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Abstract An (n, d, k)-mapping f is a mapping from binary vectors of length n to permu-
tations of length n + k such that for all x, y ∈ {0, 1}n , dH ( f (x), f (y)) ≥ dH (x, y) + d , if
dH (x, y) ≤ (n+k)−d and dH ( f (x), f (y)) = n+k, if dH (x, y) > (n+k)−d . In this paper,
we construct an (n, 3, 2)-mapping for any positive integer n ≥ 6. An (n, r)-permutation array
is a permutation array of length n and any two permutations of which have Hamming distance
at least r . Let P(n, r) denote the maximum size of an (n, r)-permutation array and A(n, r)

denote the same setting for binary codes. Applying (n, 3, 2)-mappings to the design of per-
mutation array, we can construct an efficient permutation array (easy to encode and decode)
with better code rate than previous results [Chang (2005). IEEE Trans inf theory 51:359–365,
Chang et al. (2003). IEEE Trans Inf Theory 49:1054–1059; Huang et al. (submitted)]. More
precisely, we obtain that, for n ≥ 8, P(n, r) ≥ A(n−2, r−3) > A(n−1, r−2) = A(n, r−1)

when n is even and P(n, r) ≥ A(n − 2, r − 3) = A(n − 1, r − 2) > A(n, r − 1) when n
is odd. This improves the best bound A(n − 1, r − 2) so far [Huang et al. (submitted)] for
n ≥ 8.
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1 Introduction

1.1 Background

Let Pn be the set of all permutations of {1, 2, . . . , n}. A permutation array is a subset of Pn .
Given two permutations, one can define their Hamming distance to be the number of positions
in which they differ. An (n, r)-permutation array is a permutation array such that any two
permutations have Hamming distance at least r . From the combinatorial view, it is interesting
to study the maximum size of an (n, r)-permutation array [5]. For its application, there are
many results which applied permutation arrays to design coding/modulation schemes for
communication over power lines [7, 10–12]. Their works stimulated a series of the efficient
designs of permutation arrays with some particular minimum Hamming distance restriction
[3, 4, 6, 9, 13]. However, given (n, r), it is not easy to construct an (n, r)-permutation array.
In contrast, it is relatively easier to construct the so-called (n, r)q -code which is a subset of
[q]n and any two binary strings of which have Hamming distance at least r . There are many
good methods to construct (n, r)q -codes such as Reed-Solomon code. Now suppose we have
an efficient mapping (easy to compute the output and the inverse) from [q]m to Pn such
that the mapping preserves or increases the Hamming distance. Then it is clear that we can
construct an efficient permutation arrays (easy to encode and decode) satisfying the desired
minimum Hamming distance constraint. This motivates the study of distance-preserving (or
distance-increasing) mapping from q-ary vectors to permutations.

There are several results for distance-preserving and distance-increasing mappings [1, 2,
8]. In particular, these papers introduced two kinds of mappings. One is distance-preserving
mapping (DPM) [2] and the other is distance-increasing mapping (DIM) [1]. More precisely,
an n-DPM is a mapping from binary vectors of length n to permutations of the same length
such that if the Hamming distance of any two binary strings is d , then the Hamming distance
of the corresponding permutations must be at least d . Furthermore, an n-DIM is a DPM such
that when d is less than n, the Hamming distance of the corresponding permutations must
be larger than d . Once we have a DPM (respectively, DIM) f , for any binary code C with
minimum distance r , it is easy to see that f (C) is a permutation array with minimum distance
r (respectively, r + 1).

In this paper, we focus on the code rate of (n, r)-permutation arrays. From this viewpoint,
we can easily understand why DIM is better than DPM. In order to construct a permu-
tation array with minimum distance d , we only need a good binary code with minimum
distance d − 1 once we have an efficient DIM. We know that it is easier to construct a
code with shorter minimum distance. Following this point, we may wish to construct a
length-preserving mapping that can increase more distance. However, this is not an easy
task. Instead of a length-preserving one, we construct a non-length-preserving mapping that
can increase distance more than 1. Moreover, such mappings also can be used to construct a
good permutation array of good code rate.

1.2 Notations

Let Pn denote the set of all permutations of [n] and Zn
q denote the set of all q-ary vectors of

length n. For a permutation π = (π1, . . . , πn) ∈ Pn , let π(i) = πi and π[i ... j] denote that sub-
array (πi , . . . , π j ) of π . For i ∈ [n], π−1(i) denotes the position of i in π , i.e. if π( j) = i then
π−1(i) = j . The Hamming distance dH (a, b) between two n-tuples a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn) is the number of positions where they differ, i.e.
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dH (a, b) = |{ j |a j �= b j }|.
We now define a class of DIMS from q-ary vectors to permutations.

Definition 1 For d ≤ n + k, an (n, d, k, q)-mapping f : Zn
q → Pn+k is a mapping such

that, for all x, y ∈ Zn
q ,

dH ( f (x), f (y)) ≥ dH (x, y) + d, if dH (x, y) ≤ (n + k) − d and

dH ( f (x), f (y)) = n + k, if dH (x, y) > (n + k) − d.

Let F(n, d, k, q) denote the collection of all (n, d, k, q)-mappings. In particular, in the
case that q = 2, we simply denote an (n, d, k, 2)-mapping by an (n, d, k)-mapping and
F(n, d, k, 2) by F(n, d, k).

By using this notation, the collection of DPMs is equal to F(n, 0, 0) and the collection of
DIMs is equal to F(n, 1, 0).

1.3 Previous results

1.3.1 Length-preserving mappings

The first construction of mappings in F(n, 0, 0) for 4 ≤ n ≤ 8 was proposed by Ferreira
and Vinck [7]. They found a mapping in F(4, 0, 0) by computer search. Then they used
this mapping to construct mappings for 5 ≤ n ≤ 8. Later, Chang et al. [2] extended their
result to any integer n ≥ 4 and they gave two kinds of recursively constructive mappings in
F(n, 0, 0). One is that when given two mappings g ∈ F(m, 0, 0) and h ∈ F(n, 0, 0), they
define f : Zm+n

2 → Pm+n as f (x1, . . . , xm+n) = (π1, . . . , πm, σ1 + m, . . . , σn + m), where
π = g(x1, . . . , xm) and σ = h(xm+1, . . . , xm+n). Then f is in F(m + n, 0, 0). Roughly
speaking, it first concatenates the images of g and h then adjusts the values in the image of h.
The other approach extends a mapping g in F(n − 1, 0, 0) one more dimension to construct
an f in F(n, 0, 0). i.e., suppose we have a permutation π = (π1, π2, . . . , πn−1) ∈ Pn−1

where π = g(s) for some s ∈ Zn−1
2 . We extend s one bit longer. If the extended bit is 0,

then we replace the value at the pth entry with value n and append the replaced value to
the right of π , where p can be any integer from 1 to n − 1. If the extended bit is 1, then
we just append value n to the right of π . This construction gives us an (n, 0, 0)-mapping
once we have mapping g. Recently Lee [8] gave an alternative algorithm for constructing an
(n, 0, 0)-mapping for odd n.

