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Using the eight-band k ·p model and the Burt-Foreman envelope function theory to perform self-consistent
calculations, we have studied the effect of electron-hole hybridization on the cyclotron masses m* and the
effective g-factors g* of two-dimensional quasiparticles in InAs/GaSb quantum wells under a magnetic field
applied perpendicular to the interfaces. We can modify the degree of hybridization by changing the InAs and/or
GaSb layer width, or by inserting a thin AlSb barrier. While electron-light-hole hybridization dominates at both
low and high fields, due to a sequence of anticrossings between electronlike and heavy-holelike levels, there is
also an important contribution from heavy-hole states to the strong hybridization in the intermediate field
range. The field-dependence of the hybridized energy eigenstates is manifested in the variations of m* and g*.
Characteristic discontinuous changes of both m* and g* appear at each anticrossing, resulting in a magnetic-
field-driven oscillating behavior of these quantities for electronlike states of a given Landau level index. The
electron g-factor can change sign when two eigenstates anticross. Hybridization of electron and hole states
enhances the electron effective mass, and we have found a complicated dependence of this effect on the
interaction strength. Without inserting an AlSb barrier, the strong interaction between the electronlike and the
light-holelike states at low magnetic fields produces a large level repulsion, and hence relatively small effective
masses and g-factors associated with these states. Intermediate interaction leads to weaker level repulsion and
therefore very heavy electron cyclotron masses as well as large g-factors associated with the lowest Landau
levels. A weak interaction only enhances the cyclotron masses of the electronlike states slightly. The hole
effective masses change with both the magnetic field and the sample structure in a more complicated fashion.
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I. INTRODUCTION

Effective mass is a fundamental concept in semiconductor
physics.1 In bulk semiconductors the conduction band and
the valence band are separated by an energy gap, and there-
fore the electron �hole� effective mass tensor elements are
defined in terms of the energy band E�k� as

� 1

m*�k��ij
=

1

�2� �2E�k�
�ki�kj

� . �1�

In this case, many dynamic properties of electrons �holes� in
the conduction �valence� band can be conveniently described
by the conduction �valence� band effective masses. This is
also the situation in type-I semiconductor heterostructures
where the conduction band of one semiconductor layer does
not overlap with the valence band of any other semiconduc-
tor layer, and so an overall band gap exists. However, in
type-II semiconductor heterostructures such as InAs/GaSb,
which is commonly referred to as a broken-gap heterostruc-
ture, the conduction band of one semiconductor layer over-
laps with the valence band of another semiconductor layer.
In the vicinity of the band-overlap region, conduction band
states hybridize with valence band states. How to define the
effective masses of the hybridized eigenstates and use them
to describe the dynamic properties of the corresponding qua-
siparticles is an interesting and important problem.

InAs/GaSb based broken-gap heterostructures, such as
InAs/AlxGa1−xSb quantum wells and InAs/GaSb superlat-
tices, have been investigated experimentally with cyclotron

resonance and optical measurements,2–8 as well as with
transport �including magnetotransport� studies.9–15 Transport
data13,14 revealed the existence of the theoretically
predicted16 hybridization gaps in the two-dimensional �2D�
carrier dispersions.13,14 The origin of these hybridization
gaps is the anticrossings of the 2D electron and hole sub-
bands. Cyclotron resonance experiments5–8,15 were per-
formed to measure the electron effective mass, which was
found larger than its corresponding bulk value. This enhance-
ment of the effective mass was explained with the hybridiza-
tion of electron and heavy-hole states.17,18 The experimental
effective mass varies when the InAs layer thickness is
changed or when spacer layers are added.5,8 It was also re-
ported that the effective mass oscillates with the magnetic
field.6,7 The observed splitting of the cyclotron resonance
peak is a consequence of different Zeeman splittings of
closely separated Landau levels.5,7,8,15

Most theoretical works on the hybridization of electron
and hole levels have restricted themselves to the situation
without an applied magnetic field.16,19–22 Existing theoretical
investigations of this problem in the presence of an applied
magnetic field mainly considered hybridization of electrons
and heavy holes and its effect on Landau level structures,
cyclotron masses, and g-factors.17,18,23 These studies found
anticrossings and energy gaps in the Landau level structure
resulting from the hybridization. The discovered oscillations
of the heavy-hole g-factors with the magnetic field were
caused by the Landau level index changes at the
anticrossings23 whereas the electron effective mass oscilla-
tions were caused by changing filling factors.17,18 In addition,
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electrons can also hybridize strongly with light holes,21 and
possibly hybridize simultaneously with both heavy holes and
light holes.22 Such a hybridization should also influence the
electron and hole effective masses and g-factors. Clearly, the
cyclotron masses and g-factors of quasiparticles in broken-
gap heterostructures require further investigations.

In this paper we use the Burt-Foreman envelope function
theory24,25 to investigate the influence of the hybridization of
electron, light-hole, and heavy-hole states on Landau level
structures, electron and hole cyclotron masses, and effective
g-factors in AlSb/ InAs/GaSb/AlSb quantum wells under a
magnetic field applied perpendicular to the interfaces. In
contrast to the previous non-self-consistent six-band calcula-
tions of electron cyclotron masses18 and g-factors,23 we will
here include the effect of charge transfer and use the eight-
band k ·p model. The carrier transfer through the InAs/GaSb
interfaces significantly modifies the band-edge positions and
the dispersions in InAs/GaSb superlattices16 and quantum
wells.26 This effect is much more important than the inclu-
sion of the split-off band and is needed to derive accurate
results. Additionally we take the effects of the lattice-
mismatch induced strain into account, which also modifies
the Landau level structures in InAs/GaSb quantum wells.23

