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Asynchronous Parallel Discrete Event Sirnullation 
Yi-Bing Lin and Paul A. Fishwick, Senior Member, ZEEE 

Abstruct- Complex models may have model components dis- 
tributed over a network and generally require significant ex- 
ecution times. The field of parallel and distributed simulation 
has grown over the past fifteen years to accommodate the need 
of simulation the complex models using a distributed versus 
sequential method. In particular, asynchronous parallel discrete 
event simulation (PDES) has been widely studied, and yet we en- 
vision greater acceptance of this methodology as more readers are 
exposed to PDES introductions that carefully integrate real-world 
applications. With this in mind, we present two key methodologies 
(conservative and optimistic) which have been adopted as solutions 
to PDES systems. We discuss PDES terminology and methodology 
under the umbrella of the personal communications services 
application. 

I. INTRODUCTION 

UR purpose is to introduce the basic technical concepts 0 of distributed simulation of event-based models (so 
called discrete event models), and to tie these generic concepts 
to a specific application: personal communications services 
(PCS). Several introductory articles have been presented in 
the literature such as Fujimoto [l], Nicol et al. 121 and 
Richter et al. [3]. These papers have helped to disseminate 
the asynchronous parallel discrete event simulation (PDES) 
methodology for a wide readership. Our approach is similar 
but stresses a single real world application for discussing the 
methodology of PDES. By defining the methodology and all 
PDES terminology within the context of the PCS application, 
this paper serves both as a tutorial to PDES and as an 
introduction to PCS simulation modeling. PCS is a rich enough 
application to illustrate most basic PDES concepts. 

The processing elements in PDES can either be of a parallel 
or distributed nature. An MIMD machine with multiple asyn- 
chronous elements performing message passing is an example 
of a parallel machine. Distributed elements normally refers to 
local or wide area networks composed of inter-connected set 
of heterogeneous workstations and computers. PDES is used 
for one of two reasons: 1) one wants to execute a model faster 
than is possible in a sequential machine, or 2) one must model 
in a distributed fashion because of a constraint that a process 
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(i.e., computation) must be distributed rather ithan localized to 
a single processor. One author (Lin) has demonstrated various 
speedups possible on a distributed memory architecture for 
the PCS application [4], [5].  There is no question that PDES 
speeds up otherwise serial computations during a simulation. 
The second reason for PDES (distributed model constraint) 
is based on a situation where models for system components 
are stored in physically different locations. The other author 
(Fishwick) is building a prototype distributed simulation of 
a process plant where each plant component is ultimately 
co-located with the manufacturer of that component. 

The paper proceeds as follows. First, in Section 11, we 
define our terms within the PDES area and demonstrate the 
generic approach to distributed simulation. In Section 111, we 
introduce the PCS application and demonstrate the need for 
synchronization of incoming messages to a given process. 
There are two key approaches to synchronization. Method 
1, defined in Section IV, is termed the conservative method 
since it ensures that the causal relation among time consecutive 
events will be maintained at all times during the simulation. 
Method 2 is defined in Section V, and identifies the optimistic 
method. In this approach, the causal relation can be broken 
with subsequent fixing of state variables. We close in Section 
VI with directions for the future of PDES. 

Throughout this paper, we use three font styles to represent 
different concepts. The typewriter type style represents 
attributes or methods (e.g., SendMessage ( ) ) of objects. 
The italic type style represents variables such as LP or 
p .  The serif type style represents even1 types such as 
Cal l A r r  ival. 

11. PARALLEL DISCRETE EVENT SIMULATION 

A. Basic Terminology 

We begin by defining terms which are commonly found in 
the simulation and PDES fields. These terms will be revisited 
in Section 3 when we assign the terms to the PCS application. 
The study of any physical system to be simulated begins with 
the creation of a model. Such a model can be in one of 
several types [6]: 1) conceptual, 2) declarative, 3) functional, 
4) constraint, 5 )  spatial or 6) multimodel. One begins with 
a conceptual model which describes qualitative terms and 
class hierarchies for the system. In many ways, the conceptual 
model “organizes” the definition of attributes, methods and 
general characteristics of each system component without 
going so far as to ascribe dynamics to components. The next 
four model types reflect an orientation to system construction; 
a system may be constructed as a Petri net [7 1, queuing model 
[8] or as a cellular automaton [9] for instance. The last model 
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Output Channel 
Buffers 

Fig. 1. Anatomy of a logical process (LP). 

type (multimodel) permits the integration of basic model types 
to create a model composed of component models [ 101; [ 111 
where each component model represents a level of abstraction 
for the system. 

The PCS area, to be discussed in Section 3, uses a spatial 
model in that the system is viewed as a hexagonal discretiza- 
tion of a large two-dimensional space representing an area 
where cellular communications are to be implemented. Spatial 
models can be executed in several ways including time slicing, 
event scheduling and parallel and distributed. Our approach 
will be to use a parallel and distributed approach to model 
execution, while using the concept of event scheduling within 
each process. Speaking of process, we must define this term 
appropriately. Model components for a PCS implementation 
will be a collection of hexagonal cells. Other model types, 
such as a queuing model, are composed of other components 
(facilities). A logical process (LP) is defined as a set containing 
basic model components, so a PCS logical process will be a 
set of hexagons, or just one hexagon. A physical process or 
processor is a set of logical processes mapped in a way that 
conforms to the architecture of the parallel/distributed system. 

An LP contains several objects: 
Local Virtual Time (LVT): time associated with the LP. 
The LP does not know another LP’s time unless commu- 
nicated via a message. 
Future Event List (FEL): event list used when there are 
internal events posted within the LP itself. 
Event: an item within the FEL. 
Message: an item sent from one LP to another. 

The FEL is composed of events, where an event combines 
the following objects: 1) time stamp, 2) token, 3) event type. 
The time stamp reflects when the event is to occur. An 
event’s occurrence correlates with the execution of an event 
routine for that LP. The token is associated with whatever is 
flowing through the network of LP’s. For the PCS application, 
portables (i.e., mobile phones) flow through the system. An 
event type specifies what will happen to the token (arrival, 
boundary crossing, departure, incoming call). An LP has input 
channels and output channels where each channel has a first- 
in/first-out (FIFO) buffer associated with it. A message is 
equivalent to an event that must be moved from one LP 

to another. Messages which simply enter an FEL and are 
processed are generally called events. When an event must be 
issued to another LP, it becomes a message. The relationship 
among the above terms is shown in Fig. 1. 