Chang [1] gave the first constructive mappings in F(n, 1, 0) for n ≥ 4. At the beginning
of his construction, it does the same two steps as in the former construction of Chang et al.
[2]. Then it starts to execute the swap operations: if x1 = 1, swap π1 and σn + m, and if
xm+1 = 1, swap πn and σ1 + m. These swap operations are used to remedy a bad situation
that, given two strings, the first m bits are exactly the same, but the last n bits are totally
different. In such a bad case, concatenation cannot produce a mapping in F(m + n, 1, 0)

when given two mappings in F(n, 1, 0) and F(m, 1, 0), respectively. With the help of swap
operations, Chang successfully construct an (m + n, 1, 0)-mapping [1]. For d > 1, one can
easily extend Chang’s method to construct inductively the mappings in F(n, d, 0) for n ≥ n0

if F(n0, d, 0) �= ∅ for some integers n0. Indeed, the construction is similar to the above con-
struction for F(n, 1, 0) except for adding more swap operations. However, to find the basis
case is really tough although we have the inductive construction for F(n, d, 0) with d > 1.
So far there is not much known on related construction.
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Let P(n, r) denote the maximum size of an (n, r)-permutation array and A(n, r) denote
the same setting for binary codes. In fact, P(n, r) (A(n, r), respectively) corresponds to the
maximum code rate of an (n, r)-permutation array ((n, r)-binary code, respectively). In the
works of Chang [1] and Chang et al. [2], they proved that P(n, r) ≥ A(n, r − 1) for n ≥ 4
via (n, 1, 0)-mappings.

If one could construct a mapping in F(n, d, 0), then we would have P(n, r) ≥ A(n, r −
d) > A(n, r − 1). In other words, the code rate of the (n, r)-permutation array constructed
from (n, d, 0)-mappings increases as d increases. Nevertheless, the least number nd,0 with
F(nd,0, d, 0) �= ∅ also increases when d increases. Therefore, there are many “gaps” in
which the bound P(n, r) cannot be improved via (n, d, 0)-mappings. To be more precise,
let nd,k be the smallest integer such that for n ≥ nd,k , F(n, d, k) is not empty, and let
md,k = nd,k + k, i.e. the smallest image length. It is easy to see that md,k ≤ md+1,k and
A(n, r − d − 1) > A(n, r − d). Now let k = 0. When n ≥ md+1,0, we can achieve
P(n, r) ≥ A(n, r − d − 1). However when md,0 ≤ n < md+1,0, we can only achieve
P(n, r) ≥ A(n, r − d). Hence for each “gap” (md,0, md+1,0), an (n, d + 1, 0)-mapping
cannot help us improve the bound P(n, r) ≥ A(n, r − d) for n in that gap. For convenience,
we plot the bound P(n, r) obtained via (n, d, 0)-mappings in the following diagram.

As we can see, in order to improve the bound P(n, r) in those gaps, we need a different idea
other than length-preserving mappings. One possible way is to relax the length-preserving
constraint.

1.3.2 Non-length-preserving mappings

As mentioned above, to design an (n, d, 0)-mapping is harder than to design an
(n, d, 1)-mapping. Until now we still do not know how to construct an (n, d, 0)-mapping for
d > 1. Instead of (n, 2, 0)-mappings, Huang et al. (Submitted) gave the first construction for
(n, 2, 1)-mappings. Their main observation is that it is easier to find a basis case for construct-
ing (n, d, 1)-mappings than for (n, d, 0)-mappings for d > 1. Furthermore they observed that
the code rate of the (n, r)-permutation array constructed by an (n, 2, 1)-mapping is greater
than code rate by an (n, 1, 0)-mapping, that is P(n, r) ≥ A(n−1, r −2) ≥ A(n, r −1). Note
that A(n − 1, r − 2) > A(n, r − 1) for even n. Therefore, their result strictly improved the
previous results for even n. However, they cannot improve the bound P(n, r) ≥ A(n, r − 1)

for odd n. In fact, A(n, r − 1) = A(n − 1, r − 2) for odd n.

1.4 Our results

We give an algorithm which can construct a non-length-preserving mapping in F(n, 3, 2)

for n ≥ 6. This immediately gives us that P(n, r) ≥ A(n − 2, r − 3). Note that, for n ≥ 8,
A(n − 2, r − 3) > A(n − 1, r − 2) = A(n, r − 1) when n is even and A(n − 2, r − 3) =
A(n − 1, r − 2) > A(n, r − 1) when n is odd. In both cases, our bound beats all previous
bounds [1, 2]. In particular, our bound strictly improves the bound achieved by Chang [1].
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In addition, our result combined with the result of Huang et al. submitted gives a better
bound for P(n, r) for the first “gap” (m1,0, m2,0) even when an (n, 2, 0)-mapping exists.
This inspires us to construct (n, d + 1, 1)-mappings for general d . Once we have such map-
pings, we can improve the lower bound for P(n, r) in the gap (md,0, md+1,0) even when an
(n, d +1, 0)-mapping indeed exists. However, we only can give the improvement for the first
“gap” until now.

1.5 Organization of this paper

First of all, for completeness, we include the result of Huang et al. (submitted) in Section 2. In
Section 3, we give our main construction of an (n, 3, 2)-mapping. Then we show the bound
of code size when applying (n, 3, 2)-mappings to the construction of an (n, r)-permutation
array in Section 4. In Section 5, we conclude with some open problems.

2 Construction of F (n, 2, 1)

We will need four mappings as our basis constructions, i.e., g6 ∈ F(6, 2, 1), g7 ∈ F(7, 2, 1),
g8 ∈ F(8, 2, 1) and g9 ∈ F(9, 2, 1). Then we inductively construct gn+4 ∈ F(n + 4, 2, 1)

from a mapping gn ∈F(n, 2, 1). Thus we give a construction of (n, 2, 1)-mappings for n ≥ 6.
Here, we only give the construction of g6, since the other constructions are very similar and
are included in the appendix.

We also need two auxiliary mappings, i.e., A6 ∈F(2, 2, 2) and B6 ∈F(4, 2, 2) with certain
properties which will be defined later. We construct g6 with these two mappings.

Definition 2 We say that a mapping f ∈ F(n, d, k)has the position property for {v1, v2, . . . ,

vp} ⊆ {1, 2, . . . , n+k} if for any i ∈ {1, . . . , p}, we have |{π−1(vi )|π ∈ f (Zn
2 )}| = 2 and for

any i, j with 1 ≤ i < j ≤ p, we have {π−1(vi )|π ∈ f (Zn
2 )} ∩ {π−1(v j )|π ∈ f (Zn

2 )} = ∅.

The following mapping A6 has the position property for {4} and B6 has the position
property for {1, 2}. With their position properties, we can construct a (6, 2, 1)-mapping g6.