In Sec. II we describe the model Hamiltonian, which is an
extended version of the Hamiltonian in Ref. 23, and the basis
expansion method for solving the Schrödinger equation.
With this efficient new method of calculation, which was
rarely used before, one can show clearly that the Hamiltonian
matrix is real and symmetric. The energy level structure will
be presented in Sec. III, where the degree of electron-hole
hybridization is found to be sensitive to the geometric struc-
ture of the sample and the magnetic field strength. These
results are used in Sec. IV to understand the unusually inter-
esting features obtained for the cyclotron masses and effec-
tive g-factors. In particular the cyclotron masses of the elec-
tronlike and of the light-holelike states have a nonmonotonic
dependence on the interaction strength. For the lowest elec-
tronlike eigenstate, the cyclotron mass and the effective
g-factor exhibit oscillating behavior within a certain range of
the magnetic field strength. For the hybridized heavy-
holelike states unusually large effective g-factors are found.
The results for the cyclotron masses are entirely new,
whereas the behavior of the g-factors under a magnetic field
is quite different from that derived in Ref. 23 with a non-
self-consistent six-band calculation. The origin of this differ-
ence is explored in Sec. V, and is found to be the self-
consistent potential. The effect of the self-consistent
potential on the effective mass is also investigated. There are
recent experiments on broken-gap heterostructures, and a
comparison between our calculations and the measured data
is discussed in Sec. VI. In the final Sec. VII we will give
a conclusion. Because the matrix elements of the eight-
band k ·p model Hamiltonian are very complicated, to be
self-content, their explicit expressions are listed in the
Appendix.

II. HAMILTONIAN AND EIGENSOLUTIONS

The system under study is an InAs/GaSb broken-gap
quantum well sandwiched between two AlSb barriers. The

self-consistently calculated band-edge profile is shown in
Fig. 1, where also the coordinate system and the crystal axes
are specified. The sample is grown along the �001� direction
on a GaSb substrate, meaning that the InAs layer is strained.
An external magnetic field B is applied perpendicular to the
interfaces.

In the absence of a magnetic field, we write the eight-
band k ·p Burt-Foreman Hamiltonian27 at the � point in a

zinc-blende crystal as Ĥ8�= Ĥk+ Ĥ�, where Ĥk includes the

k-dependent part and the spin-orbit interaction, and Ĥ� rep-
resents the effect of strain on the energy levels. When an
external magnetic field B is applied in the z-direction, we
use the Landau gauge �Ax ,Ay ,Az�= �0,Bx ,0� and replace

the kinetic momentum operators k̂i in Ĥk by the canonical

momentum operators K̂i= k̂i+eAi /�, where e�0 is the
elementary charge. Starting from the explicit form of the
Hamiltonian which is given in Ref. 27, we apply the
unitary transformation outlined in Ref. 28 to the set of basis
functions �	s1/2,1/2
 , 	p3/2,1/2
 , 	p1/2,1/2
 , 	p3/2,3/2
 , 	s1/2,−1/2
 ,
	p3/2,−1/2
 , 	p1/2,−1/2
 , 	p3/2,−3/2
�. For convenience we change
the phase of the last basis function by a minus sign. Adding

the Zeeman interaction term ĤZ our model Hamiltonian is
expressed as

Ĥ8 = �Ĥ−+ Ĥ−−

Ĥ++ Ĥ+−


 + �Ĥ�,4 0

0 Ĥ�,4


 + �ĤZ,4 0

0 − ĤZ,4


 .

�2�

To explicitly write down the k-dependent parts Ĥ±� and Ĥ±±,
let us define Ec�z� and Ev�z� as the conduction and valence
band edges, ��z� as the split-off energy, Ac�z� as a parameter
which describes the effect of remote bands on the electron
effective mass, and P�z� as the interband momentum matrix

element. In terms of K̂±= � i�K̂x± iK̂y� /�2 and the operators
which are defined in the Appendix, we have

FIG. 1. The self-consistently calculated band diagram of the
AlSb/ InAs/GaSb/AlSb structure with a 12 nm InAs and a 9 nm
GaSb layer.
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Ĥ±� =�
Ec + Â �2iPK̂z/�3 − iPK̂z/�3 ±PK̂±

− �2iK̂zP/�3 Ev + Ĝ± D̂± ± Ŝ±

iK̂zP/�3 D̂± Ev − � + Ê± � Ŝ±/�2

±K̂�P ± Ŝ±
† � Ŝ±

†/�2 Ev + F̂±

� �3�

and

Ĥ±± =�
0 PK̂±/�3 �2PK̂±/�3 0

K̂±P/�3 T̂± P̂± ±R̂±

�2K̂±P/�3 Q̂± − T̂± ±�2R̂±

0 �R̂± ��2R̂± 0
� .

�4�

The fourth Luttinger parameter � does not appear explicitly
in the above matrix elements because we have already re-
written � in terms of three other Luttinger parameters �1, �2,
and �3. This is explained in more detail in the Appendix.

The strain part Ĥ�,4 of the Hamiltonian has the matrix
representation

Ĥ�,4 =�
ac� 0 0 0

0 S1 S2 0

0 S2 S3 0

0 0 0 S4

� �5�

with matrix elements

S1 = �av −
b

2

2�xx + �av + b��zz, �6a�

S2 = �2b��xx − �zz� , �6b�

S3 = av�2�xx + �zz� , �6c�

S4 = �av +
b

2

2�xx + �av − b��zz. �6d�

In the above expressions ac�z� is the conduction band defor-
mation potential, and av�z� and b�z� are the valence band
deformation potentials. Because our structure is grown along
the �001� crystal axis, which we define as the z axis, the only
nonvanishing strain tensor components are �zz and �xx=�yy,
which are defined in Ref. 23.

Finally, the Zeeman interaction term ĤZ,4 has the simple
matrix representation

ĤZ,4 = 	BB�
1 0 0 0

0 1/3 − 2�2/3 0

0 − 2�2/3 − 1/3 0

0 0 0 1
� , �7�

where 	B is the Bohr magneton.

We would like to list the terms which are neglected in our
model Hamiltonian and explain the reason for doing so.
First, we have ignored the terms linear in k in the valence
band Hamiltonian, and the terms proportional to Kane’s
B-parameter. The effect of these terms is to produce a spin
split of the Landau levels, which is negligibly small as com-
pared to those produced by the Zeeman and Rashba effects.
Second, we have neglected the spin-orbit interaction terms in
the strain Hamiltonian. Although these terms can contribute
to the spin split of the levels in the valence band quantum
well,29 in our samples the GaSb layer is unstrained and there-
fore these terms do not influence the energy level positions
of the hybridized electron-hole states. Also, we neglect the
parameters q and N1 defined in Ref. 30, because they are
small.

