
SOFTWARE-

A

PRACTICE AND EXPERIENCE, VOL

Behavior-based

26(7), 815-832 (JULY 1996)

Classification and Retrieval
Technique for Object-oriented Specification

Reuse

SHIH-CHIEN CHOU, JEN-YEN CHEN* AND CHYAN-GOEI CHUNG
Department of Computer Science and Information Engineering, National Chiao Tung

University, I001 Ta Hsueh Road, Hsinchu, Taiwan 30050, Republic of China
(email: jychen@csie.nctu.edu. tw)

SUMMARY
This paper presents a classification and retrieval technique for object-oriented specification reuse,
based on the assumption that existing specifications exhibiting behaviors similar to that of the system
under development are appropriate for reuse. Existing specifications are classified and retrieved
according to the semantic networks abstracted from their behaviors. Since semantic networks attach
semantic meanings to certain degrees of detail, our technique is rather precise. Primary behavior is
used to classify specifications because it can be obtained in the early phases of system analysis.
Therefore, our technique allows early reuse. Moreover, subspecifications and classes of existing speci-
fications are classified independently so that they can be retrieved for reuse separately. Thus, our
technique encourages reusing subspecifications as well as classes. Since a subspecification is composed
of classes and their relationships, reusing it corresponds to reusing all those classes and relationships.
A technique that reuses subspecifications as well as classes is thus expected to save more time than
those that reuse only classes.

K E Y WORDS: specification reuse; specification classification; specification retrieval; behavioral similarity

INTRODUCTION
Many software engineers agree that software reuse greatly improves software pro-
ductivity and quality.'-3 Software reuse is majorly based on these two approaches: gen-
eration and compo~ition.~ The latter is used in this paper, which composes existing
software components to form new software

Many techniques for reusing program code have been developed.'-'2 To use these
techniques, system specifications and designs must be available before program code
can be reused. Thus, although implementation times are reduced, system analysis and
design times are not. To enhance the power of software reuse, some researchers have
developed techniques for reusing designsl7-' or specification^.'^-^^ Techniques for reus-
ing specifications, for reusing designs, and for reusing program code can be integrated
to support a reuse-based software development paradigm that can dramatically reduce
software development time.

* Professor Chen is responsible for all communications.

CCC 0038-0644/96/070815-18
0 1996 by John Wiley & Sons, Ltd.

Received 9 January 1995
Revised 7 November 1995

816 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

Software reusability can be enhanced by the object-oriented (00) approach because
it has these merits: information hiding, modularity, abstraction, inheritance, and so
Reusability is thus one of the most important promises of the 00 Con-
siderable 00 software reuse techniques have been developed.9~’0~17~25~27-28 However,
few successful techniques for reusing 00 specifications are available, which prompted
us to design an 00 specification reuse technique. This paper presents a classification
and retrieval technique for 00 specification reuse.

Software components can be classified and retrieved according to keywords,29
facets,30 attribute^,^.'^ lexical affinitie~,~’’~’ features,32 or semantic networks.33 Among
them, the keyword approach is the simplest to implement and the semantic network
approach is the most precise. Our technique is based on the semantic network approach,
because specifications are semantically rich. Moreover, we combine this approach with
the keyword approach for simplification purposes. In other words, a semantic network
that classifies a specification is composed of keywords linked by various relationships.

PROCESS AND ISSUES OF 00 SPECIFICATION REUSE

Basic considerations for our 00 specification reuse technique are as follows:

1. Specifications that behave similarly are considered candidates for reuse. A speci-
fication primarily specifies functions and data.34 Specifications with functions
similar to those of the system under development are reusable. If the reused speci-
fication and the system under development have different data, data of the reused
specification should be changed. Since the execution of functions exhibits
behavior, specifications that behave similarly may have similar functions and
hence may be reusable.

2. Classes as well as subspecifications, or even entire specifications, may be reused.
Techniques that reuse only classes compose classes to form subsystems and then
compose subsystems to form a system. To reduce reuse time, our technique reuses
subspecifications and even entire specifications, in addition to classes. This reuse
saves class composition time, because a specification or subspecification is com-
posed of several classes and class relationships. (To enhance readability, in the
remainder of this paper, a subspec~cation refers to either a subspecification or a
complete specification.)

Before reuse, existing specifications must be classified and stored in a repository.
They should be classified according to their behaviors so that those behave similarly
to the system under development can easily be retrieved for reuse. To develop a system
specification by reusing existing specifications, an analyst follows the 00 specification
reuse process below:

1. The analyst creates a query based on the behavior of the system under develop-
ment. Since the analyst may not know the system’s detailed behavior in this early
phase of system analysis, the query should describe the system’s primary behavior
exhibited when its primary functions are executed.