Construction 1 (Basis Construction) Let A6 : Z2
2 → P4 and B6 : Z4

2 → P6 be defined as
follows:

x A6(x) x A6(x)

00 (1, 4, 3, 2) 10 (4, 2, 3, 1)

01 (2, 4, 1, 3) 11 (4, 1, 2, 3)

x B6(x) x B6(x)

0000 (1, 3, 2, 4, 5, 6) 1000 (3, 1, 2, 5, 4, 6)

0001 (1, 3, 2, 5, 6, 4) 1001 (3, 1, 2, 4, 6, 5)

0010 (1, 3, 5, 2, 4, 6) 1010 (3, 1, 4, 2, 5, 6)

0011 (1, 3, 4, 2, 6, 5) 1011 (3, 1, 5, 2, 6, 4)

0100 (1, 5, 2, 6, 4, 3) 1100 (4, 1, 2, 6, 5, 3)

0101 (1, 4, 2, 6, 3, 5) 1101 (5, 1, 2, 6, 3, 4)

0110 (1, 4, 6, 2, 5, 3) 1110 (5, 1, 6, 2, 4, 3)

0111 (1, 5, 6, 2, 3, 4) 1111 (4, 1, 6, 2, 3, 5)
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Input: (x1, x2, . . . , x6) ∈ Z6
2

Output: (π1, . . . , π7) = g6(x1, . . . , x6) ∈ F(6, 2, 1)

begin
0 ρ = A6(x1, x2); τ = B6(x3, x4, x5, x6);
1 τi = τi + 1 for 1 ≤ i ≤ 6;
2 ρρ−1(4) = τ6;
3 ττ−1(2) = ρ3; * Step 3 and 4 are meant to be assigned simultaneously
4 ττ−1(3) = ρ4; * Similarly, for the rest of constructions.
5 (π1, π2) = ρ[1..2];
6 (π3, π4, π5, π6, π7) = τ[1..5];
end

In addition to the position property, B6 holds another property, i.e., if the Hamming dis-
tance of two binary vectors is 3, then the fifth entries of the images must be different. In other
words, for x, y ∈ Z4

2, if dH (x, y) = 3, then B6(x)5 �= B6(y)5.
Given g ∈ F(n, 2, 1), let Dn×(n+1) denote the distance expansion matrix where Di j rep-

resents the number of all unordered pairs {x, y}, x, y ∈ Zn
2 such that dH (x, y) = i and

dH (g(x), g(y)) = j . Using this matrix, one can easily check if the mapping satisfies the
required distance constraint. We show the distance expansion matrix for g6 as follows:

0 0 128 64 0 0 0
0 0 232 88 120 40

0 0 160 384 96
0 0 192 288

0 0 192
0 32

Next, we show how to construct a mapping gn+4 ∈ F(n + 4, 2, 1) from a mapping
gn ∈ F(n, 2, 1).

Algorithm 1 (Inductive Step)

Input: (x1, . . . , xn, . . . , xn+4) ∈ Zn+4
2

Output: (π1, . . . , πn+5) = gn+4(x1, . . . , xn+4)

begin
0 ρ = gn(x1, . . . , xn); τ = B6(xn+1, xn+2, xn+3, xn+4);
1 τi = τi + n − 1, for 1 ≤ i ≤ 6;
2 ττ−1(n) = ρn ;
3 ττ−1(n+1) = ρn+1;
4 (π1, . . . , πn−1) = ρ[1..n−1];
5 (πn, . . . , πn+5) = τ[1..6];
6 if x1 = 1 then swap (π1, πn+4);
7 if x2 = 1 then swap (π2, πn+5);
end

Theorem 1 [8] If gn ∈ F(n, 2, 1), then gn+4 ∈ F(n + 4, 2, 1) for n ≥ 6.

Proof Given (x, w) and (y, z) ∈ Zn+4
2 where x, y ∈ Zn

2 and w, z ∈ Z4
2, let gn(x) = ρ =

(ρ1, . . . , ρn+1), gn(y) = ρ′ = (ρ′
1, . . . , ρ

′
n+1), B6(w) = τ = (τ1, . . . , τ6), and B6(z) =

τ ′ = (τ ′
1, . . . , τ

′
6). We also have gn+4(x, w) = π = (π1, . . . , πn+5) and gn+4(y, z) = π ′ =

(π ′
1, . . . , π

′
n+5).

Claim 1 After executing line 5, we have dH (π[n...n+5], π ′[n...n+5]) ≥ dH (B6(w), B6(z)).
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Proof (of Claim 1) Since B6 has the position property for {1, 2}, we have {τ−1(1)|τ ∈
B6(Z4

2)} ∩ {τ−1(2)|τ ∈ B6(Z4
2)} = ∅. Therefore, the effect caused by line 2 is independent

of line 3. We only discuss the change of distance caused by line 2 since the argument is
similar for Line 3. Note that, after executing line 1, ρi , ρ

′
i ∈ {1, . . . , n + 1} for i = 1–n + 1

and τi , τ
′
i ∈ {n, . . . , n + 5} for i = 1–6. After executing line 2, there are only two possible

cases. For the case when τ−1(n) = τ ′−1(n) = k, we have τk = τ ′
k = n. Moreover, τk and

τ ′
k are replaced by ρn and ρ′

n , respectively. It is clear that dH (ρn, ρ′
n) ≥ dH (τk, τ

′
k) = 0.

The other case is when τ−1(n) = k and τ ′−1(n) = k′ for k �= k′, and hence we have
τk = τ ′

k′ = n and dH (τk, τ
′
k) + dH (τk′ + τ ′

k′) = 2 before executing line 2. Moreover, τk′
and τ ′

k are in {n + 2, . . . , n + 5} since B6 has the position property for {1, 2}. Since ρn

and ρ′
n are in {1, . . . , n + 1}, after executing line 2, we have dH (τk, τ

′
k) + dH (τk′ , τ ′

k′) =
dH (ρn, τ ′

k) + dH (τk′ , ρ′
n) = 2. Therefore, the distance is preserved. 
�

Now we discuss how these values change after executing lines 6 and 7 case by case.

• Case [dH (x, y) = 0]: we know that dH (w, z) �= 0, otherwise (x, w) and (y, z) are iden-
tical. In this case, both of the two strings have the same operations in lines 6 and 7. Note
that values 1 and 2 only appear in the first four coordinates of the images of B6. Therefore,
the values in the fifth and sixth coordinate are not affected by those operations before lines
6. Thus, after executing the swap operation, the distance is still preserved. More precisely,
let dH (w, z) = t ≤ 4. Since, B6 ∈ F(4, 2, 2), we have dH (τ, τ ′) ≥ t + 2. Then, we get
d(π, π ′)) ≥ t + 2 = dH ((x, w), (y, z)) + 2.

• Case [0 < dH (x, y) = s < n]: it is clear that dH (ρ, ρ′) ≥ s + 2 since gn ∈ F(n, 2, 1).
So we have dH (π[1...n−1], π ′[1...n−1]) ≥ s. If 0 < dH (w, z) = t , then dH (τ, τ ′) ≥ t + 2
since B6 ∈ F(4, 2, 2). By Claim 1, we can get dH (π, π ′) = dH (π[1...n−1], π ′[1...n−1]) +
dH (π[n...n+5], π ′[n...n+5]) ≥ s + (t + 2) = dH ((x, w), (y, z)) + 2. For dH (w, z) = 0, it is
easy to see that dH (π, π ′) ≥ s + 2.

