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As-quenched microstructures of Cu3−xMnxAl alloys
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Abstract

In the as-quenched condition, the microstructure of the Cu2.9Mn0.1Al alloy was of D03 phase containing γ ′
1 martensite. This is similar to that

reported by other workers in the Cu3Al alloy. However, the as-quenched microstructure of the Cu2.8Mn0.2Al or Cu2.7Mn0.3Al alloy were found to
be of D03 phase containing extremely fine L-J precipitates, whereas for Cu2.6Mn0.4Al alloy, it was a mixture of (D03 + L21 + L-J) phases. These
results are different from those proposed by Bouchard et al.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

By using thermal analysis method, Bouchard et al. have estab-
ished the Cu3−xMnxAl (0�X� 1) metastable phase diagram
1]. In that phase diagram, it is seen that when the Cu3−xMnxAl
lloys with 0.1�X� 0.8 were solution-treated in the single �-
hase (disordered body-centered cubic (bcc)) region followed by
rapid quench into iced brine, a � → B2 → D03 + L21 transition
ould occur by an ordering transition and a spinodal decomposi-

ion process, respectively. When the manganese (Mn) content in
he Cu3−xMnxAl alloys was increased to 25 at.% (X = 1), the as-
uenched microstructure of the Cu2MnAl alloy became a single
21 phase. In addition to the thermal analysis method, transmis-
ion electron microscopy (TEM) was also used by many workers
o examine the as-quenched microstructures of the Cu3−xMnxAl
lloys with 0.5�X� 1.0 [1–4]. These results were found to be
onsistent with those proposed by Bouchard et al.

Recently, we made TEM observations on the phase trans-
ormations of a Cu2.2Mn0.8Al alloy [5]. Our experimental
esult indicated that the as-quenched microstructure of the
u2.2Mn0.8Al alloy consisted of a mixture of (D03 + L21 + L-J)

examinations were focused on the Cu3−xMnxAl alloys with
0.5�X� 1. Little information concerning the Cu3−xMnxAl
alloys with lower Mn content has been provided. Therefore, the
purpose of the present study is to investigate the as-quenched
microstructures of the Cu3−xMnxAl alloys with X < 0.5.

2. Experimental procedure

Four alloys, Cu2.9Mn0.1Al (Cu–2.5 at.% Mn–25.0 at.% Al), Cu2.8Mn0.2Al
(Cu–5.0 at.% Mn–25.0 at.% Al), Cu2.7Mn0.3Al (Cu–7.5 at.% Mn–25.0 at.%
Al) and Cu2.6Mn0.4Al (Cu–10.0 at.% Mn–25.0 at.% Al), were prepared in a
vacuum induction furnace under a controlled protective Ar atmosphere by
using 99.99% Cu, 99.9% Mn and 99.99% Al. The melts were chill cast into
30 mm × 50 mm × 200 mm copper molds. After being homogenized at 900 ◦C
for 72 h, the ingots were sectioned into 2-mm thick slices. These slices were sub-
sequently solution-treated at 850 ◦C for 1 h (in the single �-phase state) followed
by a rapid quench into iced brine.

TEM specimens were prepared by means of a double-jet electropolisher with
an electrolyte of 70% methanol and 30% nitric acid. The polishing temperature
was kept in the range from −30 to −15 ◦C, and the current density was kept in the
range from 3.0 × 104 to 4.0 × 104 A m−2. Electron microscopy was performed
on a JEOL JEM-2000FX scanning transmission electron microscope operating
at 200 KV.
hases, where the L-J phase is a new phase having an orthorhom-
ic structure with lattice parameters a = 0.413 nm, b = 0.254 nm
nd c = 0.728 nm [5]. This result is quite different from that
eported by previous workers. However, to date, all of the TEM

3. Results and discussion

Fig. 1(a) is a bright-field (BF) electron micrograph of the as-
quenched Cu2.9Mn0.1Al alloy, clearly exhibiting a second phase
w
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ith a plate-like morphology within the matrix. Fig. 1(b) and (c)
how two selected-area diffraction patterns (SADPs) taken from
plate-like phase and its surrounding matrix. In these SADPs,

t is seen that beside those reflection spots corresponding to the
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Fig. 1. Electron micrographs of the as-quenched Cu2.9Mn0.1Al alloy. (a) BF, (b) and (c) two SADPs. The zone axes of the D03 phase, γ ′
1 martensite and internal

twin are (b) [0 0 1], [1 0 1] and [1 0 1]; (c) [1 1 1], [0 1 2̄] and [2̄ 1 0], respectively (hkl = D03 phase, hkl = γ ′
1 martensite, hklT = internal twin). (d) (1 2̄ 1) γ ′