2. A reuse support tool retrieves candidate reusable subspecijications that are exist-
ing subpsecifications with behaviors similar to that specified in the query.

3. The analyst examines the retrieved candidates and may select some for reuse.
Those selected may need modification. After the reuse, subsystems of the system

A BEHAVIOR-BASED TECHNIQUE 817

under development whose behaviors are not primary may still be unspecified. The
analyst should follow the above steps to deal with those subsystems.

4. If no candidates are retrieved in step (2) or none are selected for reuse, the analyst
must decompose the system under development into subsystems and then follow
the above steps to specify each subsystem. The rationale here is that subsystems
whose behaviors are not primary may be able to reuse existing subspecifications.

5. The analyst specifies easy unspecified subsystems from scratch. Existing classes
can be reused here if the analyst creates a query based on the intended class’s
object behavior and performs retrieval as described above. The retrieved classes
should have object behaviors similar to that specified in the query, and are called
candidate reusable classes.

6 . The analyst composes the specified subsystem specifications and classes to form
a complete specification.

According to the process outlined above, major issues for an 00 specification reuse
technique are: classification and retrieval of specifications, storage of specifications,
examination of specifications, and modification and composition of specifications. This
paper presents a technique for classification and retrieval of specifications.

CLASSIFICATION

Subspecifications and classes of existing specifications are independently classified so
that they can be retrieved separately for reuse. Our technique does not physically put
classified subspecifications or classes together. Instead, each subspecification or class
is associated with a semantic network for classification purposes. This classification
technique is thus a representation technique.35

Classification of classes

A class is classified by its object behavior, which can be represented by a state
transition diagram.23 An object changes states when one or more of its services
(operations) are executed. Thus, executing a class’s services demonstrates its object
behavior. Class services can thus be used to represent class object behaviors.

A class service performs a primary operation on one or more attributes. The primary
operation and attributes, which form a sewice semantic network, can be used to rep-
resent the service. For example, the service ‘Borrow’ of the class ‘Book’ performs
the primary operation ‘Borrow’ on the attributes ‘Identifier’ and ‘Status’. That
service can be represented by the first service semantic network shown in Figure l(a),
in which the upper node denotes the service’s primary operation, the lower nodes denote
the attributes, and the links between them are ‘Operate-on’ relationships.

Since a class’s services can be used to represent its object behavior, a class can be
classified according to its services. Service semantic networks of a class’s services can
thus be combined to form a class semantic network for classifying the class. For exam-
ple, the service semantic networks for the services of the class ‘Book’ (see Figure I (a))
can be combined to form the class semantic network for that class (see Figure I(b)).
In a class semantic network, each node is represented by a keyword. Each keyword
can have aliases to improve retrieval recall.36 In a repository, the class semantic network
as shown in Figure l(b) is represented by the language description as shown in

818 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

Borrow Return Reserve Remove Create

A A A I
ldentifier Status Identifier Status Identifier Status Identifier Identifier Title Status Author

Borrow Return Reserve Create Remove

status Identifier Title Author

Borrow:

Return:

Reserve:

Create:

Remove:

Status, Identifier;

Status, Identifier;

Status. Identifier;

Status, Identifier. Title, Author;

Identifier:

Figure 1. Service semantic network and class semantic network: (a) service semantic networks for the
services of the class ‘Book’; (b) notation for class semantic network of the class ‘Book’; (c) language

description for class semantic network in (b)

Figure l(c). Thus, Figures l(b) and l(c) are considered to be interchangeable in this
paper.

Classification of subspecifications
A subspecification is classified by the behavior exhibited when its functions are

executed. According to the reuse process outlined above, subspecifications are usually
retrieved for reuse in the early phases of system analysis, where a query describes the
primary behavior of the system under development. To facilitate retrieval, subspecifica-
tions should be classified according to the primary behaviors exhibited when their pri-
mary functions are executed.

Executing a primary function triggers objects to accomplish the function. Since an
object is triggered by invoking its class service, a subspecification’s primary functions
are accomplished by invoking some of its classes for service. These classes are primary
classes that can be used to classify the subspecification. A primary class has several
services that represent its object behavior. Invocation relationships exist among the
primary classes that link their object behaviors to form a joint behavior for representing
the subspecification’s primary behavior. A subspecification can thus be classified by its
primary classes, the services of those primary classes, and the invocation relationships
among the primary classes. They form a subspec@catio,n semantic network as shown
in Figure 2(a), where each node is represented by a keyword. In a repository, the net-
work in Figure 2(a) is represented by the language description in Figure 2(b). Thus,
Figures 2(a) and 2(b) are considered to be interchangeable in this paper.

