Di Loreto, L. Blume, P. Reiher,
B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson, “Distributed
combat simulation and time warp: The model and its performance,” in
Proc. 1989 SCS Multicon$ on Distributed Simulation, Mar. 1989, pp.
14-20.
L. Souk and A. Gupta, “An evaluation of the Chandy-Misra-Bryant
algorithm for digital logic simulation,” ACM Trans. Modeling Comp.
Simulat., vol. 1, no. 4, pp. 308-347, 1991.
D. Beazner, G. Lomow, and B. Unger, “A parallel simulation environ-
ment based on time warp,” to appear in Int. J. Comp. Sim., 1995.
S. Turner and M. Xu, “Performance evaluation of the bounded time warp
algorithm,” The 6th Workshop on Parallel and Distributed Simulation,
1992.
B. Lubachevsky, “Efficient distributed event-driven simulations of
multiple-loop networks,” Comm. ACM, vol. 21, no. 2, Mar. 1989.
K. Ghosh, K. Panesar, R. M. Fujimoto, and K. Schwan, “PORTS:
A parallel, optimistic, real-time simulator,” in Proc. 8th Workshop on
Parallel and Distributed Simulation, 1994.
G. Gaujal, A. G. Greenberg, and D. M. Nicol, “A sweep algorithm for
massively parallel simulation of circuit-switched networks,” J. Parallel
and Distributed Computing, vol. 18, no. 4, pp. 484-500, 1993.
D. C. Cox, “Personal communications-A viewpoint,” IEEE Commun.
Mag., vol. 128, no. 11, pp. 8-20, 1990.
~, “A radio system proposal for widespread low-power tetherless
communications,” IEEE Trans. Commun., vol. 39, no. 2, pp, 324-335,
Feb. 1991.
P. W. Glynn and P. Heidelberger, “Analysis of initial transient deletion
for parallel steady-state simulation,” SIAM J. Scien. Stat. Comp.. vol.
13, no. 4, pp. 904-922, 1992.
P. Heidelberger, “Discrete event simulations and parallel processing:
Statistical properties,” SIAM J. Scien. Star. Comp., vol. 9, no. 6, pp.
1114-1132, Nov. 1988.
Y.-B. Lin. “Parallel independent replicated simulation on a network of
workstations,” Simulation, vol. 64, no. 2, pp. 102-1 10, 1995.
W. C. Wong, “Packet reservation multiple access in a metropolitan
microcellular radio environment,” IEEE J. Select. Areas Commun., vol.
11, no. 6, pp. 918-925, 1993.
~, “Dynamic allocation of packet reservation multiple access
carriers,” IEEE Trans. Veh. Technol., vol. 42, no. 4, 1993.
Y.-B. Lin, “Determining the user locations for personal communications
networks,”lEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 466473, 1994.
Y.-B. Lin, S. Mohan, and A. Noerpel, “Sub-rating channel assignment
strategy for PCS hand-offs,” IEEE Trans. Veh. Technol., vol. 45, no. 1.
pp. 122-130, 1996.
- , “Queueing priority channel assignment strategies for handoff
and initial access for a PCS network,” IEEE Trans. Veh. Technol., vol.
43, no. 3, pp. 704-712, 1994.
Y.-B. Lin, A. Noerpel, and D. Harasty, “Sub-rating channel assignment
strategy for hand-offs,” to appear in lEEE Trans. Veh. Technol., 1995.
K. M. Chandy and J. Misra, “Distributed simulation: A case study in
design and verification of distributed programs,” IEEE Trans. So&,are
Eng., vol. SE-5, no. 5, pp. 440-452, Sept. 1979.
K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Comm. ACM, vol. 24, no. 11, pp.
198-206, Apr. 1981.

1 J. Misra, “Distributed discrete-event simulation,’’ Comp. Surveys, vol.
18, no. 1, pp. 39-65, Mar. 1986.

1 R. M. Fujimoto, “Performance measurements of distributed simulation
strategies,” in Proc. 1988 SCS Multicon$ on Distributed Simulation, Feb.
1988, pp. 14-20.

[40] Y.-B. Lin and E. D. Lazowska, “Exploiting lookahead in parallel
simulation,” IEEE Trans. Parallel Distrib. Sysf . , vol. 1, no. 4, pp.
457469, Oct. 1990.

[41] D. M. Nicol, “Parallel discrete-event simulation of FCFS stochastic
queueing networks,” in Proc. ACM SIGPLAN Symp. on Parallel Pro-
gramming: Experience with Applications, Languages and Systems, 1988,
pp. 124-137.