The Hamiltonian Eq. �2� based on the Burt-Foreman en-
velope function theory24,25 is Hermitian, although its matrix
elements may not be Hermitian. We solve the Schrödinger
equation

Ĥ8
 = E
 �8�

self-consistently with the Poisson equation26 to obtain the
band-edge profile Ec and Ev, as well as the eigenenergies E
and envelope functions 
. It is important to point out that
the self-consistent correction to the potential profile in unbi-
ased samples, which is the case considered in this paper, is
much less than the change of potential profile caused by an
externally applied electric field. For the samples studied in
this paper, where the layers are thin and the magnetic fields
smaller than 17 T, the self-consistent correction is insensi-
tive to the applied magnetic field strength. Therefore it is
justified to simplify the problem and use the zero-magnetic-
field self-consistent potential throughout the entire calcula-
tion. Nevertheless, as we will show later in our numerical
results, the effect of charge transfer is important to derive
accurate Landau level structures, and consequently it modi-
fies the cyclotron effective mass and effective g-factor.

To solve the Schrödinger equation we use a basis expan-
sion method.31 Because of the confinement imposed by the
quantum well it is most convenient to use a set of basis
functions which are localized within the quantum well.
Hence we choose ��	�z�=�2/L sin�	�z /L�; 	=1,2 , . . . ,N�
as our basis functions, where L is the length of the sample in
the z-direction. In principle N should be infinite. However, in
our numerical calculation we set N as a large finite number.

The envelope function 
 is a vector function with eight
components 
 j for j=1,2 , . . ., 8. We transform Eq. �8� into a
matrix equation using the expansion
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 j = exp�ikyy�F
j
�x���

	=1

N

�	�z�C	j , �9�

where F
�x�� are the normalized harmonic oscillator func-
tions with x�=x+ky /s and s=eB /�. Let us define a column
vector C with 8N components C�j−1�N+	�C	j with j
=1,2 , . . ., 8 and 	=1,2 , . . ., N. Then Eq. �8� becomes

HC = EC . �10�

We should pay attention to the relationship32 between j and
the Landau level quantum number 
 j. In terms of an integer
n, the values of 
 j are 
1=
2=
3=n, 
4=n−1, 
5=
6=
7
=n+1, and 
8=n+2. Since 
 j �0, we must set n�−2. The
size of the matrix H depends on both n and the number of
basis functions N.

In the above expansion we have used the axial approxi-

mation to neglect the warping terms in the R̂± operators,
which are proportional to ��2−�3�. This approximation al-
lows us to express 
 j as a finite sum of N basis functions as
given in Eq. �9�. In other words, H can be diagonalized for
each n separately. To justify the validity of the axial approxi-
mation, we have summed over the quantum numbers 
 j in
Eq. �9� and found that the Landau level structure is insensi-
tive to this procedure.

The matrix elements

H	j,�i = �exp�− ikyy�F
j
�		�Ĥ8� ji	exp�ikyy�F
i

��
 �11�

are evaluated analytically. With our choice of basis functions
their final analytical form clearly shows that the Hamiltonian
matrix is real and symmetric, and therefore Hermitian. Be-
cause our sample has layer structure, all material parameters
in the Hamiltonian are piecewise-constant functions of z. Let
us consider Q�z� as an example. In the mth layer of the
heterostructure �zm�z�zm+1�, Q�z� is a constant Qm. To per-
form the analytical work, Q�z� is expressed in terms of the
Heaviside step function ��z� as

Q�z� = �
m=0

M−1

�Qm − Qm−1���z − zm� . �12�

In our notation we set z0=0, zM =L, and Q−1=0.
With the basis expansion method, through the eigenvec-

tors C, we can easily classify the levels. For an eigenenergy
Ei, we define33

dI�B� = �
	,j�I

	C	j�Ei,B�	2 �13�

as the relative contribution to this level from the basis states
in the set I. dI�B� is so normalized that if we include all states
in the set I, then dI�B�=1. In the present work, we will cal-
culate de for the contribution from the 	s1/2,±1/2
 states, dlh for
the contribution from the 	p3/2,±1/2
 states, and dhh for the
contribution from the 	p3/2,±3/2
 states. For example, to calcu-
late de from Eq. �13�, we let I contain j=1,5 and 	
=1,2 , . . . ,N. In a similar way we can calculate the contribu-
tion from states with a specific Landau level quantum num-
ber 
.

To close this section, we should mention that the differ-
ence between our model and that in Ref. 34 is that here we
have included the split-off band. Also, the Zeeman interac-
tion is included in our model Hamiltonian but not in the one
treated in Ref. 30. In fact, the Zeeman interaction effects the
heavy-hole g-factors significantly.

III. HYBRIDIZATION EFFECTS ON ENERGY LEVEL
STRUCTURES

To investigate the effects of hybridization on the energy
levels and later on the effective masses and g-factors in
broken-gap quantum wells, we will study two types of
samples. The first one is the AlSb/ InAs/GaSb/AlSb struc-
ture as shown in Fig. 1. Here we will vary the thicknesses of
both the InAs layer and the GaSb layer, which determine the
positions of the quantum confined energy levels. We then
create the second sample type by inserting a thin AlSb bar-
rier between the InAs and GaSb layers. In this way the over-
lap of the conduction band states and the valence band states
can be controlled directly. In our numerical calculations we
take the material parameters from Refs. 21 and 35, and use
100 basis functions. We will first study hybridization be-
tween electronlike states and light-holelike states, which ex-
ists already in the absence of an external magnetic field.
Under a finite magnetic field hybridization with heavy-
holelike states will emerge. Numerical results will be shown
in Figs. 2–5. In all these figures, solid curves are for energy
levels with n=−2, long-dashed curves are for n=−1, short-
dashed curves are for n=0, and dotted curves are for n=1.