A classification example

classification example here. Its functional requirements are described briefly below.
A simplified library system specification represented in Coad’s model37 is used as a

A BEHAVIOR-BASED TECHNIQUE 819

Primary-class-1 Primary-class-n

................... A A
Service-name-1 1 Service-name-1 m Service-name-nl Service-name-nk

(4
Primary classes {

Primary-class-1 :
Service-name-I 1, Service-name-lm;

Primary-class-n:
Service-name-nl, Service-name-nk;

1
Invocation relationships {

(Primary-class-1 , Primary-class-n);
.....

1 (b)

Figure 2. Notation und language description for subspecifcation semantic network: (a) notation; (b) langu-
age description

A library system should manage book and borrower status. Books can be borrowed
by borrowers. Borrowed books can be returned. Books can be reserved. When a bor-
rower borrows books, the amount he or she has borrowed should be increased by the
number just borrowed. That amount should be decreased when the borrower returns
books. New books can be added to the library, and obsolete books can be discarded.

A borrower’s borrowing right can be suspended. A suspended right can be resumed.
New borrowers can be added and current borrowers can be removed.

This system’s specification is outlined in Figure 3, where two classes, ‘Book’ and

status
Title
identifier
Author

Remove
Borrow

1 Return
Reserve

Borrower

Identifier
Name
Borrowed-amount
BorrowinLright

Create
Remove
Increase-borrowed-amount
Decrease-borrowed-amount
Suspend-borrowing-right

Figure 3. Specification outline for a simplified library system

820 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

Borrow:

Return:

Reserve:

Create:

Remove:

Status, Identifier;

Status, Identifier;

Status, Identifier;

Status, Identifier, Title, Author;

Identifier; (a)

Create:

Remove:

Increase:

Decrease:

Suspend:

Resume:

Name, Identifier, Borrowed-amount, Borrowing-right;

Identifier;

Identifier, Borrowed-amount;

Identifier, Borrowed-amount;

Identifier, Borrowing-right;

Identifier, Borrowing-right; (b)

Figure 4. Class semantic networks for the simpl@ed library system: (a) class semantic network for the
class ‘Book’; (b) class semantic network for the class ‘ B o r r o w e r ’

‘Borrower’, are specified. An instance connection relationship between them connects
a borrower and the books he or she borrows. Moreover, there is a message connection
relationship between the two classes, because the services ‘Borrow ’ and ‘Return’
of the class ‘Book’ invoke, respectively, the services ‘Increase-borrowed -
amount’ and ‘Decrease-borrowed-amount’ of the class ‘Borrower’.

Figure 4 shows the class semantic networks for the two classes. To classify the sub-
specifications, the specification is partitioned into these two subspecifications: ‘Book
management’ and ‘Borrower management’. Figure 5 shows the subspecification
semantic networks for the specification and its subspecifications. For example,
Figure 5(a) shows the semantic network for the subspecification ‘Book management’

Primary classes {
Book:

Create, Remove, Borrow, Return, Reserve;

Increase-borrowed-amount, Decrease-borrowed-amount ;
Borrower:

1

1

Invocation relationships {
(Book, Borrower);

Primary classes {
(b) Borrower:

Create, Remove, Suspend-borrowing-right, Resume-borrowing-right;

~~

Primary classes {
(c) Book:

Borrow, Return:

Increase-borrowed-amount, Decrease-borrowed-amount;
Borrower:

1
Invocation relationships {

1
(Book, Borrower);

Figure 5. SubspeciJcation semantic networks for the simplified library system: (a) the network for the
subspecification ‘ B o o k m a n a g e m e n t ’; (b) the network for the subspeciJication ‘ B o r r o w e r m a n a g e -

m e n t ’ ; (c) the network for the entire specijkation

A BEHAVIOR-BASED TECHNIQUE

Primary classes {
Tool:

Borrower:
Create, Remove, Borrow, Return, Sell;

Increase-borrowed-amount, Decrease-borrowed-amount;
1
Invocation relationships {

1
(Tool, Borrower):

Figure 6. Subsystem query fur fhe subsystem ‘Tool management’

82 1

whose primary functions are ‘Borrow books’, ‘Return books’, and so on. These
primary functions are accomplished by invoking services of the classes ‘Book’ and
‘Borrower’, which are the primary classes of the subspecification. Since services of
the class ‘Book’ invoke services of the class ‘Borrower’, there is an invocation
relationship between the two primary classes.