Messages arrive in one of several input channel buffers and 
are routed directly to the LP’s FEL. Note that simple LP’s may 
involve a calculation such as 1) taking the timestamp from 
an incoming message, 2) adding a value to this timestamp, 
and 3) sending the new message to the output buffers. Such 
an LP would not have any need of an FEL and would 
be a “pure” distributed simulation. This kind of technique, 
however, is wasteful of the computing elements since there 
will be a large price to pay in communications overhead 
among inter-LP communication. A simple addition is not 
sufficient to warrant a distributed approach. On the other 
hand, if the processing element can be made to do work 
then the communications overhead becomes less critical. The 
kind of work ideally suited in simulation is a sequential 
simulation within the LP, composed of the usual FEL and 
event routines. Thus, the distributed simulation is hybrid in 
form with sequential simulation coinciding-and synchronized 
with-distributed simulation. The LVT of this more substantial 
LP is updated by removing the highest priority event (lowest 
timestamp) from the FEL and executing the associated event 
routine. Some (or all) of these event routines will contain 
scheduling commands to place events with new times back 
into the FEL. Some event routines will involve messages to 
be issued through the output buffer(s) to a target LP. 

B. Object Oriented Implementation 

A PDES consists of several PDES objects or LP’s. These 
LP’s execute asynchronously with coordination to complete 
a simulation run. To implement the objects in an LP (as 
described in Section 11-A), the attributes and methods of the 
LP are classified into four categories (see Table I): 

A clock mechanism indicates the progress of the LP. 
An attribute LVT represents the timestamp of the event 
that just occurred in the LP. The LVTUpdate ( ) method 
updates LVT to advance the “clock” of the LP. 
A FEL mechanism processes the events occurring in 
the LP. The FEL is basically a priority queue with one 
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Mechanism 
Clock 
FEL 

TABLE I 
ATTRIBUTES AND METHODS OF AN LP 

Attributes Methods 
LVT LVTUpdateO 
eventList Enqueue() 

Synchronization 

I 1 Dequeue0 
Cancel() 
ReceiveHessageO 
SendMessageO - 1 ExecuteMessageO 

Application 1 to be elaborated 1 to be elaborated 

attribute and three methods. An attribute eventLis t 
maintains the events to occur in the future. The 
Enqueue ( ) method inserts a time-tagged event into 
eventList so that eventList maintains its ordered 
sequence. The Dequeue ( ) method deletes the event 
with the minimum timestamp in eventlist. The 
Cancel ( )  method deletes the event with a specified 
timestamp in eventlist. 
A synchronization mechanism interacts with other 
LP’s to coordinate the execution of PDES. The R e -  
ceiveMessage ( ) method receives messages from 
other LP’s (these messages will be inserted into the 
FEL for processing). The method ExecuteMessage ( ) 
executes events in the FEL. The SendMessageO 
method sends output message (generated by the execution 
of events) to their destination LP’s. 
It is probably more appropriate to consider Exe- 
cuteMessage ( ) as a method of the FEL. However, 
this method is affected by the PDES synchronization 
mechanisms to be described later. Thus the method is 
classified as part of the synchronization mechanism. 
An application mechanism represents a sub-model for a 
specific simulation application to be simulated by the LP 
(to be elaborated). 

C. PDES Implementation Platforms 

PDES systems have been implemented in different paral- 
lel architectures such as BBN Butterfly [ 121-1 141, Sequent 
[15]-[17], JPL Mark I11 [ lS] ,  Simulated Stanford Dash Multi- 
processor [19], Transputers [20], [21], CM-l/CM-5 [22], KSR 
1231, and iPSC/S60 1241. PDES has also been implemented 
in workstations connected by a local area network [4] which 
is widely available in both the industrial and the academic 
environments. 

111. PERSONAL COMMUNICATION SERVICES 

We use personal communication sewice (PCS) network 
simulation to illustrate PDES functionality. A PCS network 
[25], [26] provides low-power and high-quality wireless access 
for PCS subscribers or portables. The service area of a PCS 
network is populated with a number of radio ports. Every 
radio port covers a sub-area or cell. The port is allocated a 
number of channels (time slots, frequencies, spreading codes 
or a combination of these). A portable occupies a channel 
for an incoming/outgoing call. If all channels are busy in 
the radio port, the call is blocked. In PCS network planning, 

PCS network modeling (usually conducted by simulation 
experiments) is required to investigate the usage of radio 
resources. Since PCS network simulation is time-consuming, 
PDES effectively speeds up the process of PCS network 
simulation. Specifically, 

The size of the PCS network under stud;! is usually large 
(e.g., thousands of cells). A typical sequential PCS sim- 
ulation run takes over 20 hours, while the corresponding 
PCS PDES takes less than 3 hours using 8 processors [4] 
Another popular parallel approach, the parallel indepen- 
dent replicated simulation [27]-[29] (running multiple 
simulation replications concurrently) does not work for 
PCS simulation. In most cases, the PCS designer is 
interested only in the behavior of the PCS network at 
the engineered workload (e.g., the workload at which the 
blocking probability is 1%). To calibrale the simulation 
at the engineered workload, the setup of input parameters 
for the next simulation run is dependenl on the previous 
run. 

Now we describe the PCS model and its mapping to the 
corresponding PDES. For demonstration purposes, we describe 
a simplified PCS model without considering the details of the 
radio signal propagation issues (such as Rayleigh fading, co- 
channel interference, and so on). We assume that there are 
S cells in the PCS network, and on the average, there are 
n portables in a cell. Every port is allocated some number of 
channels. A portable resides at a cell for a period of time which 
is a random variable with some distribution (e.g., exponential 
1301-[32]). Then the portable moves to a neighbor cell based 
on some routing function (e.g., equal routing probabilitiec for 
all neighbors). The call arrivals to a portable is a random 
process (e.g., Poisson), and is independent of the portable’s 
movement. A call is connected if a channel is available. 
Otherwise, the call is blocked. When a portable moves from 
one cell to another while a call is in progress, the call requires 
a new channel (in the new cell) to continue. This procedure of 
changing channels is called handoff or automatic link transfer 
(ALT). Several handoff schemes have been proposed in the 
literature 1331-[35]. In this paper, we constder the simplest 
scheme called nonprioritized scheme. In this scheme, if no 
channel is available in the new cell, then the call will be 
dropped or forced terminated immediately. 

The PCS example is probably more realistic to the reader if 
we add some geometry to these moving vehicles (portables). 
Unfortunately, whether a vehicle moves from one cell to an- 
other cannot be simply determined by the physical movement 
of the vehicle. We also need to consider the radio propagation. 
It is possible that the connection to a vehicle (changes from one 
port to another even if the vehicle is stationary-the change of 
radio signal strength may result in re-connecting the vehicle to 
a different port. According to the PCS network measurement 
methods, we determine that the movement (in the cense of port 
connection) of a vehicle is best characterized by the residence 
time’ distribution and the destination cell routing probability. 
The reader may image that this movement model is equivalent 
to a simple path approach where a vehicle maves straight with 

‘Residence time refers to the time that a portable rerides within a cell. 
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Fig. 2. Cells, logical processes, and processors. A PCS cell is represented 
by a logical process (LP) in PDES. More than one LP may be mapped to a 
processor for execution. 

an angle. The angle determines the destination cell and the 
residence time is the product of a constant speed and the 
diameter of the cell’. 