Most studies of the Landau level structures of quasiparti-
cles in semiconductor heterostructures have used the six-
band k ·p model, while few works are based on the eight-
band k ·p model. One finds only a slight quantitative
difference in the energy level structure near the Fermi energy

FIG. 2. Eigenenergy level structure for an InAs/GaSb quantum
well with a 12 nm InAs layer and a 9 nm GaSb layer. Solid curves
are for the levels with n=−2, long-dashed curves for n=−1, short-
dashed curves for n=0, and dotted curves for n=1.
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between the six-band and the eight-band results. When car-
riers appear in doped structures, the self-consistent correction
to the potential profile becomes very important as mentioned
in the previous section. We will return to this point later after
we have presented our self-consistent numerical results on
the energy level structures, the cyclotron effective mass, and
the effective g-factor.

We start with a typical quantum well as shown in Fig. 1
with a 12 nm thick InAs layer and a 9 nm GaSb layer, and
calculate the energy levels under magnetic fields up to B
=17 T. The energy levels within the quantum well are plot-
ted in Fig. 2. These levels are labeled according to their
primary characters at zero magnetic field: e for electronlike,
lh for light-holelike, and hh for heavy-holelike. In the ab-
sence of the magnetic field B=0, electron states and light-

hole states already mix, and the two hybridized levels are
marked as e-lh. Let us define �e-lh as the energy separation
between these two hybridized levels at B=0. In Fig. 2 �e-lh is
about 30 meV. Using Eq. �13� we have calculated the rela-
tive contributions de from the 	s1/2,±1/2
 states and dlh from
the 	p3/2,±1/2
 states. We found de�B=0�=0.56 and dlh�B=0�
=0.44 for the upper e-lh level, and de�B=0�=0.34 and
dlh�B=0�=0.66 for the lower e-lh level. These values of
�e-lh, de, and dlh indicate a strong e-lh hybridization. The
level structure becomes complicated with increasing mag-
netic field strength, and we will return to this aspect later
after we have fully analyzed the situation at zero magnetic
field.

To control the degree of hybridization, we can change the
sample structure by inserting a barrier or varying the widths
of the InAs layer and the GaAs layer. First we consider the
barrier effect. Between the 12 nm InAs layer and the 9 nm
GaSb layer we insert a 1 nm AlSb barrier which reduces the
overlap between the wave functions in the InAs layer and
those in the GaSb layer. There exists experimental studies7

on this type of samples, and we will check the experimental
data later. Because we retain the layer width of both InAs
and GaSb when inserting the AlSb barrier, the effect of the
barrier on the heavy-holelike levels is insignificant. How-
ever, the energy separation �e-lh is drastically reduced by the
AlSb barrier. Our calculated level structure, shown in Fig. 3,
exhibits a �e-lh�10 meV. This is much less than the corre-
sponding �e-lh�30 meV in Fig. 2. Hence in the absence of
the 1 nm AlSb barrier, the two e-lh states repel each other.
The origin of this strong repulsion is the strong interaction of
the two levels in Fig. 3 which are very close to each other.
The calculated values of dI�B� are de�B=0�=0.33 and dlh�B
=0�=0.67 for the upper e-lh level, and de�B=0�=0.57 and
dlh�B=0�=0.43 for the lower one. Consequently, the main
effect of the inserted barrier is on �e-lh but not on de�B=0�
and dlh�B=0�. In addition, inserting the barrier results in an
anticrossing of the two e-lh states.

Next we examine the effect of layer thickness on the hy-
bridization. Let us return to Fig. 1 and study a quantum well

FIG. 3. Similar eigenenergy level structure as in Fig. 2, but the
sample has a 1 nm AlSb barrier inserted between the InAs layer and
the GaSb layer in the quantum well.

FIG. 4. Similar eigenenergy level structure as in Fig. 2, but with
a 9 nm InAs layer and a 9 nm GaSb layer.

FIG. 5. Similar eigenenergy level structure as in Fig. 2, but with
a 12 nm InAs layer and a 6 nm GaSb layer.
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with a 9 nm InAs layer and a 9 nm GaSb layer. This change
of layer width slightly alters all energy level positions, which
can be seen by comparing our calculated levels in Fig. 4 with
those plotted in Fig. 2. It is important to notice that the
energy separation �e-lh�34 meV in Fig. 4 is larger than the
corresponding 30 meV in Fig. 2. This increase of �e-lh is due
to the slight upward-shift of the electronlike level when the
InAs layer width is reduced from 12 to 9 nm. However, the
hybridization between the electronlike and the light-holelike
states is still fairly strong. The relative contributions are
de�B=0�=0.36 and dlh�B=0�=0.64 for the upper e-lh level,
and de�B=0�=0.43 and dlh�B=0�=0.55 for the lower e-lh
level. These numbers do not suggest the existence of two
light-holelike levels because the nonparabolicity of the InAs
conduction band and the narrow band gap produce a signifi-
cant contribution of the 	p3/2,±1/2
 states to the electron wave
function. The highest e-lh state changes its character from
light-holelike at B=0 to electronlike at finite magnetic fields.
For the electronlike state at B=0, dlh is larger than the dlh of
the corresponding state in the structure with a thicker InAs
layer. Hence the hybridization of the two e-lh states is stron-
ger in the structure with a 9 nm InAs layer. If we insert a
1 nm AlSb barrier in the well and repeat the calculation, we
obtain de�B=0�=0.70 and dlh�B=0�=0.27 for the upper
e-lh level, and de�B=0�=0.14 and dlh�B=0�=0.82 for the
lower e-lh level, indicating a significant reduction of the hy-
bridization. When the 1 nm AlSb barrier is removed, due to
the reducing interaction strength, the repulsion of two e-lh
levels becomes weaker than that in the structure with a
12 nm InAs layer and a 9 nm GaSb layer.