RETRIEVAL
In retrieval, a query is created first. A query for retrieving candidate reusable subspeci-
fications is a subsystem query, whereas that for retrieving candidate reusable classes is
a class query. A subsystem query is to be compared with subspecification semantic
networks in Figure2(b). The format for this query should thus be the same as that
shown in the Figure. For example, Figure 6 shows a subsystem query for the subsystem
‘Tool management’. The format for a class query should be the same as the class
semantic network in Figure l(c). For example, Figure7 shows a class query for the
class ‘Tool’ in a toolroom.

A query is compared with subspecification semantic networks (or class semantic
networks) in retrieval. The comparison results are used to compute similarities between
the query and semantic networks. Such similarities are called behavioral similarities
because both the query and the semantic networks describe behaviors. The greater the
behavioral similarities are, the more reusable the subspecifications may be.

Behavioral similarity between a subsystem query and a subspecification
semantic network

Matching classes and matching invocation relationships between a subsystem query
and a subspecification semantic network are obtained by comparing the query with the
network. A pair of matching classes consist of a class in the query and a class in the
semantic network that have similar object behaviors. Since a class’s object behavior is

Borrow:
Status, Type:

Return:
Status, Type;

Sell:
Status, Type, Price;

Create:
Status, Type, Price:

Remove:
Type;

Figure 7. Class query for the class ‘Tool’

822 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

represented by its services here, classes that possess services with the same names are
considered matched. For example, the class ‘Tool’ in Figure 6 and the class ‘Book’
in Figure 5(a) are matched. A pair of matching invocation relationships consists of an
invocation relationship in the query and that in the semantic network whose invoking
classes are a pair of matching classes and whose invoked classes are also paired.

The comparison results can be represented by a Venn diagram, as shown in Figure 8.
In the Figure, Q and S denote the set of classes and invocation relationships in the
query, and that in the semantic network, respectively. M denotes the set of matching
classes and invocation relationships that indicates the degree of similarity between the
subspecification and the subsystem. UQ and US denote the sets of unmatched classes
and invocation relationships that indicate the degree of dissimilarity. The more elements
there are in the set M , the more reusable the subspecification may be. Conversely, the
more elements there are in the sets UQ and US, the less reusable the subspecification
may be. The behavioral similarity (Ssub) between a subsystem query and a subspec-
ification semantic network can thus be roughly defined as a Jaccard’s ~oe f f i c i en t~~
shown below.

To obtain a more precise behavioral similarity between a query and a subspecification
semantic network, the comparison results from primary classes and those from invo-
cation relationships should be weighted differently, because classes and invocation
relationships have different effects on system behavior. Accordingly, equation (1) is
adjusted as follows:

In equation (2), Qc and Sc denote the set of primary classes specified in the query,
and that specified in the semantic network, respectively. Qr and Sr denote the set of
invocation relationships specified in the query, and that specified in the semantic net-
work, respectively. Wc and Wr denote the weight of primary classes and that of invo-
cation relationships, respectively. Ssc, denotes the similarity between the ith pair of
matching classes.

Q S

Figure 8. Venn diagram that illustrates comparison results

A BEHAVIOR-BASED TECHNIQUE 823

and

denote the Jaccard’s coefficient
that for the class comparison

for the invocation relationship comparison result and
result, respectively, where the latter’s numerator is

adjusted according to the similarities of matching -classes. The similarity of each pair
of matching classes is considered in equation (2) because the object behaviors of match-
ing classes may be somewhat different. The similarity (SSc) between a pair of matching
classes is defined below:

Is1 n s21
JSI u s2)

ssc = (3)

where S I and S2 denote the sets of services in the two classes, respectively.

network shown in Figure 5(a) results in Table I.
Applying equations (2) and (3) to the query shown in Figure6 and the semantic

Table 1. Behavioral similarity between Figures 6 and 5(a)

Matching Similarities of the Matching invocation Behavioral similarity
classes matching classes relationships between the query and

the semantic network

Tool and Book 213 Tool - Borrower
Borrower and 1 Book - Borrower
Borrower

and Wc: x 516 + Wr

Note: Wc denotes the weight of classes. Wr denotes the weight of invocation relationships. A - B denotes the invocation
relationship from class A to class B