1 DF.

D03 phase [6–9], extra spots caused by the second phase are
clearly visible. Compared with the previous studies in Cu–Al
and Cu–Al–Ni alloys [9–11], it can be realized that the positions
and streaking behaviors of the extra spots are the same as those
of the γ ′

1 martensite with internal twins. The γ ′
1 martensite has

an orthorhombic structure with lattice parameters a = 0.440 nm,
b = 0.534 nm and c = 0.422 nm [9,12]. Fig. 1(d) is a (1 2̄ 1) γ ′

1
dark-field (DF) electron micrograph, clearly revealing the pres-
ence of the plate-like γ ′

1 martensite. Accordingly, it is concluded
that the as-quenched microstructure of the Cu2.9Mn0.1Al alloy
was D03 phase containing plate-like γ ′

1 martensite. This finding
is similar to that reported by other workers in the Cu3Al alloy
[1,10].

When the Mn content was increased to 5.0 at.%, no evidence
of the γ ′

1 martensite could be detected, rather a high density
of extremely fine precipitates with a mottled structure could be
observed within the D03 matrix. A typical example is shown in
Fig. 2. Fig. 2(a) is a BF electron micrograph of the Cu2.8Mn0.2Al
alloy in the as-quenched condition. Fig. 2(b) and (c) show two
SADPs of the as-quenched alloy. When compared with our pre-
vious studies in the Cu2.2Mn0.8Al and Cu–14.2Al–7.8Ni alloys
[5,9], it is found, in these SADPs, that the extra spots with streaks
could be derived from the L-J phase with two variants. Fig. 2(d)
is a (1̄ 1 1) D03 DF electron micrograph of the same area as
Fig. 2(a), revealing the presence of the fine D03 domains with

a/2〈1 0 0〉 anti-phase boundaries (APBs). Fig. 2(e), a (0 0 2) D03
DF electron micrograph, shows the presence of the small B2
domains with a/4〈1 1 1〉APBs. In Fig. 2(d) and (e), it is seen that
the sizes of both D03 and B2 domains are very small. Therefore,
it is deduced that the D03 phase present in the as-quenched alloy
was formed by a � → B2 → D03 continuous ordering transition
during quenching [13–15]. Fig. 2(f) is a (1 0 01) L-J DF electron
micrograph, exhibiting the presence of the extremely fine L-J
precipitates. Based on the above observations, it was concluded
that the as-quenched microstructure of the Cu2.8Mn0.2Al alloy
was D03 phase containing extremely fine L-J precipitates, where
the D03 phase was formed by the � → B2 → D03 continuous
ordering transition during quenching.

Transmission electron microscopy examinations of thin
foils indicated that the as-quenched microstructure of the
Cu2.7Mn0.3Al alloy was also D03 phase containing extremely
fine L-J precipitates, which is similar to that observed in the
Cu2.8Mn0.2Al alloy. An example is shown in Fig. 3. By compar-
ing Figs. 2 and 3, it is clear that a slight increase of the Mn content
would significantly raise the amount of the L-J precipitates, it
would also increase the sizes of both B2 and D03 domains.

Fig. 4(a) is a BF electron micrograph of the as-quenched
Cu2.6Mn0.4Al alloy, exhibiting a modulated structure. Shown in
Fig. 4(b) is an SADP of the as-quenched alloy. In this figure,
it is seen that in addition to the reflection spots with streaks
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Fig. 2. Electron micrographs of the as-quenched Cu2.8Mn0.2Al alloy. (a) BF, (b) and (c) two SADPs. The zone axes of the D03 phase are (b) [1 0 0] and (c) [1 1 0],
respectively, (hkl = D03 phase, hkl1or2 = L-J phase; 1: variant 1, 2: variant 2). (d) and (e) (1̄ 1 1)D03

and (0 0 2)D03
DF, respectively, (f) (1 0 01)L-J DF.

of the L-J phase, the superlattice reflection spots with satel-
lites lying along 〈0 0 1〉 reciprocal lattice directions could be
clearly observed. Compared with the previous studies in the
Cu3−xMnxAl alloys with x = 0.5 or x = 0.8 [1,5], it is obvious that
these supperlattice reflection spots with satellites were attributed
to the coexistence of the (D03 + L21) phases. The (D03 + L21)
phases could be formed via the � → B2 → D03 + L21 transition
during quenching. Fig. 4(c), a (1̄ 1 1) D03 DF electron micro-
graph, reveals the presence of the D03 domains with a/2〈1 0 0〉
APBs. Fig. 4(d) is a (0 0 2) D03 DF electron micrograph; no

evidence of the a/4〈1 1 1〉 APBs could be detected. This fea-
ture is similar to that observed in the as-quenched Cu3−xMnxAl
alloys with 0.5�X� 1.0 [1,2,5]. Fig. 4(e), a DF electron micro-
graph taken with the (1 0 01) L-J reflection spot, exhibits that
the amount of the extremely fine L-J precipitates was greater
than that observed in Figs. 2 and 3. As a consequence, the
as-quenched microstructure of the Cu2.6Mn0.4Al alloy was the
mixture of (D03 + L21 + L-J) phases.

