
Comput. & Graphics, Vol. 20, No. 4, pp. 577-588, 1996 
Copyright 0 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0097-8493/96 $15.00+0.00 

PII: soo97-8493(~3 
Technical Section 

RWM-CUT FOR COLOR IMAGE QUANTIZATION 

CHING-YUNG YANG and JA-CHEN LINt 

Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, 
Taiwan 300, R.0.C 

e-mail: jclin@,cis.nctu.edu.tw 

A new simple method for constructing a color palette that uses the radius weighted mean cut (RWM-cut) 
is proposed. The method is a hierarchically divisive method, and each two-class partition uses the centroid 
and the RWM only. Experiments show that the RWM-cut algorithm is feasible and visually acceptable. 
The algorithm can either be used alone or be used to create a good initial palette for the LBG algorithm. 
Besides the 3-D version, a 1-D version of the RWM-cut algorithm is also included in the paper for real- 
time color quantization. The quantization error is small and the processing speed is competitive. Dithered 
images are also provided. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

The process of reproducing a color image using a 
very limited number of colors suitably generated 
from that given image is called color quantization. In 
general, people quantize a full-color (typically 16 
million colors) image into one with 256 (or fewer 
than 256) colors. A full-color image can then be 
displayed directly on commonly used output devices 
such as the monitor of a low-cost workstation or PC. 
The other application of color quantization is that: 
when a color image is to be compressed, the 
compression ratio can often become higher if the 
compression technique is combined with color 
quantization using, say, 64 colors only. Roughly 
speaking, color quantization includes two parts: the 
generation of an appropriate palette, and the 
correspondence that assigns to each input pixel one 
of the palette colors. Since the size of the palette is 
quite limited, it is critical to derive a good palette. 
The designer, when the palette size is fixed, should try 
to make the perceived quality of the reproduced 
image as close as possible to the original one [l]. 

A number of approaches [l-9] have been proposed 
to perform color image quantization. The LBG 
algorithm developed by Linde et al. [2] is a simple 
method that is easy to implement, but it has the 
following drawbacks: a poorly selected initial palette 
may lead to an undesirable 6nal palette, and a 
complete design requires a large number of computa- 
tions. Heckbert [3] proposed the mediancut algo- 
rithm for color quantization. The algorithm 
recursively divided the reduced (S-5-5) RGB color 
space (that is, the 24 bit image is 6rst reduced to a 
15 bit image in a pre-processing via discarding the 
three least significant bits for each RGB component) 

+ Author for correspondence. 