• Case [dH (x, y) = n]: in this case, it is clear that dH (ρ, ρ′) = n +1 since gn ∈ F(n, 2, 1).
Let dH (w, z) = t . We know that dH (π[1...n−1], π ′[1...n−1]) = dH (ρ[1...n−1], ρ′[1...n−1]) =
n − 1 and dH (π[n...n+5], π ′[n...n+5]) ≥ dH (τ, τ ′) ≥ t + 2 (even when t = 0). Hence, we
get dH (π, π ′) ≥ n + t + 1. We argue that this lower bound is indeed at least n + t + 2
except for t = 4. We divide the argument into two subcases according to t = dH (w, z).

1. Subcase [t = 4]: clearly we have dH (τ, τ ′) = 6. It is easy to see that dH (π, π ′) = n + 5.
2. Subcase [0 ≤ t ≤ 3]: if dH (τ, τ ′) = 6, then dH (π, π ′) = n + 5 ≥ n + t + 2 =

dH ((x, w), (y, z))+ 2. if dH (τ, τ ′) ≤ 5, there must be one coordinate i in which τi = τ ′
i .

Note that x1 �= y1 and x2 �= y2 since dH (x, y) = n. So these two strings must have
different operations in both lines 6 and 7. If i = 5 or 6 then, after executing the swap
operations in lines 6 and 7, dH (π[n...n+5], π ′[n...n+5]) ≥ t + 3. So dH (π, π ′) ≥ n + t + 2.
If i = 1 or 2, the value 1 in τ and in τ ′ must lie in the same coordinate. Thus, we have
dH (π[n...n+5], π ′[n...n+5]) ≥ t + 3. Same argument holds for i = 3 or 4.

This completes the proof of correctness. 
�

3 Construction of F (n, 3, 2)

The approach for the construction of an (n, 3, 2)-mapping is similar to the construction of an
(n, 2, 1)-mapping. We first give five basis constructions: h6 ∈ F(6, 3, 2), h7 ∈ F(7, 3, 2),
h8 ∈ F(8, 3, 2), h9 ∈ F(9, 3, 2) and h10 ∈ F(10, 3, 2). Then we give the induction method
for constructing an (n + 5, 3, 2)-mapping hn+5 from an (n, 3, 2)-mapping hn . Therefore, we
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can construct an (n, 3, 2)-mapping for each n ≥ 6. Here, we only show how to construct h6

and leave the other four constructions in the appendix.
We will use an auxiliary mapping C6 for constructing h6. C6 has the position property for

{1, 2}.
Construction 2 (Basis Construction) Let C6: Z3

2 → P6 be the following mapping:

x C6(x) x C6(x)

000 (1, 3, 2, 4, 5, 6) 100 (4, 1, 2, 6, 5, 3)

001 (1, 4, 2, 3, 6, 5) 101 (3, 1, 2, 5, 6, 4)

010 (1, 5, 3, 2, 4, 6) 110 (5, 1, 6, 2, 4, 3)

011 (1, 6, 4, 2, 3, 5) 111 (6, 1, 5, 2, 3, 4)

Input: (x1, x2, . . . , x6) ∈ Z6
2

Output: (π1, π2, . . . , π8) = h6(x1, . . . , x6) ∈ F(6, 2, 1)

begin
0 ρ = C6(x1, x2, x3); τ = C6(x4, x5, x6);
1 ρi = ρi − 2, for 1 ≤ i ≤ 6;
2 τi = τi + 2, for 1 ≤ i ≤ 6;
3 ρρ−1(−1) = τ5;
4 ρρ−1(0) = τ6;
5 ττ−1(3) = ρ5;
6 ττ−1(4) = ρ6;
7 (π1, . . . , π4) = ρ[1...4];
8 (π5, . . . , π8) = τ[1...4];
end

There is no further restriction on C6. In fact, we only need its position property. The
distance expansion matrix for h6 is as follows.

0 0 0 192 0 0 0 0
0 0 0 128 128 128 96

0 0 0 64 128 448
0 0 0 0 480

0 0 0 192
0 0 32

Next we show how to construct a mapping hn+5 ∈ F(n + 5, 3, 2) inductively from a
mapping hn ∈ F(n, 3, 2). We need the mapping E8: Z5

2 → P8 defined as follows.

x E8(x) x E8(x)

00000 (1, 8, 2, 4, 3, 5, 6, 7) 10000 (8, 1, 2, 4, 3, 5, 6, 7)

00001 (1, 7, 2, 4, 3, 6, 5, 8) 10001 (7, 1, 2, 4, 3, 6, 5, 8)

00010 (1, 8, 2, 4, 5, 3, 7, 6) 10010 (8, 1, 2, 4, 5, 3, 7, 6)

00011 (1, 7, 2, 4, 6, 3, 8, 5) 10011 (7, 1, 2, 4, 6, 3, 8, 5)

00100 (1, 5, 2, 6, 3, 8, 4, 7) 10100 (5, 1, 2, 6, 3, 8, 4, 7)

00101 (1, 6, 2, 5, 3, 7, 4, 8) 10101 (6, 1, 2, 5, 3, 7, 4, 8)

00110 (1, 5, 2, 6, 8, 3, 7, 4) 10110 (5, 1, 2, 6, 8, 3, 7, 4)

00111 (1, 6, 2, 5, 7, 3, 8, 4) 10111 (6, 1, 2, 5, 7, 3, 8, 4)

01000 (1, 4, 5, 2, 3, 8, 7, 6) 11000 (4, 1, 5, 2, 3, 8, 7, 6)

01001 (1, 4, 6, 2, 3, 7, 8, 5) 11001 (4, 1, 6, 2, 3, 7, 8, 5)

01010 (1, 4, 5, 2, 8, 3, 6, 7) 11010 (4, 1, 5, 2, 8, 3, 6, 7)

01011 (1, 4, 6, 2, 7, 3, 5, 8) 11011 (4, 1, 6, 2, 7, 3, 5, 8)
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01100 (1, 5, 7, 2, 3, 8, 6, 4) 11100 (5, 1, 7, 2, 3, 8, 6, 4)

01101 (1, 6, 8, 2, 3, 7, 5, 4) 11101 (6, 1, 8, 2, 3, 7, 5, 4)

01110 (1, 5, 7, 2, 8, 3, 4, 6) 11110 (5, 1, 7, 2, 8, 3, 4, 6)

01111 (1, 6, 8, 2, 7, 3, 4, 5) 11111 (6, 1, 8, 2, 7, 3, 4, 5)

The mapping E8 is produced in the following way. We first find a mapping E7 ∈ F(4, 3, 3)

with the position property for {1, 2}. Moreover value 1 only appears in the second or third
coordinate and value 2 only appears in the fourth or fifth coordinate. Then, we add 1 to each
entry of all the permutations. Therefore, we form a permutation π[1...7] of {2, . . . , 8}. Finally,
we define E8 : Z5

2 → P8 such that, for all w ∈ Z4
2, E8(0w) = (1, π1, π2, . . . , π7)) and

E8(1w) = (π1, 1, π2, . . . , π7)) where π = E7(w). It is easy to check that, for all distinct
strings x, y ∈ Z5

2, if dH (x, y) = d then dH (E8(x), E8(y)) ≥ d + 3 except when x and y
differ only at the first bit. In such a case, we have dH (x, y) = 1 but dH (E8(x), E8(y)) = 2.
We give the inductive algorithm below and then its proof of correctness.