To map the PCS model into PDES, the cells in the PCS 
network are represented by cell objects derived from the PDES 
objects (i.e., LP’s). These LP’s are then mapped to processors 
for execution (see Fig. 2). A cell LP has the following 
attributes and methods (i.e., the application mechanism of 
a general LP): A constant attribute channelNo represents 
the total number of channels in a radio port. An attribute 
idleChannelNo represents the number of idle radio chan- 
nels. A portableList collects the information of all porta- 
bles reside in the cell. There are five methods in the cell object: 
CallArrival(), CallCompletion(), Portable- 
MoveIn ( ) , PortableMoveOut ( ) , and Handof f ( ) .  
These methods will be elaborated later. 

The portables in the PCS network are represented by the 
portable objects. A portable object consists of four attributes: 

* The busy attribute indicates the status of the portable. If 
busy=YES then the portable is in a conversation. 
The callArrivalTime attribute represents the next 
call arrival time. 

* The callCompletionTime attribute represents the 
completion time of the current phone call when 
busy=YES. If busy=NO, the callCompletionTime 
attribute is meaningless. 

* The portableMoveOutTime attribute represents the 
time when the portable moves out of the current cell. 

There are two categories of events in a PDES. An internal 
event is scheduled and executed at the same LP (the event 

’But note that our movement model is practical-it is used to approximate 
real radio systems, unlike the simple path approach. 

represents the interaction between a cell and a portable within 
the cell in our PCS example), and an external event is 
scheduled by one LP and is executed by another LP. Thus, 
after its creation, an internal event is inserted in the FEL 
by using the Enqueue ( ) method, and an external event is 
considered as a message, and is sent to the destination LP by 
using the Senmessage ( ) method. In the PCS PDES, there 
are three internal event types and one external event type. The 
internal event types are described below. 

CallArrival: Either the port (the cell) or the portable 
initiates a call setup. A radio link is required to connect 
the port and the portable. If no radio link is available or 
the portable is already busy with another conversation, 
the call is dropped. 
Callcompletion‘: A phone call completes, and the ra- 
dio link between the port and the portable is disconnected. 
PortableMoveOut: The portable moves out of a cell. 
If the portable is in a conversation, the radio link between 
the portable and the port is disconnected. 

We treat the CallArrival event type as an internally gen- 
erated event based on a probability distribution. This is just an 
abstraction of the actual situation where arrivals are sent from 
outside the LP to one of the LP’s input channels. Therefore, 
a more detailed simulation would involve “electromagnetic 
messages” reflecting the true nature of incoming calls. The use 
of a probability function is an abstraction for this underlying 
process. 

The external event type is described below. 
PortableMoveIn: A portable moves in a new cell. If 
the portable is in a conversation, then a new radio link 
between the cell (port) and the portable is required. If no 
radio channel is available, the call is forced terminated. 

In PDES, the execution of a PortableMoveOut event at 
a logical process LPA always results in the scheduling of a 
PortableMoveIn event for the destination logical process 
LPB.  This event type is external (to LPB) ,  and the scheduling 
of the event requires communication between LPA and LPB.  

An event/message m is of the format 

m = (timestamp, p ,  eventType) 

where eventType represents the type of the event, timestamp 
represents the (simulated) time when the event occurs, and 
p is the pointer which points to the corresponding portable 
p .  The execution of the event message m at a cell object 
LP is described as follows. The LP. ExecuteMessage ( ) 
method invokes different methods according to the event type 
of m (the Pascal-like “case” statement is used in the definition 
shown at the bottom of the next page). The methods invoked in 
ExecuteMessage ( ) are described below. When the event 
type of m is CallArrival, the following action is taken. 
CallArrival ( p )  { 

if p.busy=YES then 
/* A call is already in progress when the new */ 
/* call arrives at LVT. In other words, a busy line */ 
/* occurs and the new call arrival is ignored. */ 
update the busy line statistic; 

else /* I.e., p.busy=NO. */ 
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if idleChannelNo = 0 then 
/* The call arrival is blocked. */ 
update the blocking statistic; 

else /* I.e., idleChannelNo> 0. */ 
idleChannelNo t idleChannelNo -1; 
p.busy + YES; 
generate the call holding time t ,  and 

p.callComp1etionTime + LVT + t;  
end if 

end if 
generate the next inter-call arrival time t’ and compute 
the next call arrival time as 

invoke ScheduleNewEvent ( p )  ; 
I* Schedule a new event (to be described). */ 

p.callArrivalTime +- LVT + t’. 

1 
Note that the busy line and call blocking statistics are output 
measures of the PCS simulation (not shown in our PDES 
exarnp~e)~. 

When the event type of m is CallCompletion, the 
following action is taken. 
Callcompletion ( p )  { 

/* Release occupied channel at call completion. */ 
idleChannelNo+-idleChannelNo+l; 
p.  bu s y=NO ; 
invoke ScheduleNewEvent ( p )  ; 
/* Schedule a new event (to be described). */ 

1 
When the event type of M is PortableMoveIn, the follow- 
ing action is taken. 
PortableMoveIn ( p )  { 

if p.busy=YES then /* A handoff occurs. */ 
invoke Handof f ( p )  ; /* To be described. */ 

end if 
generate the portable residence time t and compute the 
next move time p.portableMove0utTimet LVT+t; 
invoke ScheduleNewEvent ( p )  
I* Schedule a new event (to be described). */ 

} 
The method Handof f ( ) is described below. 
Handoff ( p )  { 

if idleChannelNo=O then 
/* No channel is available to connect the */ 
/* handoff call i.e., the handoff fails. */ 

Call blocking is a major performance measure of a PCS network. A PCS 
network is usually engineered at 1% or 2% blocking probabilities. 

update the forced termination statistic 
(not shown in our PDES example); 
p.busy=NO; 

id1 eChanne lNot id1 eChanne 1No- 1; 
else /* The handoff succeeds. */ 

end if 
} 
If the event type of m is PortableMoveOut, the following 
action is taken. 
PortableMoveOut ( p )  { 

if p.busy=YES then 
idleChannelNo+idleChannelNo+l; 
/* When a communicating portable moves */ 
/* to a new cell, it releases the occupied */ 
/* channel of the old cell. */ 

end if 
determine the destination cell (LP’)  to which the 
portable moves; 
generate an output message 
m’ = (LVT,p,PortableMoveIn) ; 
invoke SendMessage (m’, LP‘)  ; 
/* A PortableMoveIn event is scheduled for LP’. */ 

} 
Note that the timestamp of m’ is the same as; that of m. 