Finally we reduce the GaSb layer thickness and calculate
the energy levels in a quantum well with a 12 nm InAs layer
and a 6 nm GaSb layer. This will lower the hole levels and
so weaken the mixing of the electron and light-hole states.
Figure 5 shows the result in which the hybridization of the
electronlike and the light-holelike states is much less than
those in the other structures. The interaction between these
levels is also very small. This can be easily checked by the
fact that inserting a 1 nm AlSb barrier in the well produces
only slight changes of the e-lh level positions at B=0.

After thoroughly analyzing the zero-magnetic-field case,
we now examine the magnetic effect on the level hybridiza-
tion. In all four figures 2–5 the anticrossings with heavy-
holelike states emerge first with the 1hh-levels, then with the
2hh-levels, and finally with the 3hh-levels. For each eigenen-
ergy the behavior of hybridization can only be analyzed nu-
merically by calculating de�B�, dlh�B�, and dhh�B�. As an il-
lustrating example we will perform such an analysis on the
n=0 electronlike eigenstate in Fig. 5, whose eigenenergy is
indicated by the downward arrow. At low magnetic fields,
below �2 T, and at high magnetic fields, above �8 T, both
electronlike states and heavy-holelike states hybridize
mainly with the light-holelike states. In the region of mag-
netic field between 2 and 8 T we find an interesting and
complicated hybridization behavior involving all three types
of states. The eigenenergy of the n=0 electronlike eigenstate
is replotted in Fig. 6 as the short-dashed curve using the
vertical scale at the right-hand side. Along with this eigenen-
ergy, the calculated relative contributions are plotted with the

solid curve for de�B�, the long-dashed curve for dlh�B�, and
the dotted curve for dhh�B�. At low magnetic fields this
eigenstate is mainly electronlike with 
=1 and spin down.
As the field increases to around B=2 T it anticrosses with
the n=0 state in the 1hh level and becomes heavy-holelike
with 
=2 and spin down. The second anticrossing occurs
around B=6 T and is with another electronlike n=0 state.
After this anticrossing the eigenstate becomes electronlike
again but with 
=0 and spin up. We also see in Fig. 6 a fair
amount of contributions from light-hole states at all field
strengths. Especially in the region from 2 to 7 T, all elec-
tron, light-hole and heavy-hole states mix simultaneously as
indicated in Fig. 6. The energy separation between the two
e-lh levels increases with the field, and the higher e-lh level
becomes increasingly electronlike while the lower one be-
comes light-holelike. We found similar behavior for other
sample structures. The hybridization of various states signifi-
cantly affects the cyclotron effective mass and g-factor as is
discussed below.

IV. EFFECTIVE MASS AND g-FACTORS

In the independent-particle model the cyclotron effective
mass m* is defined as m*=eB /�c, where �c is the cyclotron
frequency. Because the energy separation ���
 ,�� between
the �
 ,�� Landau level and �
+1,�� Landau level is a con-
stant with value ��c for all values of 
 and spin �, the
effective mass of a noninteracting particle is independent of
its eigenenergy as is easily seen if we rewrite the effective
mass as m*�
 ,��=�eB /���
 ,��. The same conclusion ap-
plies to the effective g-factor which is defined as g*

=��↑↓�
� /	BB, where ��↑↓�
� is the energy separation be-
tween eigenstates with opposite spins but the same 
. The
situation is quite different in broken-gap heterostructures in
which the degree of hybridization between electron, light-
hole, and heavy-hole states is sensitive to the strength of the
applied magnetic field. Consequently, both m* and g* depend
on the spin-orbital eigenstates of two adjacent eigenenergies.
This dependence can cause a sign change of g* because of
the energy level anticrossings. The problem can only be ex-
plored with a numerical approach and here we will study the

FIG. 6. Relative contributions from the 	s1/2,±1/2
, the 	p3/2,±1/2
,
and the 	p3/2±3/2
 states to the n=0 eigenenergy level which is indi-
cated by the arrow in Fig. 5.
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characteristic features of m* and g*, using four spin-orbital
eigenstates as an illustrative example. These eigenstates have

=0 or 
=1 and will be labeled as 0↑, 0↓, 1↑, and 1↓.

Based on the results in Figs. 5 and 6 in the previous
section we have studied the hybridization phenomena in de-
tail in the quantum well with a 12 nm InAs layer and a 6 nm
GaSb layer. At low and high magnetic fields both electron-
like states and heavy-holelike states mainly hybridize with
light-holelike states. The most interesting magnetic field re-
gion is around 4 T where all three types of states mix to-
gether. Therefore it is most informative to analyze the behav-
ior of m* and g* around this magnetic field strength, and we
will do it first. The calculated results for the electronlike
level are given in Fig. 7 with panel �a� for the effective
g-factor and panel �b� for the effective mass in units of the
free electron mass m0. In panel �a� the solid curve is associ-
ated with the 0↑ and 0↓ states, while the dashed curve is
associated with the 1↑ and 1↓ states. Similarly, in panel �b�
the solid curve is for the ↑-states �0↑ and 1↑�, and the dashed
curve is for the ↓-states �0↓ and 1↓�.

We see many anticrossings if we follow the electronlike
energy level in Fig. 5. When an anticrossing occurs the val-
ues of the corresponding m* and g* change abruptly. We
notice that in Fig. 6 the solid curve and the dotted curve
cross each other twice at two values of magnetic field below
and above 4 T. To clarify the phenomenon of the sudden
changes of m* and g*, it is sufficient to consider the region of

magnetic field B�4 T, where two anticrossings appear
around 5.5 and 7 T. Let us examine what happens around
B=7 T. In the region between 5.5 and 7 T, the relative po-
sitions of the relevant energy levels are shown by the insert
in panel �b�. The 0↑ �or 1↓� level is higher than the 0↓ �or 1↑�
level. Therefore in panel �a� the solid curve is positive while
the dashed curve is negative. On the other hand, the energy
separation between the two ↑-spin states 0↑ and 1↑ is smaller
than that between the two ↓-spin states 0↓ and 1↓. The ↑-spin
effective mass is then larger than the ↓-spin effective mass,
as indicated in panel �b�. At the anticrossing around B=7 T,
the 0↓ level moves to a position above the 0↑ level such that
the 0↓-1↓ level separation becomes smaller than the 1↑-0↑
level separation. The resulting relative energy level positions
are plotted in the insert in panel �a�. Consequently, the g*

associated to the 0↓-0↑ levels becomes negative, and the
↓-spin effective mass becomes heavier than the ↑-spin effec-
tive mass.