Algorithm 2 (Inductive Step)
Input: (x1, . . . , xn, . . . , xn+5) ∈ Zn+5

2
Output: (π1, . . . , πn+7) = hn+5(x1, . . . , xn+5)

begin
0 ρ = hn(x1, . . . , xn); τ = E8(xn+1, . . . , xn+5);
1 τi = τi + n − 1, for 1 ≤ i ≤ 8;
2 ττ−1(n) = ρn ;
3 ττ−1(n+1) = ρn+1;
4 ττ−1(n+2) = ρn+2;
5 (π1, . . . , πn−1) = ρ[1...n−1];
6 (πn, . . . , πn+7) = τ[1...8];
7 if x1 = 1 then swap (π1, πn+6);
8 if xn+1 = 1 then swap (π2, πn+7).

Theorem 2 If hn ∈ F(n, 3, 2), then hn+5 ∈ F(n + 5, 3, 2) for n ≥ 6.

Proof Given x, y ∈ Zn
2 and w, z ∈ Z5

2, let hn(x) = ρ = (ρ1, . . . , ρn+2), hn(y) = ρ′ =
(ρ′

1, . . . , ρ
′
n+2), E8(w) = (τ1, τ2, . . . , τ8) and E8(z) = (τ ′

1, τ
′
2, . . . , τ

′
8). 
�

Claim 2 After executing line 6, we have dH (π[n...n+7], π ′[n...n+7]) ≥ dH (E8(w), E8(z)).

Proof (of Claim 2) Note that E8 has the position property for {1, 2, 3}. Moreover value 1
only appears in the first or second coordinate, value 2 only appears in the third or fourth coor-
dinate and value 3 only appears in the fifth or sixth coordinate. Therefore the effect caused
by line 2 is independent of lines 3 and 4. We only discuss the change of distance caused
by Line 2, since the argument is similar for lines 3 and 4. Note that, after executing line 1,
ρi , ρ

′
i ∈ {1, . . . , n+1} for i = 1 – n+1 and τi , τ

′
i ∈ {n, . . . , n+7} for i = 1 – 8. After execut-

ing line 2, there are only two possible cases. The first case is when τ−1(n) = τ ′−1(n) = k, and
we have τk = τ ′

k = n. Moreover, τk and τ ′
k are replaced by ρn and ρ′

n , respectively. It is clear
that dH (ρn, ρ′

n) ≥ dH (τk, τ
′
k) = 0. The second case is when τ−1(n) = k and τ ′−1(n) = k′

for k �= k′, and hence, we have τk = τ ′
k′ = n and dH (τk, τ

′
k) + dH (τk′ + τ ′

k′) = 2 before
executing line 2. Moreover, τk′ and τ ′

k are in {n + 3, . . . , n + 7}, since E8 has the position
property for {1, 2, 3}. Also because ρn and ρ′

n are in {1, . . . , n + 1}, after executing line 2,
we have dH (τk, τ

′
k) + dH (τk′ , τ ′

k′) = dH (ρn, τ ′
k) + dH (τk′ , ρ′

n) = 2. Therefore, the distance
is preserved.
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Now we discuss how these values change after executing lines 7 and 8 case by case.

• Case [dH (x, y) = 0(x = y)]: we know that dH (w, z) �= 0, otherwise (x, w) and (y, z)
are identical. In this case, both of the two strings have the same operations in lines 7 and 8.
Note that values 1–3 only appear in the first six coordinates of the images of E8. Therefore,
the values in the seventh and eighth coordinate are not affected by those operations before
line 6. Therefore, after executing the swap operation, the distance is still preserved. Let
dH (w, z) = t ≤ 5. We discuss the following subcases.
1. Subcase [DH (w, z) = t ≥ 2]: by the property of E8, we have dH (E8(w), E8(z)) ≥

t + 3. Therefore, we get d(π, π ′)) ≥ t + 3 = dH ((x, w), (y, z)) + 3.
2. Subcase [DH (w, z) = 1 and w1 = z1]: we can use similar argument as in the above

subcase.
3. Subcase [DH (w, z) = 1 and w1 �= z1]: in this subcase, w[2...5] = z[2...5] = u. Sup-

pose E8(0u) = (1, σ1, σ2, . . . , σ7) and E8(1u) = (σ1, 1, σ2, . . . , σ7) where σ[1...7] is
a permutation of {2, . . . , 8}. Since the the string (x, 1u) triggers the swap operation at
line 8 but the string (x, 0u) does not, we have πn+7 �= π ′

n+7 after executing line 8.
Therefore, we have π2 �= π ′

2, πn+7 �= π ′
n+7, πn �= π ′

n and πn+1 �= π ′
n+1. Hence the

distance increases by 3.
• Case [0 < dH (x, y) = s < n]: it is clear that dH (ρ, ρ′) ≥ s + 3 since hn ∈ F(n, 3, 2).

So we have dH (π[1...n−1], π ′[1...n−1]) ≥ s. We discuss the following subcases.
1. Subcase [DH (w, z) = t ≥ 2]: by the property of E8, we have dH (E8(w), E8(z)) ≥

t + 3. By Claim 2, we get dH (π, π ′) = dH (π[1...n−1], π ′[1...n−1]) + dH (π[n...n+5],
π ′[n...n+5]) ≥ s + (t + 3) = dH ((x, w), (y, z)) + 3.

2. Subcase [DH (w, z) = 1 and w1 = z1]: the argument is similar to the above subcase.
3. Subcase [DH (w, z) = 1 and w1 �= z1]: in this subcase, w[2...5] = z[2...5] = u. Suppose

E8(0u) = (1, σ1, σ2, . . . , σ7) and E8(1u) = (σ1, 1, σ2, . . . , σ7) where σ[1...7] is a per-
mutation of {2, . . . , 8}. Without loss of generality, we only discuss the output strings
of (x, 0u) and (y, 1u). Since the the string (y, 1u) triggers the swap operation at line 8
but the string (x, 0u) does not, we have πn+7 �= π ′

n+7 and π2 �= π ′
2 after executing line

8. Furthermore, we have πn �= π ′
n and πn+1 �= π ′

n+1. Hence, the distance increases by
3.

4. Subcase [DH (w, z) = 0]: it is clear that dH (π, π ′) ≥ s + 3.
• Case [dH (x, y) = n]: in this case, it is clear that dH (ρ, ρ′) = n +2 since hn ∈ F(n, 3, 2).

Let dH (w, z) = t . We discuss the following subcases.
1. Subcase [DH (w, z) = t = 5]: by the property of E8, we have dH (E8(w), E8(z)) = 8.

It is easy to see that dH (π, π ′) = n + 7.
2. Subcase [5 > DH (w, z) = t ≥ 2]: in this subcase, we have dH (E8(w), E8(z)) ≥ t +3

by the property of E8. If dH (τ, τ ′) = 8, then dH (π, π ′) = n + 7 ≥ n + t + 3 =
dH ((x, w), (y, z)) + 3. If dH (τ, τ ′) ≤ 7, we must have dH (τ, τ ′) ≤ 6 since τ and τ ′
are permutations. So there must exist two coordinates i, j in which τi = τ ′

i and τ j = τ ′
j .