In our implementation, the execution of the event message 
m results in the scheduling of exactly one future event 
m’. When m is executed, one or more attributes of the 
corresponding portable are updated. Then the next event for 
the portable is determined based on the updated values of the 
attributes. If the event type of m is PortableMoveOut, 
then a PortableMoveIn event message with the same 
timestamp is scheduled for the destination LP as described 
in the definition of PortableMoveOut ( : I .  For the other 
three event types, the message m’ = ( t s ,  0, eventType’) is 
determined by invoking ScheduleNewEvent ( : 
ScheduleNewEvent ( p )  { 

if p.busy=NO then 
I* The portable is idle at LVT. The next *I 
/* event occurring to p is either a call arrival */ 
/* or a cell crossing movement. */ 
ts t min(p. CallArrivalTime, 

p.portableMoveOutTime); 
if t s  = p. callArrivalTime then 

m’. eventType’ tCallArriva1; 
else m’. eventType’ t Portabl eMoveOut ; 
end if 

~ 

ExecuteMessage ( m )  { 
LVTUpdate(m. timestamp) 
/* I.e., LVTt m.timeStamp. */ 
case (m. eventType) of 

CallArrival: invoke CallArrival (m.p) ; 
Callcompletion: invoke Callcompletion (m.p) ; 
Port ableMove In: invoke Port ableMove In (m.p ) ; 
Port ab1 eMoveOu t : invoke Port ableMoveOu t ( m.p ; 

end case 
} 
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\ / 

Legend: 

portable (cross-boundary) movement call m'va l  call completion 

Fig. 3. A simple PCS example. 

else /* I.e., p.busy=YES. The portable is busy at */ callCompletionTime= ?, 
portableMoveOutTime=16 /* LVT. The next event occurring to p is either a */ 

/* call arrival, a call completion or a cell crossing */ and an event 
/* movement. */ 
t s  + min(p. callArrivalTime, 

p.callCompletionTime, 
p.portableMove0utTime); 

if t s  = p .  callArrivalTime then 
m' . eventType' +C a1 1Ar r iva 1; 

else if t s  = p .  callCompletionTime then 
m'. eventType' teal lcompl e t i on; 

else m'. eventType' i- Por t ableMoveOut ; 
end if 

end if 
1 

Consider the example illustrated in Fig. 3. In this figure, 
a portable is represented by a car (although in many PCS 
systems, portables are carried by pedestrians). A call arrival is 
represented by a phone connected to the car. A call completion 
is represented by a cross (disconnection) on the phone line. 

At time 0, portable p l  is at cell A.  At time 10, a phone call 
for p l  occurs. The call completes at time 13, and the portable 
moves to cell B at time 16. At time 20, another phone call 
for p l  arrives. At time 24, p l  moves to cell C (and a handoff 
occurs). 

In PDES, cells A .  l?, and C are simulated by logical process 
LPA. LPB, and LPc respectively. At the beginning of the 
simulation, the attributes of p l  are 

busy = NO, 
callArrivalTime = 10, 

ml = (1O,pl, CallArrival) 

is scheduled and inserted in the FEL of LPA. When the LVT 
of LP;1 advances to 10, ml is executed by invoking LPA. 
CallArrival ( p l )  . Suppose that an idle channel exists. The 
call is connected and the call holding time for the conversation 
is generated (which is 3, or the call completion time is 
10 + 3 = 13). The next call arrival time is also generated 
(which is 20 in Fig. 3). Thus the attributes of p l  are modified 
as 

busy = YES, 
callArrivalTime = 20, 
callCompletionTime = 13, 
portableMoveOutTime =16 

and a new event 

m2 = (13,&, CallCompletion) 

is scheduled and inserted in LPA' s  FEL. When the LVT of 
LPA advances to 13, m2 is executed. The method LPA. 
Callcompletion ( P I )  is invoked and the attributes of p 1  
are modified as 

busy = NO, 
callArrivalTime = 20, 
callCompletionTime=?, 
portableMoveOutTime=16 

and a new event 

m3 = (16, PI ,  PortableMoveOut) 
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Fig. 4. PDES synchronization problem 

is scheduled. At LVT 16, rn3 is executed. The method LPA. 
PortableMoveOut (p l )  is invoked to determine the desti- 
nation cell (which is B in Fig. 3), and a message 

rnl = (16, i PortableMoveIn) 

is sent from LPA to LPB by invoking 
LP,4.SendMessage(mJ4, LPB).  Note that the portable 
p l  migrates to LPB when rn4 is sent. (In GITBellcore’s 
PCS implementation 141, a message is part of a portable 
object, and sending a message automatically migrates the 
corresponding portable object.) When LPB’s LVT advances 
to 16, it executes m4. The next portable move time is 
generated (which is 24). The attributes of pl are modified as 

busy = NO, 
callArrivalTime = 20, 
callCompletionTime=?, 
portableMoveOutTime= 24 

and a new event rn5 = (20,pl, CallArrival) is scheduled. 
A PDES is correct if the following rule is satisfied. 
Locul Causality Constraint Every LP processes events in 

nondecreasing timestamp order. 
The major problem of PDES is that the logical processes 

are executed at different speeds. Consider the scenario in Fig. 
4 that portable pl moves from cell A to cell B at time 20 
with an ongoing phone call (i.e., a handoff call), and portable 
p2  moves from cell C to cell B at time 13 with an ongoing 
phone call (see Fig. 4(a)). 

Consider the PDES scenario in Fig. 4(b). LPA sends a 
PortableMoveIn event (message) ml (for p 1 )  with time- 
stamp 20 to LPB. Later LPc sends m2 (for p ~ )  with time- 
stamp 13 to LPB. If LPB executes ml before m2 arrives, 
then the modifications to LPB. idleChannelNo is out of 
the timestamp order, and the local causality rule is violated. 
Thus the simulation result is not correct. 

To solve this problem, the executions of the logical pro- 
cesses must be synchronized. The remainder of this paper 
describes two popular asynchronous synchronization mecha- 
nisms, the conservative and the optimistic methods. 

(a) (b) 

Fig. 5. 
time when the portable crosses the cell boundary. 

The input waiting rule. In (a), the number below a car represents the 

two rules: the input waiting rule and the output waiting rule. 
It also assumes that 

the messages are received in the order they are sent (the 
FIFO communication properly), and 
the communication channels among LP’s are fixed and 
never change during the simulation. In Fig. 4(b), LPA 
(LPc) has one output channel directed to LPB, and LPB 
has two input channels (one from LPA and one from 
LPC). 