The electron effective mass in bulk InAs is 0.024m0,
where m0 is the free electron mass. Our calculated results
given in Fig. 7 indicate a strong enhancement of the effective
mass of electronlike quasiparticles, which has been observed
experimentally.6–8 The origin of this enhancement lies in the
fact that each electronlike wave function has components of
electron parts from the InAs layer and hole parts from the
GaSb layer, and the hole effective mass is larger than the
electron effective mass. This also explains the sudden change
of the electronlike effective mass when its hybridization with
the heavy-holelike states occurs. Consequently, if the chang-
ing magnetic field strength can induce a series of anticross-
ings involving the electronlike and the heavy-holelike states,
we expect to see oscillations of the effective mass with the
applied field. Whether such oscillation can be observed in
experiments depends on the position of Fermi energy. It is
worthwhile to mention that oscillations of the effective mass
have been observed experimentally6 by changing the filling
of Landau levels with the applied magnetic field. We should
also point out that our discovered cyclotron mass oscillations
for electronlike states occur with fixed Landau level indices,
whereas the mass oscillations obtained in the previous
investigation18 appear with changing Landau level indices.

Because the effective mass m* and the effective g-factor
g* in broken-gap heterostructures are sensitive to hybridiza-
tion, which varies with the sample structure and with the
applied magnetic field strength, it is impossible to predict
their features analytically. Here we provide some general in-
formation for three typical quantum well structures in terms
of the layer widths, and at three values of magnetic field.
Table I shows effective masses for the highest 1e-1lh states
and 1hh-like states, me,�

* and mhh,�
* , and Table II shows the

effective g-factors ge,

* and ghh,


* . We see clearly in Table I
that in all cases the electronlike effective masses are en-
hanced over the value 0.024m0 in bulk InAs. At low mag-
netic fields, the interaction between the two hybridized e-lh
levels in the 12 nm InAs and 9 nm GaSb structure is stronger
than that in the 9 nm InAs and 9 nm GaSb structure, leading
to smaller effective masses in the structure with a 12 nm
InAs layer. Similarly, the electron mass enhancement is very
small in the quantum well with the 6 nm GaSb layer, there

FIG. 7. Effective g-factors ge,0
* and ge,1

* for the electronlike
states in Fig. 5 �panel �a��, and the corresponding cyclotron masses
me,↑

* and me,↓
* �panel �b��. The inset in panel �a� shows the relative

positions �not to scale� of the eigenenergy levels above the mag-
netic field 7 T, and the one in panel �b� is for the relative positions
of the eigenenergy levels in the range of magnetic field between 5.5
and 7 T.
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this interaction is even weaker. The electron-light-hole hy-
bridization is reduced with increasing magnetic field, and
consequently the electron cyclotron masses are smaller at
high magnetic fields, especially for the structures with a
9 nm GaSb layer.

On the other hand, comparing with the heavy-hole effec-
tive mass 0.34m0 in bulk GaSb, the values of mhh,↑

* and mhh,↓
*

listed in Table I can be either enhanced or suppressed, de-
pending on the sample structure and the magnetic field
strength, which determine the details of hybridization and
anticrossing. For all samples at low magnetic fields our cal-
culations indicate a significant decrease of the heavy-hole
effective mass with respect to the bulk GaSb value. How-
ever, for some structures under high magnetic fields our cal-
culation predicts a possible enhancement of the heavy-hole
effective mass for spin-up states, leading to a large effective
mass difference between the heavy-hole up-spin states and
the heavy-hole down-spin states. In general, the large varia-
tion of the number in Table I reflects the complicated situa-
tion of hybridization between different states in different
samples under different magnetic field strengths. It is impor-
tant to mention the difference me,↑

* -me,↓
* of electronlike effec-

tive masses shown in Table I. In cyclotron resonance mea-

surements a similar difference has been observed as a split of
the absorption peak.7 This phenomenon was studied18 with a
six-band model.

In bulk InAs the value of the electron effective g-factor is
−15. The values of ge,0

* and ge,1
* for broken-gap quantum

wells given in Table II are in general less than this bulk
value, except in three cases. In the sample with a 9 nm InAs
layer and a 9 nm GaSb layer, large values of ge,0

* =−17.1 and
ge,1

* =−18.7 at the weak magnetic field 1 T are due to the
very strong hybridization between electronlike states and
light-holelike states. In the same sample, the anticrossing
caused by hybridization of electron and heavy-hole states is
the origin of the positive ge,0

* =3.1 at B=10 T. At low mag-
netic fields, the electron g-factors do not show a monotonic
dependence on the interaction strength between the hybrid-
ized e-lh levels. The heavy-hole g-factors listed in Table II
have a large variation in both magnitude and sign. At 
=0, in
all the samples studied here we found negative g-factors at
both low and high magnetic fields. At 
=1 the unusually
large positive g-factors of the heavy-hole states at high mag-
netic fields are most likely caused by the interaction with the
other states.

TABLE I. Effective masses for the highest electron-like states �me,�
* � and for the highest heavy-hole-like

states �mhh,�
* � in a quantum well with InAs layer width WInAs and GaSb layer width WGaSb, calculated from

the energy difference between the 0� and the 1� states for �=↑ and ↓.