Note that x1 �= y1 since dH (x, y) = n. So these two strings must have different oper-
ations in line 7. If (i, j) = (7, 8) or (8, 7) then, after executing the swap operations in
line 7, dH (π[n...n+5], π ′[n...n+5]) ≥ t + 4. So dH (π, π ′) = dH (π[1...n−1], π ′[1...n−1]) =
dH (ρ[1..n−1], ρ′[1..n−1]) ≥ n − 1 + t + 4 = n + t + 3. The other case is that there
must exist an index k ≤ 6 such that τk = τ ′

k . If k = 1 or 2, the value 1 in τ and in τ ′
must lie in the same coordinate. Thus we have dH (π[n...n+7], π ′[n...n+7]) ≥ t + 4. Same
argument holds for k = 3, 4, 5 or 6.

3. Subcase [DH (w, z) = 1 and w1 = z1]: it can be proved with similar argument as in
the above subcase.
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4. Subcase [DH (w, z) = 1 and w1 �= z1]: in this subcase, w[2...5] = z[2...5] = u. Suppose
E8(0u) = (1, σ1, σ2, . . . , σ7) and E8(1u) = (σ1, 1, σ2, . . . , σ7) where σ[1...7] is a per-
mutation of {2, . . . , 8}. Without loss of generality, we only discuss the output strings of
(x, 0u) and (y, 1u). Since the the string (y, 1u) triggers the swap operation at line 8 but
the string (x, 0u) does not, we have πn+7 �= π ′

n+7 after executing line 8. Furthermore,
we have πn �= π ′

n and πn+1 �= π ′
n+1. Finally note that value 2 (value 3, respectively)

only appears in the third or fourth (fifth or sixth, respectively) coordinate. After execut-
ing lines 3 and 4, the distance dH (π[n+2...n+5], π ′[n+2...n+5]) must increase by 2 since
ρn+1 �= ρ′

n+1 and ρn+2 �= ρ′
n+2. Hence, the distance dH (π[n...n+7], π ′[n...n+7]) must

increases by 5. Finally, we get dH (π, π ′) ≥ n − 1 + 5 = n + 4.
5. Subcase [DH (w, z) = 0]: note that x1 �= y1 since dH (x, y) = n. So these two strings τ

and τ ′ must have different operations in line 7. So, we have πn+7 �= π ′
n+7. Furthermore,

since E8 has the position property for {1, 2, 3}, it is clear that dH (π, π ′) ≥ n −1+4 =
n + 3.

This completes the correctness proof. 
�

4 Applications to permutation arrays

Chang [1] Chang et al. [2] constructed an (n, 1, 0)-mapping and such a mapping can be used
to construct good permutation arrays (easy to encode and decode) provided that we have
a good binary code. Furthermore Huang et al. (Submitted) proposed a construction of an
(n, 2, 1)-mapping which can be used to build a good permutation array with better code rate
than Chang’s construction [1]. In this paper, we construct an (n, 3, 2)-mapping. Thus, we
can construct an (n, r)-permutation array of code size at least A(n − 2, r − 3) when we have
an (n, r)-binary code with the best code rate. This bound beats previous bounds for n ≥ 8.
We state our result in the following corollary.

Recall that the term nd,k is defined to be the smallest integer n such that F(n, d, k) is not
empty and md,k = nd,k + k. We have the following bound.

Theorem 3 For n ≥ md,k and d + 1 ≤ r ≤ n, P(n, r) ≥ A(n − k, r − d).

Proof Let C be a binary code of length n−k with minimum distance r −d . Since, n ≥ md,k ,
then n − k ≥ nd,k . Thus, we have a mapping f ∈ F(n − k, d, k). From the definition, we
know that f (C) is an (n, r)-permutation array. Thus, P(n, r) ≥ |C |. Therefore, P(n, r) ≥
A(n − k, r − d). 
�

Theorem 3 tells us that if we have an efficient (n, d, k)-mapping and an (n − k, r − d)-
binary code with the best code rate, then we can get an efficient (n, r)-permutation array of
size at least A(n −k, r −d). Since, we give a construction of an (n, 3, 2)-mapping for n ≥ 6,
we immediately have the following corollary.

Corollary 1 P(n, r) ≥ A(n − 2, r − 3) > A(n, r − 1) for n ≥ 8.

Proof The first inequality holds since F(n, 3, 2) �= ∅ for n ≥ 6. The second inequality holds
because A(n − 2, r − 3) > A(n − 1, r − 2) = A(n, r − 1) for odd n and A(n − 2, r − 3) =
A(n − 1, r − 2) > A(n, r − 1) for even n. Therefore, A(n − 2, r − 3) > A(n, r − 1) for
n ≥ 8. 
�
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5 Conclusion and open problems

We show how to construct (n, 3, 2)-mappings for n ≥ 6. This result gives a better bound for
P(n, r) ≥ A(n − 2, r − 3) > A(n, r − 1) for n ≥ 8. Furthermore this bound beats all the
previous bounds [1, 2, Huang et al. (Submitted)].

As we mentioned in the introduction, our result improves the bound P(n, r) in the first
gap even if one knows the construction of (n, 2, 0)-mappings, which is not clear so far. How
to design an (n, d + 1, 1)-mapping is an interesting problem. Since, the smallest number
nd+1,1 such that F(nd+1,1, d + 1, 1) �= ∅ must be smaller than the smallest number nd+1,0

such that F(nd+1,0, d +1, 0) �= ∅, the (n, d +1, 1)-mappings will help us improve the bound
P(n, r) for n in the interval (md,0, md+1,0) even when an (n, d + 1, 0)-mapping does exist.

Appendix A Constructions of g7, g8, g9

Construction 3 Let A7: Z3
2 → P5 be defined as follows and B7 be the same as B6:

x A7(x) x A7(x)

000 (1, 5, 3, 4, 2) 100 (5, 2, 1, 4, 3)

001 (1, 5, 4, 2, 3) 101 (5, 3, 2, 4, 1)

010 (2, 5, 3, 1, 4) 110 (5, 4, 1, 3, 2)

011 (2, 5, 4, 3, 1) 111 (5, 1, 2, 3, 4)

By the following algorithm, g7 ∈ F(7, 2, 1) is constructed.
Input: (x1, x2, . . . , x7) ∈ Z7

2
Output: (π1, . . . , π8) = g7(x1, . . . , x7)

begin
0 ρ = A7(x1, x2, x3); τ = B7(x4, x5, x6, x7);
1 τi = τi + 2 for 1 ≤ i ≤ 6;
2 ρρ−1(5) = τ6;
3 ττ−1(3) = ρ4;
4 ττ−1(4) = ρ5;
5 (π1, π2, π3) = ρ[1...3];
6 (π4, π5, π6, π7, π8) = τ[1...5];
7 if x1 = 1 then swap (π3, π8);
end

The distance expansion matrix for g7 is given as follows:

0 0 256 128 32 32 0 0
0 0 448 208 336 272 80

0 0 224 912 736 368
0 0 224 1184 832

0 0 320 1024
0 0 448

0 64

Construction 4 Let A8: Z4
2 → P6 be defined as follows and B8 be the same as B7.
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x A8(x) x A8(x)

0000 (1, 6, 3, 4, 5, 2) 1000 (6, 2, 1, 4, 5, 3)

0001 (1, 6, 3, 5, 2, 4) 1001 (6, 2, 3, 1, 5, 4)

0010 (1, 6, 4, 2, 5, 3) 1010 (6, 4, 5, 1, 2, 3)

0011 (1, 6, 4, 3, 2, 5) 1011 (6, 2, 4, 3, 1, 5)

0100 (2, 6, 5, 4, 3, 1) 1100 (6, 3, 2, 4, 5, 1)

0101 (2, 6, 3, 5, 4, 1) 1101 (6, 3, 2, 5, 1, 4)

0110 (3, 6, 1, 2, 4, 5) 1110 (6, 4, 1, 2, 3, 5)

0111 (3, 6, 5, 2, 1, 4) 1111 (6, 1, 2, 3, 4, 5)

By the following algorithm, g8 ∈ F(8, 2, 1) is constructed.