Behavioral similarity between a class query and a class semantic network
Matching sewices between a class query and a class semantic network are obtained

by comparing the query with the network. A pair of matching services consist of a
service in the query and a service in the semantic network that have similar detailed
operations. Since a service’s primary operation is an abstraction of its detailed oper-
ations, services that have the same primary operation are considered matched. Based
on the considerations employed in deriving equation (l), the behavioral similarity (Scls)
between a class query and a class semantic network is defined below:

824 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

where Qs and Ss denote the set of class services specified in the class query and that
in the class semantic network, respectively, and Sseri denotes the similarity between
the ith pair of matching services. Similarities of matching services are considered
because they may have different detailed operations. Such a similarity (Sser) is
defined below:

(5)

where Wop and Watt denote the weights of primary operations and attributes, respect-
ively. Watt is adjusted according to Satt, which is a number that indicates the similarity
between the matching services’ attributes. Satt is defined below:

Sser = Wop + Watt x Satt

/A1 nA2l
[A1 UA2(

Satt =

where A1 and A2 denote the sets of attributes in the two services, respectively.

class semantic network shown in Figure 4(a) results in Table 11.
Applying equations (4), (3, and (6) to the class query shown in Figure7 and the

ENVIRONMENT SUPPORT
A prototype environment that supports the proposed technique has been implemented
on an IBM PC. It is composed of a repository and the following tools: a specification
editor, a specification classifier, a specification retriever, and a specification browser.

1 . SpeciJication editor. The editor is used to edit specifications that will be classified

Table 11. Behavioral similarity between Figures 7 and 4(a)

Matching Satt of the matching Similarities of the Behavioral similarity
services services matching services between the query and the

semantic network

C r e a t e and
Create

R e m o v e and
R e m o v e

116 Wop + Watt/6

0
(Wop x 4 + Watt x 5/6)/6

WoP

Borrow and 113 Wop + Watt13
Borrow

(Note: If Wop and Watt are
0.5, the similarity is about

0.40.)
R e t u r n and 113 Wop + Watt13
R e t u r n

Note: Sntt denotes the similarity of attributes between matching services. Wop denotes the weight of primary operations. Watt
denotes the weight of attributes

A BEHAVIOR-BASED TECHNIQUE 825

and stored in the repository for reuse. Figure 9 shows the window for this editor,
where the classes ‘Book’ and ‘Borrower’ in a library system specification are
being edited.

2. Specijcation cZass$er. This tool is used to edit semantic networks for subspeci-
fications and classes. Figure 10 shows the window for editing subspecification
semantic networks where a semantic network that consists of two primary classes,
‘Book’ and ‘Borrower’, and their invocation relationship is being edited. The
window for editing class semantic networks is similar to that shown in Figure 10.

3. Repository. The repository stores specifications and their semantic networks. It is
indexed by keywords to facilitate specification retrieval. Figure 11 shows the
structure of the repository. Three keyword indices are in the repository: one for
class service names, another for service primary operations, and the other for
attributes. During retrieval, keywords in the query are used to search the indices.
Semantic networks that have the same keywords as those in the query are then
obtained using index pointers. Finally, candidate reusable classes or subspecifica-
tions are retrieved using semantic network pointers.

4. Specijcation retriever. This tool is used to edit queries, retrieve candidate reusable
classes or subspecifications, and display the retrieved candidates. Figure 12 shows
the window for editing subsystem queries. A query consisting of two primary
classes, ‘Tool’ and ‘Borrower’, and their invocation relationship, is being
edited. The edited query is then used to retrieve candidate reusable subspecifica-
tions. Figure 13 shows the window that displays retrieved candidates. Each candi-
date is associated with its behavioral similarity. The window for creating class

Identifim

Create
Remove
Borrow
Return
Reserve

Identifier
Name
Borrowed-amount
Borrowineright

Create
Remove
I ncreate-borrowed-amount
Decrease-bolrwwd-amount
Suspend-bonowing-right
Resume-borrowing-right

Figure 9. Window for spec$cation editor

826 S.-C. CHOU, J.-Y. CHEN AND C . 4 . CHUNG

Primary classes {
BOOk

Borrower:
Create, Remove, Borrow. Return- Reserve:

Increase-borrowed-amounl. Decrease-borrowed-amount;
1
Invocation relationships {

1
[Book. Borrower]:

Figure 10. Window for classifiing subspecifications

queries and that for displaying candidate reusable classes are similar to those
shown in Figures 12 and 13, respectively.

5 . Specification browser. This tool is used to browse through detailed specifications
of the retrieved candidates. Figure 14 shows the specification browser window.
A subspecification is outlined in the upper part of the window. Classes in the
subspecification are listed in the lower right-hand comer. And the detailed speci-
fication of the selected class is displayed in the lower left-hand corner of the win-
dow.