A. Basic Synchronization Mechanism 
In a conservative simulation, every logical process LP 

Step 1. LP waits to select an input message m from 
its input channels (extra data structures are required to 
implement input channels in a logical process) by invoking 
LP.ReceiveMessage ( ) . This method is implemented 
based on the input waiting rule to be described. The method 
inserts m into LP’s FEL. 
Step 2. Let t s  be the timestamp of rn. 
LP.ExecuteMessage ( ) is invoked to process 
all events in the FEL with timestamps no larger than t s  in 
nondecreasing timestamp order. The execution may invoke 
LP.SendMessage ( ) to send output messages. This 
method is implemented based on the outpiit waiting rule to 
be described. If the termination condition is satisfied (e.g., 
LP.LVT>5000), then exit the loop. Otherwise go to Step 1. 
The waiting rules are described as follows. 
The Znput Waiting Rule: An LP does not process any input 

message until it has received at least one message from each 
of its input channels. The input message with the smallest 
timestamp is selected for processing. Fig. 5 shows how the 
input message is selected for the PCS simulation. 

Fig. 5(a) illustrates a PCS system where 6 portables 
p 1 ,  p a ,  p 3 ,  p4, p5,  and p6 move from cells B, (2, D, E, F, and G 
to cell A at times 30, 10, 26, 4, 12, and 14, respectively. In the 
PDES model (see Fig. 5(b)), the PortableMoveIn events 
of p l  , . . . . p6 are represented by the messages rnl, . . . . m6 sent 
to LPA. By the input waiting rule, rn4  is Ihe next message 
to be executed in LPA. 

Assume that all messages sent from one LP to another 
are in nondecreasing timestamp order (this property will be 

repeats the following two steps. 

1V. CONSERVATIVE METHOD 
The conservative simulation [36] is conservative in the sense 

that it does not execute an event before it ensures that the local 
causality rule is satisfied. The conservative simulation follows v - -  
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Fig. 6. The output waiting rule. 

guaranteed by the output waiting rule to be described next), 
then the input waiting rule ensures that the timestamp of the 
selected message is no larger than any input messages to be 
processed in the future. 

The Output Waiting Rule: An LP does not send an output 
message to another LP until it ensures that no output messages 
with smaller timestamps will be scheduled (at LP) in the future. 
Assume that all input messages are handled in nondecreasing 
timestamp order (the property is guaranteed by the input 
waiting rule). The output waiting rule is satisfied if an LP 
only sends output messages with timestamps no larger than its 
current LVT value. 

Consider the following PCS example. Portables p l  , p2  and 
p~ move into cell A at times 10, 20, and 30, and move out 
of the cell at times 29, 24, and 36, respectively (see Fig. 
6(a)). This situation occurs since a portable, once inside cell A, 
may take a dramatically different from other portables. Some 
portables may stay in the same physical location for a period 
while other portables continue moving toward an adjacent cell 
to A. 

In PDES, ml. m2, and m3 are input messages representing 
the arrivals of p 1 , p z  and p3,  respectively (see Step 1 in 
Fig. 6(b)). When ml is processed, a move event mi for p l  
is scheduled with timestamp 29 (see Step 2 in Fig. 6(b)). 
In the conservative simulation, mi cannot be sent to the 
destination LP immediately, or the output waiting rule may 
be violated. In our PCS PDES implementation, the portable 
move is simulated by two types o f  events: a Portable- 
MoveOut event and a PortableMoveIn event. In Fig. 6(b), 
rn; and mt represent the PortableMoveOut event and 
PortableMoveIn event of portable p, ,  respectively. When 
the event m; is scheduled, it is inserted in LP;l’s FEL. When 
the LVT of LPA advances to the portable “move time” (i.e., the 
timestamp of ml), rn; is processed, which results in sending 

LVT: 0 
FEL: empty 

FEL: (m1,8) 

LVT 0 

LW. 0 
FEL: empty 

E L :  (mlb) 
LVT 0 

E L :  empty 

ic)  

LVT 6 
FEL: empty 

E L :  (ml,8) 

LVT: 12 
FEL: empty 

LW. 6 
FEL: empty 

LVT: 0 
FEL: (m,,S) 

LW. 0 
FEL. empty 

id) 

LVT 6 
FEL: empty 

LVT: 18 
FEL: empty 

LVT 12 
FEL: empty 

(e) (0 
Fig. 7. Deadlock and deadlock resolution. 

the PortableMoveIn event rnt (with the timestamp of m;) 
to the destination. In Fig. 6(b), rn; and my are sent after Step 
(3) and before Step (4); i.e., when LP;l is sure that next input 
message to be handled has timestamp larger than mi and m;. 
Note that m i  is sent before my is. 

Since the output waiting rule is guaranteed by using the 
two “move” event types, the conservative SendMessage ( ) 
method simply sends the output message to the destina- 
tion. Note that for other applications, a different conservative 
SendMessage ( ) method may be required to implement the 
output waiting rule. 

The correctness of the conservative simulation can be 
proved by induction on the interaction of the two waiting 
rules. 

B. Deadlock and Deadlock Avoidance 

The input waiting rule may result in deadlock (LP’s are 
waiting for input messages from each other and cannot 
progress) even if the simulated system is deadlock free. 

Consider a three-cell PCS network (see Fig. 7(a)). 
There is one portable in the network, and the portable 

moves in the path A i B + C + A.  At time 0, 
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the portable is in cell A. The portable moves form cell 
A to cell B at time 8. In the conservative simulation, a 
PortableMoveOut event rnl is scheduled in LPA initially 
(see Fig. 7(b)). By the input waiting rule, LPA waits for an 
input message from LPc  before it can process ml. Simi- 
larly, LPc  does not send out any output message before it 
receives an input message from LPB,  and LPB does not 
send out any output message before it receives an input 
message from LPA (i.e., before rnl is processed). Thus the 
PDES is in the deadlock situation. Two deadlock resolutions 
have been proposed: deadlock avoidance [36] and deadlock 
detectiodrecovery [37], [38]. It has been shown [39] that 
the cost of deadlock detection/recovery is much higher than 
deadlock avoidance. This article will focus on the deadlock 
avoidance mechanism. 

In a PCS network, a portable is expected to reside in a 
cell for a period of time before it moves. Assume that every 
portable resides in a cell for at least six time units before 
it moves to a new cell. The information that “a portable 
resides in a cell for at least 6 time units” is used in the 
deadlock avoidance mechanism to predict when an LP will 
receive an input message, and “6 time units” is referred as the 
lookahead value. The lookahead information is carried by the 
control messages called null messages. A null message does 
not represent any event in the simulated system. Instead, it is 
used to break deadlock as well as to improve the progress of 
a conservative simulation. 