Input: (x1, x2, . . . , x8) ∈ Z8
2

Output: (π1, . . . , π9) = g8(x1, . . . , x8)

begin
0 ρ = A8(x1, . . . , x4), τ = B8(x5, . . . , x8);
1 τi = τi + 3, for 1 ≤ i ≤ 6;
2 ρρ−1(6) = τ6;
3 ττ−1(4) = ρ5;
4 ττ−1(5) = ρ6;
5 (π1, . . . , π4) = ρ[1...4];
6 (π5, . . . , π9) = τ[1...5];
7 if x1 = 1 then swap (π3, π9);
end

A8 has another property, i.e., if the Hamming distance of any two binary vectors is 3,
then their fourth entries of the images must be different. In other words, for x, y ∈ Z4

2, if
dH (x, y) = 3, then A8(x)4 �= A8(y)4. The distance expansion matrix for g8 is given as
follows:

0 0 432 384 144 48 16 0 0
0 0 1008 368 696 912 472 128

0 0 464 1416 2512 2088 688
0 0 320 2368 3936 2336

0 0 352 3088 3728
0 0 592 2992

0 0 1024
0 128

Construction 5 Let A9 be the same as A8 and B9: Z5
2 → P7 be defined as follows:

x B9(x) x B9(x)

00000 (1, 3, 2, 4, 5, 6, 7) 10000 (3, 1, 2, 4, 6, 5, 7)

00001 (1, 3, 2, 4, 6, 7, 5) 10001 (7, 1, 2, 5, 3, 4, 6)

00010 (1, 3, 2, 5, 7, 6, 4) 10010 (4, 1, 2, 3, 7, 5, 6)

00011 (1, 3, 2, 5, 4, 7, 6) 10011 (5, 1, 2, 4, 3, 7, 6)

00100 (1, 3, 4, 2, 6, 5, 7) 10100 (3, 1, 4, 2, 5, 6, 7)

00101 (1, 3, 7, 2, 5, 4, 6) 10101 (4, 1, 7, 2, 3, 6, 5)

00110 (1, 3, 6, 2, 7, 5, 4) 10110 (7, 1, 3, 2, 5, 6, 4)

00111 (1, 4, 3, 2, 5, 7, 6) 10111 (7, 1, 3, 2, 4, 5, 6)

01000 (1, 5, 2, 3, 6, 4, 7) 11000 (3, 1, 2, 6, 7, 4, 5)

01001 (1, 4, 2, 7, 6, 3, 5) 11001 (6, 1, 2, 7, 3, 4, 5)



152 Des Codes Crypt (2006) 40:139–155

01010 (1, 4, 2, 6, 7, 5, 3) 11010 (5, 1, 2, 6, 7, 3, 4)

01011 (1, 5, 2, 6, 3, 7, 4) 11011 (5, 1, 2, 7, 4, 3, 6)

01100 (1, 6, 4, 2, 7, 3, 5) 11100 (4, 1, 5, 2, 6, 3, 7)

01101 (1, 6, 5, 2, 3, 4, 7) 11101 (5, 1, 7, 2, 6, 4, 3)

01110 (1, 5, 6, 2, 4, 3, 7) 11110 (6, 1, 5, 2, 7, 3, 4)

01111 (1, 6, 5, 2, 4, 7, 3) 11111 (5, 1, 6, 2, 4, 7, 3)

By the following algorithm, g9 ∈ F(9, 2, 1) is constructed.

Input: (x1, x2, . . . , x9) ∈ Z9
2

Output: (π1, . . . , π10) = g9(x1, . . . , x9)

begin
0 ρ = A9(x1, . . . , x4); τ = B9(x5, . . . , x9);
1 τi = τi + 3, for 1 ≤ i ≤ 6;
2 ρρ−1(6) = τ7;
3 ττ−1(4) = ρ5;
4 ττ−1(5) = ρ6;
5 (π1, . . . , π4) = ρ[1...4];
6 (π5, . . . , π10) = τ[1...6];
7 if x1 = 1 then swap (π3, π9);
8 if x5 = 1 then swap (π4, π10);
end

The distance expansion matrix for g9 is given as follows:

0 0 672 704 560 240 128 0 0 0
0 0 1088 1428 1480 2122 1628 1094 376

0 0 944 1402 4370 6478 5590 2720
0 0 270 2522 8390 11998 9076

0 0 134 4284 12118 15720
0 0 474 5884 15146

0 0 976 8240
0 0 2304

0 256

Appendix B Constructions of h7, h8, h9, h10

Construction 6 Let C7 be the same as C6 and D7 : Z4
2 → P7 be defined as follows:

x D7(x) x D7(x)

0000 (1, 3, 2, 4, 5, 6, 7) 1000 (5, 1, 2, 4, 6, 7, 3)

0001 (1, 3, 2, 5, 4, 7, 6) 1001 (6, 1, 2, 5, 4, 3, 7)

0010 (1, 3, 4, 2, 6, 5, 7) 1010 (7, 1, 4, 2, 5, 6, 3)

0011 (1, 4, 3, 2, 5, 7, 6) 1011 (5, 1, 7, 2, 4, 3, 6)

0100 (1, 5, 2, 3, 7, 6, 4) 1100 (7, 1, 2, 6, 3, 5, 4)

0101 (1, 5, 2, 7, 3, 4, 6) 1101 (4, 1, 2, 6, 7, 3, 5)

0110 (1, 7, 5, 2, 3, 6, 4) 1110 (3, 1, 6, 2, 7, 5, 4)

0111 (1, 6, 3, 2, 7, 4, 5) 1111 (6, 1, 7, 2, 3, 4, 5)

By the following algorithm, h7 ∈ F(7, 3, 2) is constructed.
Input: (x1, x2, . . . , x7) ∈ Z7

2
Output: (π1, π2, . . . , π9) = h7(x1, . . . , x7)
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begin
0 ρ = C7(x1, x2, x3); τ = D7(x4, . . . , x7);
1 ρi = ρi − 2, for 1 ≤ i ≤ 6;
2 τi = τi + 2, for 1 ≤ i ≤ 7;
3 ρρ−1(−1) = τ6;
4 ρρ−1(0) = τ7;
5 ττ−1(3) = ρ5;
6 ττ−1(4) = ρ6;
7 (π1, . . . , π4) = ρ[1...4];
8 (π5, . . . , π9) = τ[1...5];
end

In addition to the position property, D7 has another property such that if the Hamming
distance of any two binary vectors is 3, then their fifth entries of the images must be different,
i.e. for x, y ∈ Z4

2, if dH (x, y) = 3, then D7(x)5 �= D7(y)5. The distance expansion matrix
for h7 is given as follows:

0 0 0 312 128 8 0 0 0
0 0 0 408 176 256 408 96

0 0 0 232 368 952 688
0 0 0 120 792 1328

0 0 0 208 1136
0 0 0 448

0 0 64

Construction 7 Let both C8 and D8 be the same as D7. By the following algorithm,
h8 ∈ F(8, 3, 2) is constructed.