On the basis of the preceding results, it can be concluded
that in the as-quenched condition, the L-J phase was present
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Fig. 3. Electron micrographs of the as-quenched Cu2.7Mn0.3Al alloy. (a) BF, (b) an SADP. The zone axis of the D03 phase is [1 0 0] (hkl = D03 phase, hkl1or2 = L-J
phase; 1: variant 1, 2: variant 2). (c) and (d) (1̄ 1 1)D03

and (0 0 2)D03
DF, respectively. (e) (1 0 01)L-J DF.

in the Cu3−xMnxAl alloys with X = 0.2, 0.3 and 0.4, whose
amount increased with increasing Mn content. Besides, the
� → B2 → D03 + L21 transition had occurred during quench-
ing in the Cu2.6Mn0.4Al alloy. These observations are consistent
with those proposed by Bouchard et al. [1]. However, when
the Cu3−xMnxAl alloys with X = 0.1, 0.2 and 0.3 were solution-
treated followed by a rapid quench, the � → B2 → D03 transi-
tion instead of the � → B2 → D03 + L21 transition was found to
occur. This finding is different from the previous proposition in
the Cu3−xMnxAl alloys with 0.1�X� 0.8 [1].

In Fe–Al and Fe–Al–Mn alloys, it is well-known that if the
D03 phase was formed by continuous ordering transition during
quenching, it would always occur through an A2 (disordered
body-centered cubic) → B2 → D03 transition. The A2 → B2
transition produced the a/4〈1 1 1〉 APBs and the B2 → D03
transition produced the a/2〈1 0 0〉 APBs [13–15]. However, to
date, no a/4〈1 1 1〉 APBs could be investigated by other workers
in the as-quenched Cu3−xMnxAl alloys [1–2,5]. In the present
study, it is obvious that no evidence of the a/4〈1 1 1〉 APBs could
be observed in the Cu2.6Mn0.4Al alloy. However, when the Mn
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Fig. 4. Electron micrographs of the as-quenched Cu2.6Mn0.4Al alloy. (a) BF, (b) an SADP. The zone axis of the D03 phase is [1 0 0]. (hkl = D03 + L21 phase,
hkl1or2 = L-J phase; 1: variant 1, 2: variant 2). (c) and (d) (1̄ 1 1)D03

and (0 0 2)D03
DF, respectively, (e) (1 0 01)L-J DF.

content was decreased to 7.5 at.% or below, the a/4〈1 1 1〉 APBs
became visible, as shown in Figs. 2(e) and 3(d).This result
implies that in the Cu3−xMnxAl alloys, an increase of the Mn
content would increase the B2 domain size significantly. When
the Mn content increased to above 10.0 at.%, the B2 domain
size would consume to the whole grain during quenching.
Therefore, no a/4〈1 1 1〉 APBs could be detected. This may be
one possible reason to account for the absence of the a/4〈111〉
APBs in the previous studies of the as-quenched Cu3−xMnxAl
alloys with 0.5�X� 1.0 [1,2,5].

Finally, it is worthwhile to note that the size of the D03
domains increased with increasing the Mn content. This implies
that an increase of the Mn content would increase the B2 → D03
ordering transition temperature. This result is comparable to that
obtained by Bouchard et al. [1].

4. Conclusions

1. The as-quenched microstructure of the Cu2.9Mn0.1Al alloy
was of D03 phase containing plate-like γ ′

1 martensite. This
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is similar to that reported by other workers in the Cu3Al
alloy.

2. The as-quenched microstructure of the Cu2.8Mn0.2Al or
Cu2.7Mn0.3Al alloy was of D03 phase containing extremely
fine L-J precipitates, where the D03 phase was formed
through the � → B2 → D03 transition during quenching.

3. The as-quenched microstructure of the Cu2.6Mn0.4Al
alloy was a mixture of (D03 + L21 + L-J) phases,
where the (D03+L21) phases were formed through the
� → B2 → D03 + L21 transition during quenching.

4. The sizes of both B2 and D03 domains increased with increas-
ing Mn content. In the Cu2.8Mn0.2Al and Cu2.7Mn0.3Al
alloys, the a/4〈1 1 1〉 APBs could be clearly observed. How-
ever, no evidence of the a/4〈1 1 1〉 APBs could be detected
in the Cu2.6Mn0.4Al alloy.

5. The amount of the L-J precipitates increased with increasing
the Mn content.
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