In Fig. 7(b), at the beginning of PDES, the LVT’s of the 
three LP’s are 0, and a PortableMoveOut event ml with 
timestamp 8 is in LPA’s FEL. At time 0, LPA sends a null 
message with timestamp 0 + 6 = 6 (the LVT value plus the 
lookahead value) to LPB (see Fig. 7(c)). The null message 
implies that no portable will move in cell B earlier than time 
6. Thus, the LVT of LPB advances to 6 when the null message 
arrives (Fig. 7(d)). Since no portable arrives at cell B before 
time 6, it implies that no portable will move out of cell B 
before time 12 and LPB sends a null message with timestamp 
12 to LPc .  After the sending of several null messages, LPA 
will eventually receive a null message with timestamp larger 
than 8 (see Fig. 7(e)) ,  and by the input and output waiting rules, 
rnl is sent from LPA to LPB and the deadlock is avoided 
(see Fig. 7(f)). 

C. Exploiting Lookahead 
It is important to exploit the lookahead to improve the 

progress of a conservative simulation. Experimental studies 
have indicated that the larger the lookahead values, the better 
the performance of the conservative simulation [39]. Based 
on the techniques proposed in [40]-[42], we give three PCS 
examples for lookahead exploration. The first two examples 
assume single cell entrance and exit. The single entrancelexit 
PCS model has been used in modeling highway cellular 
phone systems [43]. The results can be easily generalized for 
multiple entrances and exits. The techniques introduced can 
be combined to exploit greater lookahead. 

1. Lookahead Method 1 (FIFO): In a large scale PCS 
network, a cell may only cover a street, and the portables 

leave the cell in the order they move in (the FIFO 
property; see Fig. 8(a)). 
Consider the corresponding FIFO LP for cell A in 
PDES. The lookahead for the LP can be derived by 
a presampling technique proposed by Nicol [41]. The 
idea is to presample the residence tirnes of the arrival 
portables. 
If the FEL is not empty, then the next departure time 
can be easily computed. In the PCS PDES, the move- 
out timestamp of a portable is computed and stored in 
portableMoveOutTime of the portable object at the 
time when the PortableMoveIn event is processed. 
The FIFO property guarantees that the next departure 
time is the minimum of the portableMoveOutTime 
values of portable objects in the FEL. ‘Thus, the precom- 
puted next departure times can be used as the lookahead. 
If the FEL of the LP is empty at tiniestamp LP.LvT, 
then the lookahead can be generated by the same pre- 
sampling technique. Since the portalole will arrive at 
the cell later than LP.LvT, it will leave the cell later 
than LP.LVT + t (where t is the prcsampled portable 
residence time). The FIFO property guarantees that after 
time LP.LvT, no portables will depart earlier than 
L P . L v T + ~ ,  and the LP may send null messages with 
this timestamp to the downstream LP’s. 

2. Lookahead Method 2 (Minimum Inter-Boundary Cross- 
ing Time): Consider the example in Fig. 8(b) where 
the FIFO portable movement property in the previous 
example does not hold. In practice, the inter arrival 
times to the cell (for the portables from the same 
entrance) cannot be arbitrary small. Instead, a minimum 
cell crossing time I- is assumed. Let p i  (i = 1 , 2 , 3 ,  . . .) 
be the ith portable arrival after time LP.LvT. The 
portable residence time for p i  is ti. Then the departure 
time of p i  is later than LP.LVT + (i - 1)‘ + t i ,  and 
the next departure time at the cell after LP.LVT is later 
than LP.LVT + A where 

l<i<CC 
A = rnin [(i - I)‘+ t i ] .  (1) 

Since T > 0, there exists j such that 

1SiS j  
j~ 2 min [( i - 1)‘ + t;] = A. 

In other words, to compute A it suffices to consider 
the first j presampled residence timestamps in (1). Fig. 
9 displays a situation where we employ formula (1). 
Four portables arrive using times llD, 14, 19 and 22. 
Let I- = 3 so that we know that n’o two consecutive 
portable arrivals will be less than 3 .  The residence 
times for the portables are placed in parentheses in Fig. 
9. The variable j is increased by 1 until the above 
inequality is satisfied. Suppose that LPA needs to send 
a null message to its downstream before it receives the 
PortableMoveIn event for p l .  The residence times 
of the subsequent arriving portables are pre-samples as 
t l  = 9 , t2  = 4,t3 = l ; t 4  = 5 . .  . Our algorithm 
proceeds as follows: 
(a) For j = I, 1 x 3 2 min[0 + 91 = 9 ? NO. 
(b) For j = 2, 2 x 3 2 min[0 + 9 , 3  + 41 = 7 ? No. 
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Fig. 9. Portables entering and leaving cell A 

(c) For j = 3, 3 x 3 2 min[0 + 9 , 3  + 4.6 + 11 = 7 

From this procedure, we derive A = 7 by using the first 
three pre-sampled residence times. 

3.  Lookahead Method 3 (Minimum Residence Time): If the 
FIFO portable movement property does not preserve, and 
‘T does not exist (or is too small to be useful), then the 
technique proposed in the previous example may not 
work. In a PCS simulation, the total number N = S x 7 1  

of portables is an input parameter. To compute the next 
lookahead value for an LP, it suffices to sample the next 
N portable residence times, and (1) is re-written as [42] 

? Yes. 

A = min t ,  
l<i<N 

The last two examples may require a large number of opera- 
tions to generate a lookahead value. In [40], O(1) algorithms 
have been proposed to generate the lookahead values. 

When the ExecuteMessage ( ) method processes a null 
message in an LP, it invokes a method ComputeLooka- 
head ( ) to compute the timestamp of the output (null) mes- 
sages. The ComputeLookahead ( ) method may implement 
the lookahead exploiting techniques described above. Then the 
new null message is sent to some or all output channels by 
invoking the SendMessage ( ) method. 

V. OPTIMISTIC METHOD 
The optimistic simulation [44] is optimistic in the sense that 

it handles the arrival events aggressively. When a message m 
arrives at an LP, LP.ReceiveMessage ( ) simply inserts 
m in the input queue (the optimistic simulation terminology 
for the FEL). The logical process assumes that the events 
already in its input queue are the “true” next events. The Exe- 
cuteMessage ( ) method proceeds to execute these events in 

timestamp order, and SendMessage ( ) is invoked whenever 
an output message is scheduled. When a message arrives at the 
LP, the timestamp of the message may be less than some of the 
events already executed. (This arrived message is referred to 
as a straggler.) The optimism was unjustified, and therefore a 
method Rollback ( ) is invoked by ExecuteMessage ( ) 
to cancel the erroneous computation. To support rollback, data 
structures such as the state queue and the output queue are 
required (to be elaborated). 