�WInAs; WGaSb�
B

�T� me,↑
* me,↓

* mhh,↑
* mhh,↓

*

� 12 nm; 9nm� 1 0.05534 0.05523 0.1175 0.1019

�12 nm; 9nm� 10 0.04363 0.04526 0.3491 0.1058

�12 nm; 9nm� 15 0.04247 0.04398 0.3974 0.07226

�9 nm; 9nm� 1 0.09599 0.08885 0.1193 0.1051

�9 nm; 9nm� 10 0.06273 0.05229 0.4241 0.1654

�9 nm; 9nm� 15 0.05600 0.05770 0.3988 0.07259

�12 nm; 6nm� 1 0.04687 0.04477 0.1340 0.1145

�12 nm; 6nm� 10 0.04062 0.04350 0.2174 0.09710

�12 nm; 6 nm� 15 0.04131 0.04345 0.2851 0.1111

TABLE II. Effective g-factors for the highest electronlike states �ge,

* � and for the highest heavy-holelike

states �ghh,

* � in a quantum well with InAs layer width WInAs and GaSb layer width WGaSb, calculated from the

energy difference between the 
↑ and the 
↓ states for 
=0 and 1.

�WInAs; WGaSb�
B

�T� ge,0
* ge,1

* ghh,0
* ghh,1

*

�12 nm; 9nm� 1 −14.305 −14.374 −7.291 −4.682

�12 nm; 9nm� 10 −7.971 −6.314 −2.740 10.437

�12 nm; 9nm� 15 −7.486 −5.867 −0.5747 22.072

�9 nm; 9nm� 1 −17.103 −18.779 −6.738 −4.475

�9 nm; 9nm� 10 3.143 −3.225 −4.805 2.571

�9 nm; 9nm� 15 −5.523 −4.471 −1.099 21.438

�12 nm; 6nm� 1 −8.414 −10.418 −5.356 −2.816

�12 nm; 6nm� 10 −9.761 −6.499 −4.770 6.625

�12 nm; 6 nm� 15 −8.281 −5.895 −2.567 8.420
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V. SELF-CONSISTENT FEATURES

There exist non-self-consistent calculations on the effec-
tive g-factor23 and the cyclotron mass18 using the six-band
model. The relation 	ge,1

* 	� 	ge,0
* 	 was found as a general fea-

ture. In contrast, as shown in Fig. 7, using our self-consistent
eight-band model 	ge,1

* 	� 	ge,0
* 	 holds only in the regime of

intermediate magnetic field strength. The electron effective
g-factors are usually smaller in the self-consistent eight-band
model. The origin of this difference, whether due to the dif-
ferent models and/or the different calculation methods, is an
interesting question. The same question applies to the cyclo-
tron effective mass, although the samples used in Ref. 18 are
different from ours.

To compare with the non-self-consistent six-band results
reported in Ref. 23 we have performed a non-self-consistent
eight-band calculation of the Landau level structure in an
InAs/GaSb quantum well with a 15 nm InAs layer and a
5 nm GaSb layer. The energy level structures are very simi-
lar in the two cases, especially at small magnetic fields. At
higher magnetic fields, above �10 T, however, the Landau
levels are slightly different and the anticrossings appear at
somewhat higher magnetic field strengths.

Consequently, the difference mentioned above cannot be
caused by the different models. Let us instead return to the
eight-band model and investigate the InAs/GaSb quantum
well with a 12 nm InAs layer and a 6 nm GaSb layer without
the effect of charge transfer. The calculated non-self-
consistent Landau level structure is shown in Fig. 8, and
should be compared with the self-consistent result in Fig. 5.
The difference is clear. Relative to the 1hh level, the 1e level
is pushed �20 meV upwards when charge transfer is in-
cluded. As a consequence, comparing to Fig. 8, the sequence
of anticrossings begins at smaller magnetic fields in Fig. 5.

The m* and g* of the 0↑, 0↓, 1↑, and 1↓ electronlike
states, corresponding to the non-self-consistent Landau level
structure in Fig. 8, are plotted in Fig. 9. Here we see clearly
that the shift of anticrossings to higher magnetic fields also

moves the abrupt changes of m* and g* to higher magnetic
fields. While the self-consistent ge,1

* is smooth and ge,0
* is

oscillating in Fig. 7, in Fig. 9 the non-self-consistent ge,0
* is

smooth but ge,1
* is oscillating. For the effective mass, the

non-self-consistent values are larger than the corresponding
self-consistent values, and with increasing magnetic field
strengths the masses decrease abruptly in Fig. 9 instead of
the sharp rising behavior in Fig. 7.

VI. COMPARISON WITH EXPERIMENTS

Cyclotron resonance experiments have been performed to
measure the effective masses in broken-gap heterostructures.
Enhanced electron effective masses and a split of the reso-
nance peak have been observed in different sample
structures.5–8,15 In a study8 on InAs/GaSb heterostructures,
the measured effective mass increases when the InAs layer
width is reduced, but decreases when the hybridization is
weakened with a spacer. A decreasing value of the effective
mass with oscillating behavior was also observed when the
applied magnetic field gets stronger.6 Our calculated results
produce qualitatively similar features. The measured electron
effective masses vary in the range between 0.035m0 and
0.05m0, which are smaller than some of our calculated val-
ues. This is not surprising because our calculations are per-
formed with samples of a thinner InAs layer and hence hy-
bridization is stronger. As discussed in Sec. V, without the
self-consistent potential the calculated mass would be larger.
It is important to point out that in our theoretical study we
calculate the effective mass of a quasiparticle state with a
fixed Landau level index, and investigate how this effective

FIG. 8. Similar eigenenergy level structure as in Fig. 5, but
calculated non-self-consistently.

FIG. 9. Effective g-factors ge,0
* and ge,1

* for the non-self-
consistent electronlike states in Fig. 8 �panel �a��, and the corre-
sponding cyclotron masses me,↑

* and me,↓
* �panel �b��.
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mass varies with the applied magnetic field strength. In ex-
periments the quasiparticle effective mass is measured at the
Fermi level and the observed electron effective mass oscilla-
tions occur when the Landau level index of the quasiparticle
state at the Fermi level changes. Consequently, our calcu-
lated effective mass oscillations are different from those ob-
served experimentally.