EVALUATION
Our classification and retrieval technique is primarily for improving specification pro-
ductivity in specification reuse. This improvement can be evaluated according to the
following criteria:

1. Large-scale reuse. Reusing a large software component may save more time than
reusing several smaller ones. Thus, large-scale reuse can save system analysis
time.

2. Early reuse. System analysis is time-consuming. To reduce system analysis time,
specification reuse should be done as early as possible.

3. Specification retrieval precision and recall. Specification retrieval should be pre-
cise. Otherwise, an analyst may spend much time to understand the retrieved sub-
specifications or classes that are not reusable. Moreover, retrieval recall should

A BEHAVIOR-BASED TECHNIQUE

class
semantlc -
network

L

827

class
semantlc ~

network

polnters to the
classes of the
su bspeclfication
/

represented by the

subspecification
semantlc
network

scrvlce name

su bspeciflcation
semantlc
network - specincations

Figure 11. Structure of the repository

be high. Otherwise, an analyst may specify a specification from scratch, instead
of reusing existing subspecifications or classes.

4. Specification retrieval eficiency. Retrieving candidate reusable specifications
should be efficient. Otherwise, an analyst may spend much time waiting for
retrievals.

5 . Reusable specification selection. Guidance should be available to facilitate selec-
tion of appropriate candidate reusable specifications, because many candidates
may be retrieved.

We will evaluate our technique according to the five criteria depicted above through
experimentation. We will also evaluate reuse efficiency, which measures the reduction
of system analysis time. For comparison purposes, four groups of experimenters will
be involved. The first group will develop specifications from scratch. The second group

828 S.-C. CHOW, J. -Y. CHEN AND C.-G. CHUNG

Primary classes {
Tool:

Borrower:
Create. Remove. Borrow. Return. Sell;

Increase_borrowed_aount. Decrea~e-borrowed-amount;
1

1

Invocation relationships (
[Tool. Borrower);

Figure 12. Window for editing subsystem query

:ar-managem&t (0.451
:ar-rental-system (0.33)

Figure 13. Window for displaying candidate reusable subspecGcations

A BEHAVIOR-BASED TECHNIQUE 829

Figure 14. Window for specification browser

will apply a technique that reuses only classes in developing specifications. The third
and fourth groups will apply techniques that reuse subspecifications as well as classes.
They will apply, respectively, the well-known facet-based technique and our technique
for specification classification and retrieval.

Before experimentation, several system specifications for a selected domain (e.g.
management information systems) will first be developed. They will then be classified
and stored in a repository.

Three experiments will be conducted to obtain the averaged performances of the
assigned techniques under different situations. In the first experiment, the experimenters
will develop specifications in the same domain as that of the existing specifications. In
the second experiment, specifications to be developed are in a domain related to that
of the existing specifications. In the third experiment, specifications to be developed
are in an unrelated domain. The following data will be collected in the experiments:

1 . The number of classes in each reused subspecijication. This number will show
the size of the reused specification. The larger the number is, the larger scale the
reuse is.

2. The time when the experimenters start to reuse existing specifications. This data
will be used to evaluate whether the assigned techniques encourage early reuse.

3. The time needed to complete each specijication retrieval. This data will be used
to evaluate retrieval efficiency.

4. The number of candidate reusable subspecijications in each retrieval (Nc), and

830 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

the number of candidates with behaviors similar to that of the system under devel-
opment (Nr). These values will be used to evaluate retrieval precision and recall.
The number NrNc will indicate retrieval precision. The number Nr/Nt will indi-
cate retrieval recall, where Nt is the number of subspecifications in the repository
that have behaviors similar to that of the system under development.

5 . The behavioral similarity of each retrieved candidate. This data will be used to
evaluate whether behavioral similarities are good guides for selecting appropriate
candidate reusable subspecifications. If the retrieved candidates with higher
behavioral similarity values are more reusable, behavior similarities are good
guides for the selection.

6. The total time needed to develop each specijkation. This data will be used to
evaluate reuse efficiency.

The data collected from the three experiments will be averaged. The averaged values
will show the performances of the techniques used in the experiments. We hope that
our technique will out-perform the others.

To conduct the above experiments, a complete specification reuse support environ-
ment must be set up. In addition, the experiments are expected to take a long time.
Therefore, the experimental results are not currently available. Nevertheless, an informal
evaluation of our technique according to the above five criteria was carried out and the
following results were obtained:

1. Our technique classifies subspecifications and classes independently so that they
can be retrieved separately. It thus supports reusing subspecifications as well as
classes, and thus encourages large-scale reuse.