Several strategies for cancelling incorrect computation were 
surveyed by Fujimoto [45]. Two popular cancellation strategies 
called aggressive cancellation [44] and lazy cancellation [46] 
are described in this section. 

A. Cancellation Strategies 

Consider the example in Fig. 10. For simplicity, assume that 
cell C has one radio channel (i.e., LPc.channelNo= 1 in 
PDES). In this example, portable p2  moves from cell B to cell 
C at time 10 (event l), and make a phone call at time 13. The 
call is completed at time 21. Portable 1 moves from cell A to 
cell C at time 16 (event 2), and attempts to make a phone call at 
time 20. Since the only radio channel is used by portable 2, the 
call attempt from portable 1 is blocked. Portable 1 moves from 
cell C to cell D at time 24. Figs. 1 1, 12, and 13 illustrate the 
data structures of LPc (the logical process corresponding to 
cell C) assuming that message ‘m1 (the message that represents 
event 2) arrives at LPc earlier than message mg (the message 
that represents event 1) does. In LPc, a state queue and an 
output queue are maintained to supported rollback. In our 
example, the state variable (attribute) for LPc is the number 
of idle channels LPc.idleChannelNo. The state variable 
is checkpointed and saved in the state queue from time to 
time. The snapshots in the state queue are used to recover the 
state of LPc when rollbacks occur. The output queue records 
the anti-messages of the output messages that have been sent 
from LPc. The anti-messages are used to annihilated false 
messages sent in the incorrect computation. 

In Fig. l l (a) ,  LPc receives m1 that is inserted in LI‘c’s 
input queue. Initially, the output queue of LPc is empty, 
and the value of LPc.idleChannelNo at timestamp 0 is 
saved. After ml is executed, the system state at timestamp 
16 is checkpointed, and a call arrival event (message m2) 
is scheduled for LPc itself (see Fig. 11 (b)). Note that after 
its execution, ml is kept in the input queue (this message 
may be re-executed if a rollback occurs). A pointer in the 
input queue indicates the next event to be executed. The 
anti-message m; of m2 is saved in LI‘c’s output queue. 
The message my is identical to m.2 except that it includes 
a destination field (in the original optimistic or Time Warp 
algorithm [44], the sender and the destination are recorded in 
both the output message and the corresponding anti-message 
for flow control). To summarize, the ExecuteMessage ( ) 
method for the optimistic simulation saves the system state 
after an event execution (note that the state may be saved 
after several event executions), and the executed event is not 
deleted from the input queue. The SendMessage ( ) method 
saves the anti-messages in the output queue when it sends an 
output message. 
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Fig. 10. A PCS example for optimistic PDES. Events 1 and 2 will be 
represented by messages mg and rnl respectively in the optimistic PDES 
(see the next figures). 
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Fig. 11. The data structures of LPc before/after rollback. 

After m2 is executed, the number of idle channel is decre- 
mented by 1 ,  and 

LPc.idleChannelNo = 0 

is saved in the state queue. A PortableMoveOut event 
m3 is scheduled at timestamp 24, and its anti-message ms is 
stored in the output queue (see Fig. 12(a)). 

n 
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portable 

event 

pointer pointer 

1 

timestamp 

portable 

event 
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Fig. 12. The data structures of LPc before/after rollback (cont.). 

When m3 is executed, a PortableMoveIn message m4 

is sent to LPD (see Fig. 12(b)). After rn4 is sent, the straggler 
m5 (the event that p z  moves in LPc at timestamp 10) 
arrives. Since LP,.LVT= 24, the out-of-order execution is 
detected (see Fig. 13(a)) by LPC.ReceiveMessage ( 1 ,  and 
LPc.Rollback ( ) is invoked. Two strategies for cancelling 
incorrect computation are described below. 

Aggressive Cancellation: When a straggler arrives, aggres- 
sive cancellation assumes that the out-of-order computation, as 
well as all other computations that may have been affected by 
this computation are not correct. Thus, the out-of-order com- 
putation is recomputed, and LPc.Rollback ( ) cancels the 
affected computations immediately by sending anti-messages. 
In our example, a rollback of LPc at timestamp 10 occurs. 
In Fig. 13(b), the anti-messages m; , m;, and m: are deleted 
from the output queue, and are sent to their destinations to 
annihilate false messages m2, m3, and m4, respectively. After 
the rollback (see Fig. 13(c)), messages m2 and my (and m4 in 
LPD) are removed from the input queue. The state of LPc at 
timestamp 0 is re-stored. Then LPC.ExecuteMessage ( )  
resumes the simulation by executing m5. 

Lazy Cancellation: It is possible that the erroneous compu- 
tation still generated correct output messages. In that case, it is 
not necessary to cancel the original message that was sent. In 
lazy cancellation, logical processes do not immediately send 
the anti-messages for any rolled back computation. Instead, 
they wait to see if the reexecution of the computation causes 
any of the same messages to be regenerated. If the same 
message is recreated, there is no need to cancel the original. 
Otherwise, an anti-message is sent. In our example, lazy 
cancellation applies to three situations. 

1) If portable p 2  arrives at cell C (LPc) at time 10 and 
leaves cell C at time 28 without making any phone call 
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Fig. 13. The data structures of LPc befordafter rollback (cont.). 
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Fig. 14. Situations when lazy cancellation applies (in these situations, 
t 2  > tl) .  

(see Fig. 14(a)) then the arrival of m5 in Fig. 13(a) will 
not affect the executions of ml, m2, and m3. (Note that 

Fig. 15. An PCS example for fossil collection in optimistic PDES. 

in PDES, whether a call for p2 occurs in the interval 
[lo], [28] can be detected in the portable object.) Thus 
messages ml, r n 2 ,  and r n g  do not need to be reexecuted 
after m5 is executed. This is  called jump forward or 
lazy reevaluation [ 11. 
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Fig. 16. The optimistic PDES before fossil collection. 

In this case, LPc.ReceiveMessage ( ) simply inserts 
m5 in the input queue, and the pointer of the input queue 
points to m5. LPc.ExecuteMessage ( executes m5 
and the pointer jumps directly after m3 without re- 
executing ml,mz, and m3. 