Input: (x1, x2, . . . , x8) ∈ Z8
2

Output: (π1, π2, . . . , π10) = h8(x1, . . . , x8)

begin
0 ρ = C8(x1, . . . , x4); τ = D8(x5, . . . , x8);
1 ρi = ρi − 2, for 1 ≤ i ≤ 7;
2 τi = τi + 3, for 1 ≤ i ≤ 7;
3 ρρ−1(−1) = τ6;
4 ρρ−1(0) = τ7;
5 ττ−1(4) = ρ6;
6 ττ−1(5) = ρ7;
7 (π1, . . . , π5) = ρ[1...5];
8 (π6, . . . , π10) = τ[1...5];
end

The distance expansion matrix for h8 is as follows:

0 0 0 480 512 32 0 0 0 0
0 0 0 1120 392 300 818 760 194

0 0 0 688 672 2048 2752 1008
0 0 0 416 1720 3856 2968

0 0 0 372 3192 3604
0 0 0 832 2752

0 0 0 1024
0 0 128
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Construction 8 Let C9 be the same as C8 and D9: Z5
2 → P8 be defined as follows:

x D9(x) x D9(x)

00000 (1, 3, 2, 4, 5, 6, 7, 8) 10000 (3, 1, 2, 5, 8, 6, 7, 4)

00001 (1, 3, 2, 4, 6, 5, 8, 7) 10001 (3, 1, 2, 7, 6, 5, 8, 4)

00010 (1, 3, 2, 5, 4, 7, 6, 8) 10010 (3, 1, 2, 4, 7, 8, 5, 6)

00011 (1, 3, 2, 5, 7, 4, 8, 6) 10011 (4, 1, 2, 3, 6, 7, 5, 8)

00100 (1, 3, 4, 2, 5, 8, 6, 7) 10100 (3, 1, 7, 2, 5, 8, 6, 4)

00101 (1, 3, 4, 2, 8, 5, 7, 6) 10101 (5, 1, 7, 2, 8, 4, 3, 6)

00110 (1, 3, 6, 2, 7, 8, 5, 4) 10110 (6, 1, 7, 2, 4, 3, 5, 8)

00111 (1, 3, 6, 2, 8, 7, 4, 5) 10111 (4, 1, 3, 2, 8, 7, 5, 6)

01000 (1, 4, 2, 6, 5, 8, 7, 3) 11000 (8, 1, 2, 6, 5, 3, 7, 4)

01001 (1, 4, 2, 6, 8, 5, 3, 7) 11001 (8, 1, 2, 6, 3, 5, 4, 7)

01010 (1, 4, 2, 8, 7, 6, 5, 3) 11010 (7, 1, 2, 8, 4, 3, 6, 5)

01011 (1, 4, 2, 8, 6, 7, 3, 5) 11011 (4, 1, 2, 6, 3, 7, 8, 5)

01100 (1, 5, 8, 2, 4, 6, 7, 3) 11100 (7, 1, 8, 2, 5, 6, 3, 4)

01101 (1, 5, 8, 2, 6, 4, 3, 7) 11101 (7, 1, 8, 2, 6, 5, 4, 3)

01110 (1, 4, 5, 2, 7, 3, 6, 8) 11110 (4, 1, 8, 2, 7, 3, 6, 5)

01111 (1, 4, 5, 2, 3, 7, 8, 6) 11111 (7, 1, 6, 2, 3, 4, 8, 5)

By the following algorithm, h9 ∈ F(9, 3, 2) is constructed.

Input: (x1, x2, . . . , x9) ∈ Z9
2

Output: (π1, π2, . . . , π11) = h9(x1, . . . , x9)

begin
0 ρ = C9(x1, . . . , x4); τ = D9(x5, . . . , x9);
1 ρi = ρi − 2, for 1 ≤ i ≤ 7;
2 τi = τi + 3, for 1 ≤ i ≤ 8;
3 ρρ−1(−1) = τ7;
4 ρρ−1(0) = τ8;
5 ττ−1(3) = ρ6;
6 ττ−1(4) = ρ7;
7 (π1, . . . , π5) = ρ[1...5];
8 (π6, . . . , π11) = τ[1...6];
9 if x5 = 1 then swap (π5, π10);
end

D9 has another property such that if the Hamming distance of any two binary vectors is
4, then their sixth entries of the images must be different, i.e. for x, y ∈ Z5

2, if dH (x, y) = 4,
then D9(x)6 �= D9(y)6. The distance expansion matrix for h9 is as follows:

0 0 0 912 912 336 112 32 0 0 0
0 0 0 1952 1090 918 1934 2034 1024 264

0 0 0 1328 1334 3782 6916 5870 2274
0 0 0 544 1910 8726 13074 8002

0 0 0 132 4060 13852 14212
0 0 0 454 6756 14294

0 0 0 1168 8048
0 0 0 2304

0 0 256

Construction 9 Let both C10 and D10 be the same as D9. By the following algorithm,
h10 ∈ F(10, 3, 2) is constructed.
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Input: (x1, x2, . . . , x10) ∈ Z10
2

Output: (π1, π2, . . . , π12) = h10(x1, . . . , x10)

begin
0 ρ = C10(x1, . . . , x5); τ = D10(x6, . . . , x10);
1 ρi = ρi − 2, for 1 ≤ i ≤ 8;
2 τi = τi + 4, for 1 ≤ i ≤ 8;
3 ρρ−1(−1) = τ7;
4 ρρ−1(0) = τ8;
5 ττ−1(4) = ρ7;
6 ττ−1(6) = ρ8;
7 (π1, . . . , π6) = ρ[1...6];
8 (π7, . . . , π12) = τ[1...6];
9 if x1 = 1 then swap (π5, π12);
10 if x6 = 1 then swap (π6, π11);
end

The distance expansion matrix for h10 is as follows:

0 0 0 1728 1600 1216 448 128 0 0 0 0
0 0 0 3328 2818 2348 4540 4300 3528 1652 526

0 0 0 2624 2868 7084 13904 17352 12172 5436
0 0 0 1024 2772 14192 32644 35416 21472

0 0 0 8 4352 26788 51992 45884
0 0 0 136 8596 40320 58468

0 0 0 768 15168 45504
0 0 0 2176 20864

0 0 0 5120
0 0 512
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