2. Our technique classifies subspecifications according to their primary behaviors.
Candidate reusable subspecifications can thus be retrieved according to the pri-
mary behavior of the system under development, which is available in the early
phases of system analysis. Our technique thus encourages early reuse.

3. Our technique classifies and retrieves specifications based on their behaviors as
represented by semantic networks. Since specifications that behave similarly are
considered candidates for reuse, a behavior-based technique can improve retrieval
precision. Moreover, since semantic networks attach semantic meanings to certain
degrees of detail, the semantic network approach is rather precise. Accordingly,
specification retrieval using our technique is expected to be precise.

To increase retrieval recall, each keyword in semantic networks can have sev-
eral aliases. Increasing recall, however, may decrease precision. This problem can
be solved by examining the retrievals.

4. Specification retrieval using the semantic network approach is indeed inefficient.
This inefficiency is thus a weakness of our technique. However, our technique
improves retrieval efficiency by combining the semantic network approach with
the keyword approach. Moreover, keyword indices are stored in the repository to
further facilitate retrieval.

5. The reusability of existing specifications can be determined by their behavioral
similarities to the query. Our technique quantifies such similarities into numeric
values. The larger the values are, the more reusable the specifications may be.
Behavioral similarities can thus be used as a guide to select appropriate candidates
for reuse.

A BEHAVIOR-BASED TECHNIQUE

CONCLUSIONS AND FUTURE WORK

83 1

This paper presents a specification classification and retrieval technique based on the
semantic network approach. Since semantic networks attach semantic meanings to cer-
tain degrees of detail, our technique seems to be rather precise. It classifies and retrieves
specifications according to their primary behaviors, which are available in the early
phases of system analysis. It thus allows early reuse. Moreover, our technique reuses
subspecifications as well as classes; thus it reduces the time needed to compose classes.
Based on its early reuse ability and reduction of class composition time, our technique
is expected to improve reuse efficiency.

Currently, only a prototype environment has been developed for the proposed tech-
nique. In the future, we are going to complete the following work so that specification
reuse can be further facilitated:

1 . Design an executable specijication language to facilitate specijication understand-
ing. Candidate reusable subspecifications and classes must be understood before
they can be reused. A good approach to gaining this understanding is to execute
the candidates. An executable specification language is thus needed.

2. Enhance the specijication editor finction to facilitate specijication modijication
and composition. Modification is necessary when the reuse subspecifications do
not exactly fit the system under development. Moreover, a specification may be
composed of several reused subspecifications and classes. The specification editor
should thus facilitate specification modification and composition.

3. Construct a complete specijication reuse support environment. We hope to evalu-
ate our reuse technique by means of practical experiments, and adjust it according
to the experimental results. A complete reuse support environment is therefore
necessary.

REFERENCES

I . T. Biggerstaff and C. Richter, ‘Reusability framework, assessment, and directions’, IEEE Software, 4, 41-

2. V. R. Basili and H. D. Rombach, ‘Support for comprehensive reuse’, Sofiware Eng. J., 6, 303-316 (1991).
3. W. C. Lim, ‘Effects of reuse on quality, productivity, and economics’, IEEE Software, 11, 23-30 (1994).
4. T. J. Biggerstaff and A. J. Perlis, Software Reusability, Vol. I, Concepts and Models, Addison-Wesley,

5. G. Fisher, S. Henninger and D. Redmiles, ‘Cognitive tools for locating and comprehending software objects

6. B. A. Burton, R. W. Aragon, S. A. Bailey, K. D. Koehler and L. A. Mayes, ‘The reusable software library’,

7. M. Lenz, H. A. Schmid, and P. F. Wolf, ‘Software reuse through building blocks’, IEEE Software, 4, 34-

8. D. J. Chen and P. J. Lee, ‘On the study of software reuse using reusable C t t components’, J. Syst. Software,

9. B. M. Kennedy, ‘Design for object-oriented reuse in the OATH library’, J. Object-Oriented Prop-., 5 , 51-

10. P. Johnson and C. Rees, ‘Reusability through fine-grain inheritance’, Software-Practical Experience, 22,

11. A. Podgurski and L. Pierce, ‘Retrieving reusable software by sampling behavior’, ACM Trans. Software

12. S . Henninger, ‘Using iterative refinement to find reusable software’, IEEE Sofhvare, 11, 48-59 (1994).
13. M. D. Lubars, ‘The IDeA design environment’, Proc. 11th International Conference on Software Engineer-

49 (1987).