2) The call for pa does not block the call for p1 if p2 ' s  
call completes before p l ' s  call arrives (see Fig. 14(b)) 
or pz ' s  call overlaps p l ' s  call but LPc has two or 
more radio channels (i.e., LP.channelNo2 2; see Fig. 
14(c)). In these cases, the channel utilization (not shown 
as a state variable in our example) changes, but the 
subsequent messages (i.e., m2, m3, and mq) scheduled 
due to the execution of ml are not affected. Thus, 
messages ml, mz, and m3 are re-executed to reflected 
the correct channel utilization. No anti-messages need 
to be sent (i.e., m,,m;, and m; are not sent out). 
Like the previous case, LPC.ReceiveMessage ( ) 
simply inserts m5 in the input queue. After m5 has 
been executed, LPC.ExecuteMessage ( ) will re- 
execute ml,mz, and m3 without re-generating any 
output messages. 

timestamp 

portable 

event 

If lazy cancellation does succeed most of the time, then 
the performance of the optimistic simulation is improved 
by eliminating the cost of cancelling the computation which 
would have to be reexecuted. If lazy cancellation fails, then 
the performance degrades, because erroneous computations are 
not cancelled as early as possible. In our PCS simulation, we 
may exploit situations that lazy cancellation does not fail (as 
described above), and a logical process can be switched be- 
tween aggressive cancellation and lazy cancellation to reduce 
the rollback cost. 

B. Memory Management 

To support rollback, it is necessary to save the "history" 
(the already executed elements in the input, the output, and 
the state queues) of a logical process. However, it may not 
be practical to save the whole history of a logical process 
because memory is likely to be exhausted before the simulation 
completes. Thus, it is important that we only save "recent 
history" of logical processes to reduce the memory usage. 

Memory management for the optimistic simulation is based 
on the concept of global virtual time (GVT). The GVT at 
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Fig. 17. The optimistic PDES after fossil collection 

pointer 

(execution) time t is the minimum of the timestamps of the not- 
yet executed messages (these messages are either in the input 
queue or are in transit) in the optimistic simulation at time t .  
(Several other operational definition of GVT are given in [47], 
[48].) It has been pointed out [44] that at any given time t. 
a logical process cannot be rolled back to a timestamp earlier 
than the GVT at t .  Therefore the storage for all messages with 
timestamps smaller than the GVT value can be reclaimed for 
other usage. The process of reclaiming the storage for the 
obsolete elements is called ,fossil collection. 

The GVT computation is not trivial in a distributed system 
because it may be difficult to capture the messages in transit. 
Several CVT algorithms have been developed in the systems 
with the FIFO communication property (491 or without the 
FIFO communication property [50], [5 11. 

In CIT/Bellcore PCS PDES (where eight workstations are 
connected by a local area network), all logical processes 
are frozen during GVT computation. By utilizing the low 
level communication mechanism, all transient messages are 
guaranteed to arrive at their destinations before the GVT 
computation starts. The fossil collection procedure works as 
follows. A coordinator initiates the procedure by freezing the 
execution of every logical process. After all transient messages 
arrive at their destinations, every logical process reports its 
local minimum value (the minimum of the timestamps of all 
unprocessed messages in the input queue) to the coordinator. 
The coordinator then compute the GVT value as the minimum 
of the received local minimums. The GVT value is broadcast 
to all logical processes for fossil collection. 

To illustrate the storage reclaimed in fossil collection, 
consider the example in Fig. 15. In this example, we ignore 
the phone call events and assume that all Portable- 

pointer 

c 

DO 3 mow 

MoveIn/PortableMoveOut events must be executed in 
their timestamp order in the optimistic simulation. We further 
assume that the state variable of a logical process is the 
number of portables move in the corresponding cell after time 
0. Portable 1 moves from cell C to cell A at time 4 and moves 
from cell A to cell B at time 60. Portable 2 moves from cell 
C to cell B at time 10. Portable 3 moves from cell B to cell 
A at time 20. Portable 4 moves from cell A to cell C at time 
8. Portable 5 moves from cell A to cell C at time 7. Portable 
6 moves from cell A to cell B at time 1 and moves from cell 
B to cell C at time 15. 

Fig. 16 illustrates the elements in the input/output/state 
queues of LP.4. LPB, and LPc after all transient messages 
amve at their destinations, and the GVT value (which is 
8 = min(60.20.8)) is found. 

Fig. 17 illustrates the elements in the input/output/state 
queues of LP.4. LPB, and LPc after the fossil collection 
procedure is completed. 

All messages with timestamps smaller than 8 were fossil 
collected. Note that fossil collection for the state queue is not 
exact the same as that for the input/output queues. In the state 
queue, the element with the largest timestamp smaller than the 
GVT value (i.e., 8) must not be removed (see Fig. 17). The 
other elements with timestamps smaller than 8 are removed. 

C. Performance Evaluation 
The performance of an optimistic PCS PDES implementa- 

tion has been investigated in [4]. In this study, a version of 
Time Warp has been developed that executes on 8 DEC 5000 
workstations connected by an Ethernet. 

In the experiments, speedp was used as the output measure 
where the sequential simulator used the same priority queue 
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Fig. 18. Speedup of the optimistic PDES (The call holding time is exponen- 
tially distributed with mean 3 min. Eight processors are used in the parallel 
simulation.) The expected number of portables per cell is 50 in (a), and 75 
in (h). 

mechanism as that of PDES for managing the pending set of 
events, but did not have the state saving, rollback and fossil 
collection overheads associated with the PDES implementa- 
tion. The 1024 cells are simulated for 2.5 x lo5  simulated 
seconds. Fig. 18 shows the performance of the optimistic 
PDES. The figure indicates good performance of PDES for 
the PCS application. PDES is particularly efficient when the 
number of portables is large, the cell residence time is long, 
and the call interarrival time is short. 

VI. FUTURE DIRECTIONS FOR PDES 

This paper describes the asynchronous parallel discrete 
event simulation (PDES) mechanisms and optimization tech- 
niques by examples of personal communications services 
(PCS) network simulation. We described the conservative and 
the optimistic PDES mechanisms and several optimizations 
tailored for the PCS simulation. The performance of the op- 
timistic method was briefly discussed. Since the conservative 
optimizations (tailored for PCS) introduced in this paper are 
new and were not previously reported, no performance studies 
have been conducted. Investigating the performance of these 
optimizations will be one of our future research directions. 

The optimization techniques described in the paper are 
general and apply to other simulation applications such as 
battlefield simulation, VLSI simulation, queueing network 
simulation and computer architecture simulation. However, 

these optimization techniques may need to be tailored for 
specific applications. Many studies have devoted to this issue 
(see [l], [2], [52]-[54] and references therein). The PCS 
example can be seen as being a member of a larger class of 
simulation model where one first discretizes the spatial domain 
into a grid, and then simulates moving entities from one grid 
cell to another. In this sense, the PCS problem is isomorphic 
to the problems of particleh-body simulation. 

An important research direction that has not been fully 
exploited is the building of user-friendly PDES environments. 
Such an environment should provides convenient tools to 
develop simulation application. Methods should also be pro- 
vided to tailor general optimization techniques to fit a specific 
simulation application. We anticipate that these user-friendly 
environments can be constructed by the object-oriented models 
described in [6]. 
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