1421 D. B. Wagner and E. D. Lazowska, “Parallel simulation of queueing
networks: Limitations and potentials,” in Proc. 1989ACM SIGMETRICS
and Performance ‘89 Con$, 1989, pp. 146-155.

1431 S. S. Kuek and W. C. Wong, “Ordered dynamic channel assignment
scheme with reassignment in highway microcells,” IEEE Trans. Veh.
Technol., vol. 41, no. 3, pp. 271-277, 1992.

[44] D. Jefferson, “Virtual time,” ACM Trans. Progr. Lung. Syst., vol. 7, no.
3, pp. 404425, July 1985.

[45] R. M. Fujimoto, “Optimistic approaches to parallel discrete event
simulation,” Trans. Soc. Comp. Sim., vol. 7, no. 2, pp. 153-191, June

1990.
[46] A. Gafni, “Rollback mechanisms for optimistic distributed simulation,”

in Proc. 1988 SCS Multicon5 on Distributed Simulation, Feb. 1988, pp.
61-67.

[47] D. Jefferson, “Virtual time 11: The cancelback protocol for storage
management in time warp,” in Proc. 9th Ann. ACM Symp. on Principles
of Distributed Computing, Aug. 1990, pp. 75-90.

[48] Y.-B. Lin, “Memory management algorithms for parallel simulation,”
Information Sciences, vol. 77, no. 1, pp. 119-140, 1994.

[49] ~, “Determining the global progress of parallel simulation,” Inform.
Proc. Lett., vol. 50, 1994.

[50] B. Samadi, “Distributed simulation, algorithms and performance analy-
sis,” Ph.D. Dissertation, Dept. Computer Science, Univ. of California,
Los Angeles, 1985.

[SI] F. Mattern, “Efficient distributed snapshots and global virtual time
algorithms for non-FIFO systems,” J. Parallel Distrib. Comp., vol. 18,
no. 4, pp. 423434, 1993.-

1521 R. M. Fujimoto, “Parallel discrete event simulation: Will the field . .
survive?,” ORSA J . Computing, vol. 5 , no. 3, 1993.

Parallel and Distributed Simulation, ACM, 1994.

Disrributed Simulation, ACM, 1995.

[53] D. Arvind, R. Bagrodia, and Y.-B Lin (Eds.), in Proc. 8th Workshop on

[54] M. Bailey and Y.-B. Lin, Eds., in Proc. 9th Workshop on Parallel and

Yi-Bing Lin received the B.S.EE degree from
National Cheng Kung University in 1983, and
the PhD. degree in computer science from the
University of Washington, Seattle, in 1990

Between 1990 and 1995, he was with the Applied
Research Area, Bell Communications Research
(Bellcore), Morristown, NJ In 1995, he was
appointed full professor, Department and Institute
of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan
His current research interests include design and

analysis of personal communications services network, distributed simulation,
and performance modeling

Dr Lin is a Subject area editor of the Journal of Parallel and Distributed
Computing, an associate editor of the International Journal m Computer
Simularion, an associate editor of SIMULATION, a member of the editorial
board of International Journal of Communication&, a member of the editorial
board of Computer Simulation Modeling and Analysis, Program Co-chair for
the 8th Workshop on Distributed and Parallel Simulation, and General Chair
for the 9th Workshop on Distributed and Parallel Simulation.

Paul A. Fishwick (M’87-SM’92) received the B.S.
degree in mathematics from the Pennsylvania State
University, University Park, the M.S. degree in
applied science from the College of William and
Mary, Williamsburg, VA, and the Ph.D. degree
in computer and information science from the
University of Pennsylvania, Philadelphia, in 1986.

He is an associate professor, Department of
Computer and Information Sciences, University
of Florida, Gainesville. He also has six years
of industrial/government production and research

experience working at Newport News fhipbuilding and Dry Dock Co. (doing
CAD/CAM parts definition research), and at NASA Langley Research Center
(studying engineering data base models for structural engineering). His
research interests are in computer simulation modeling and analysis methods
for complex systems.

Dr. Fishwick is a senior member of the Society for Computer Simulation.
He is also a member of the IEEE Systems, Man and Cybernetics Society, the
ACM and AAAI. He founded the comp. simulation Internet news group
(Simulation Digest) in 1987, which now serves over 15,000 subscribers.
He was chairman of the IEEE Computer Society technical committee on
simulation (TCSIM) in 1988 and 1990, and he is on the editorial boards of
several journals including the ACM Transactions on Modeling and Computer
Simulation, the IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS,
The Transactions of the Society for Computer Simulation, the International
Journal of Computer Simulation, and the Journal of Systems Engineering.