In Ref. 7 Marlow et al. investigated an InAs/GaSb quan-
tum well with a 15 nm InAs layer and a 10 nm GaSb layer.
At a magnetic field B=5.5 T and a temperature 3.5 K, the
measured effective mass was 0.0345m0 and the split of the
resonance peak approximately 12 cm−1. We have used a
sample with the same thicknesses of the InAs and GaSb lay-
ers to perform a calculation at 1.5 K, and obtain me,↑

*

=0.0356m0 and me,↓
* =0.0483m0. These give a 38 cm−1 split

of the resonance peak. The discrepancy between the calcu-
lated and the measured values is due to a particular difficulty
in the self-consistent computation scheme. Namely, it is dif-
ficult to tune the self-consistently derived electron and hole
densities to the desired values because we do not know the
donor concentration, the acceptor concentration, and the type
of defects in the experimental samples. The influence of
these material parameters on the self-consistent potential is
not negligible, especially not in the 15 nm InAs and 10 nm
GaSb sample. As a result, our self-consistent electron and
hole densities are much higher than those in the experimental
samples, leading to a discrepancy between our theoretical
self-consistent potential and the actual one in the experimen-
tal samples. Consequently, it is unreasonable to expect an
accurate quantitative agreement between theoretically calcu-
lated and experimentally measured level positions and reso-
nance peak splits.

VII. CONCLUSIONS

We have investigated the influence of hybridization of
electron, light-hole, and heavy-hole states on cyclotron
masses and g-factors in broken-gap AlSb/ InAs/GaSb/AlSb
quantum wells under a magnetic field applied perpendicular
to the interfaces. In our calculations we used the eight-band
k ·p model and the Burt-Foreman envelope function theory,
taking into account the Coulomb interaction between
charged carriers as well as the strain induced by lattice mis-
match. We can control the hybridization strength by chang-
ing the InAs and/or GaSb layer thicknesses, by inserting a
thin AlSb barrier between the InAs and GaSb layers, and by
varying the magnetic field strength. The electron-light-hole
hybridization is increased by making the InAs layer thinner,
but decreased by making the GaSb layer thinner. When a
barrier is added between the InAs layer and the GaSb layer,
the amount of hybridization is reduced if the interaction be-
tween electron and light-hole states is relatively weak, but a
strong hybridization can also appear if the electron-light-hole
interaction is strong.

By changing the thicknesses of various layers in the het-
erostructure, we have demonstrated the connection between a
stronger electron-hole hybridization and a larger electron ef-
fective mass. At low and high magnetic fields the hybridiza-
tion of electrons and light holes enhances the electron effec-

tive mass. Along this line of investigation, we have
discovered an unusual dependence of the electron cyclotron
mass and g-factor on the interaction strength between the
electronlike and light-holelike levels. At intermediate mag-
netic field strengths where the electronlike and the heavy-
holelike states anticross, electrons can hybridize strongly
with both light and heavy holes. In this region, we found an
interesting oscillating behavior of the electron effective
masses and g-factors for quasiparticle states with a fixed
Landau level index. In addition, the electron g-factor can
change sign with increasing magnetic field. Compared to
their values in bulk InAs, our calculated electron m* is en-
hanced in agreement with previous investigations, while g* is
generally reduced. However, the heavy-hole effective masses
are as a rule much smaller than the corresponding values in
bulk GaSb, whereas the absolute values of g* can be unusu-
ally large.

APPENDIX

In this Appendix we give the explicit expressions of the
operators in our Hamiltonian Eq. �2�. The momentum opera-
tors and the z-dependent material parameters have been
properly ordered. The main difference between our ordering
and that in Ref. 30 appears in the matrix elements containing
the interband momentum matrix element P. These operators
are

Â = K̂+AcK̂− + K̂−AcK̂+ + K̂zAcK̂z, �A1�

D̂± =
�2

2m0

�2�2K̂z�2K̂z − K̂+�2K̂− − K̂−�2K̂+�

±
1

3�2
�K̂−�N+ − N−�K̂+ − K̂+�N+ − N−�K̂−� , �A2�

Ê± = −
�2

2m0
�K̂z�1K̂z + K̂+�1K̂− + K̂−�1K̂+�

±
1

3
�K̂−�N+ − N−�K̂+ − K̂+�N+ − N−�K̂−� , �A3�

F̂± = −
�2

2m0
�K̂+��1 + �2�K̂− + K̂−��1 + �2�K̂+ + K̂z��1

− 2�2�K̂z� ±
1

2
�K̂−�N+ − N−�K̂+ − K̂+�N+ − N−�K̂−� ,

�A4�

Ĝ± = −
�2

2m0
�K̂z��1 + 2�2�K̂z − K̂+��2 − �1�K̂− − K̂−��2

− �1�K̂+� ±
1

6
�K̂−�N+ − N−�K̂+ − K̂+�N+ − N−�K̂−� ,

�A5�

P̂± = −
i

3
�K̂z�2N+ + N−�K̂± + K̂±�N+ + 2N−�K̂z� , �A6�
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Q̂± =
i

3
�K̂z�N+ + 2N−�K̂± + K̂±�2N+ + N−�K̂z� , �A7�

R̂± = −
�2

2m0

�3�K̂+��2 ± �3�K̂+ + K̂−��2 � �3�K̂−� , �A8�

Ŝ± = − i�2

3
�K̂zN+K̂± + K̂±N−K̂z� , �A9�

T̂± = − i
�2

3
�K̂z�N+ − N−�K̂± − K̂±�N+ − N−�K̂z� , �A10�

where we used the modified Luttinger parameters �1, �2, and
�3 to define

N− = −
�2

2m0
��1 − 2�2 + 1� �A11�

and

N+ = −
�2

2m0
�6�3 − �1 + 2�2 − 1� . �A12�

The parameter Ac is given by25

Ac =
�2

2mc
−

2P2

3Eg
−

P2

3�Eg + ��
, �A13�

where mc is the conduction band effective mass and Eg the
band gap.

The operators in our Hamiltonian can be written in an-
other form with the use of the fourth Luttinger parameter �.
Through the relationship36 between �, �1, �2, and �3, � ap-

pears explicitly in P̂±, Q̂±, and Ŝ±. For example, by defining

�=�+1/3, we can write Ŝ± as

Ŝ± =
�2

2m0
3i�2

3
�K̂z��3 + ��K̂± + K̂±��3 − ��K̂z� .

�A14�
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