New York, 1989.

for reuse’, Proc. 13th International Conference on Software Engineering, 1991, pp. 318-328.

IEEE Sofiare, 4, 25-33 (1987).

42 (1987).

20, 19-36 (1993).

57 (1992).

1049- 1068 (1992).

Eng. Methodof., 2, 284-303 (1993).

ing, 1989, pp. 23-32.

832 S.-C. CHOU, J.-Y. CHEN AND C.-G. CHUNG

14. M. D. Lubars and M. T. Harandi, ‘Knowledge-based software design using design schemas’, Proc. 9th

15. S . Katz, C. A. Richter and K.-S. The, ‘PARIS: a system for reusing partially interpreted schemas’, Proc.

16. G. Arango, E. Schoen and R. Pettengill, ‘A process for consolidating and reusing design knowledge’, Proc.

17. D. J. Chen and D. T. K. Chen, ‘An experimental study of using reusable software design frameworks to

18. S. Khajenoori, D. G. Linton and C. A. Moms, ‘Enhancing software reusability through effective use of

19. N. Maiden, ‘Analogy as a paradigm for specification reuse’, Software Eng. J. , 6, 3-15 (1991).
20. A. Finkelstein, ‘Re-use of formatted requirements specifications’, Software Eng. J. , 3, 186-197 (1988).
21. N. A. M. Maiden, ‘Saving reuse from the noose: reuse of analogous specifications through human involve-

22. N. A. Maiden and A. G. Sutcliffe, ‘Exploiting reusable specifications through analogy’, Commu. ACM, 35,

23. G. Booch, Object Oriented Analysis and Design with Applications, 2nd edn, The BenjaminKummings

24. B. Meyer, Object-Oriented Software Construction, Prentice-Hall, New Jersey, 1988.
25. B. Meyer, ‘Reusability: the case for object-oriented design’, IEEE Sofrware, 4, 50-64 (1987).
26. J. A. Lewis, S. M. Henry, D. G. Kafura and R. S. Schulman, ‘An empirical study of the object-oriented

27. R. Helm and Y. S. Maarek, ‘Integrating information retrieval and domain specific approaches for browsing

28. P. Coad, ‘Object-oriented patterns’, Commun. ACM, 35, 152-159 (1992).
29. W. B. Frakes and B. A. Nejmeh, ‘Software reuse through information retrieval’, Proc. 20th HlCSS, 1987,

30. R. P. Diaz and P. Freeman, ‘Classifying software for reusability’, IEEE Software, 4, 6-16 (1987).
31. Y. S. Maarek, D. M. Berry and G. E. Kaiser, ‘An information retrieval approach for automatically con-

32. E. Ostertag, J. Hendler, R. P. Diaz and C. Braun, ‘Computing similarity in a reuse library system: an AE

33. P. Devanbu, R. J. Brachman, P. G. Selfridge and B. W. Ballard, ‘LaSSIE: a knowledge-based software

34. R. S . Pressman, Software Engineering: A Practitioner’s Approach, 3rd edn, McGraw Hill, 1992.
35. W. B. Frakes and T. P. Pole, ‘An empirical study of representation methods for reusable software compo-

36. C. J. van Rijsbergen, Information Retrieval, Butterworths-Heinemann, UK, 1979.
37. P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edn, Prentice-Hall, New Jersey, 1991.

International Conference on Software Engineering, 1987, pp. 253-262.

9th International Conference on Software Engineering, 1987, pp. 377-385.

15th International Conference on Software Engineering 1993, pp. 23 1-242.

achieve software reuse’, J. Object-Oriented Progr., 7, 56-67 (1994).

the essential modelling approach’, Info. SofnYare Technol., 36, 495-501 (1994).

ment in reuse process’, Info. Software Technol., 33, 780-790 (1991).

55-64 (1992).

Publishing Company, Inc., 1994.

paradigm and software reuse’, Proc. OOPSAL’91, 1991, pp. 184-196.

and retrieval in object-oriented class libraries’, Proc. OOPSAL’91, 1991, pp. 47-61.

pp. 530-535.

structing software libraries’, IEEE Trans. Software Eng., SE-17, 800-813 (1991).

based approach’, ACM Trans. Software Eng. Methodol., 1, 205-228 (1992).

information system’, Proc. 12th International Conference on Software Engineering, 1990, pp. 249-26 I .

nents’, IEEE Trans. Softwure Eng., SE-20, 617430 (1994).