into two subboxes containing approximately equal 
number of colors until the desired number of 
subboxes is reached. Finally, the color palette is 
formed by collecting the centroids of these subboxes. 
Although the algorithm is simple, a greater visible 
distortion exists in the quantized image. Kurz [4] 
presented another simple algorithm called the uni- 
form quantization algorithm to quantize colors. The 
principle of the algorithm is that the 3-D color space 
is divided into N rectangular subboxes of equal size. 
Then, the centers of these subboxes are used as the N 
representative colors. In spite of the simplicity of 
the uniform quantization technique, false contours 
severely exhibit in the quantized images, especially 
when the size of the palette is less than 256. Wu and 
Witten [5] suggested the mean-split algorithm. The 
hyperplane they used for partition passes through the 
mean of the longest projected data component. Since 
it is simpler to compute the mean than to compute 
the median, the processing speed of the mean-split 
algorithm is faster than that of the median-cut 
algorithm. However, a partition plane passing 
through the mean instead of the median does not 
necessarily result in lower quantization error [6]. Wan 
et al. therefore proposed an elegant method called the 
variance-based algorithm [l] to quantize colors based 
on the goal of minimizing the sum of squared error. 
The idea of that algorithm is to sweep a cutting plane 
along a direction parallel to one of the reduced RGB 
coordinate axes, and then split the current box at the 
position where the sum of squared “1-D” error 
(defined in equation (11) of [l]) of the projected 
distribution in the corresponding axis is minimized. 
Since the algorithm is specifically designed by 
inspecting the sum of squared error from time to 
time, the algorithm can often produce a quantized 
image whose sum of squared “3-D” error, which is 
the right hand side of our Eq. (1) given at the end of 
this section (without the denominator), is low (but 
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not minimal). Unfortunately, the computation com- 
plexity is not attractive. (The computation complex- 
ity would have been even higher if they had tried to 
cut along one of the coordinate axes at the position 
where the sum of “3-D” error is minimized.) Orchard 
and Bouman [7] presented a delicate algorithm for 
the design of a treestructured color palette incorpor- 
ating a performance criterion which reflects the 
subjective evaluation of image quality. Although 
the algorithm results in images with small artifacts, 
the implementation of the algorithm is not very 
simple, because the computation for the principal 
axis is required each time a node is split during the 
construction of the color palette. Wu [8] used the 
dynamic programming technique to derive a nearly 
optimal color palette. The basic idea of the algorithm 
is to simultaneously optimize K-l cuts along the 
principal axis if K colors are desired. This partition 
strategy leads to small quantization error. However, 
the time complexity of the algorithm is a problem. 
For example, it may take about 3 min on a personal 
IRIS workstation to quantize a full-color image into 
one with 256 colors. This method is therefore not 
suitable for the applications in which the processing 
speed is of big concern. A method faster than Wu’s 
dynamic programming technique is the center-cut 
algorithm [9] proposed by Joy and Xiang who made 
three modifications to the median-cut method. The 
three modifications are (1) to utilize 5-6-4 instead of 
5-S-5 color reduction for each RGB pixel; (2) to 
partition the color box whose longest-dimension is 
the longest among all boxes (explained in [9]) instead 
of partitioning the color box whose pixel count is the 
largest; and (3) to cut through the center of the color 
box instead of bisecting the box’s pixel count. 
Basically, the center-cut algorithm inherits the 
advantages of the median-cut method and improves 
the performance of that technique. However, the 
distortion of the color hue introduced by the center- 
cut algorithm is severe. 

representative color of the palette.) A major reason 
for adopting the nearest neighbor rule is that the 
mean-squared error (MSE) of the quantized images 
can be minimized by mapping each pixel to the 
palette color that is closest to it. The MSE is defined 
as 

From the above analysis, we can see that the 
existing algorithms often become computationally 
inconvenient or yield unsatisfactory quantization 
error. In this paper, we develop a new simple method 
for color palette generation. The method can work 
well if it is used alone; on the other hand, it can also 
be used to initialize and accelerate the LBG 
algorithm. In the new method, we employ the radius 
weighted mean (RWM), a special kind of point 
originally introduced to register shapes [lo, 111. We 
refer to our method as the RWM-cut method, which 
is a hierarchically divisive method [12], and will be 
described in detail in the next section. Once the 
palette is created, each color pixel can then be 
reproduced by finding the nearest neighbor of the 
color in the palette, if processing time is not of big 
concern. (For real-time applications, however, a 
faster way to do color mapping is that: at the final 
step of a K-color palette-generating procedure, just 
map all color pixels in color box j (15 j 5 K) to the 
centroid of these color pixels, i.e. to the jth 

MSE = iii 

if the image size is M x N. Here, P and P’ denote the 
3-D color values of the input image and the 
quantized image, respectively. 

The remaining part of the paper is organized as 
follows. The proposed RWM-cut algorithm for 
deriving a color palette is described in Section 2. In 
Section 3, the RWM-cut algorithm is first used alone. 
Then, the LBG algorithm with initial palette 
generated by different methods are discussed. In 
Section 4, we compare the real-time simulations 
obtained from various algorithms, including the 
RWM-cut, median-cut, mean-split, center-cut, and 
variance-based algorithms. Examples of applying the 
spatial dithering to the quantized images generated 
by the proposed RWM-cut algorithm are also 
provided there. The summary of the paper is given 
in Section 5. 

2. THE RWM-CUT ALGORlTHM 

Before giving the formal definition of the RWM- 
cut algorithm, which can handle data of any 
dimension, we first show the good partition ability 
of the RWM-cut. The examples are 2-D becausethey 
are easier to illustrate. The data listed in Fig. I(a and 
b) are, respectively, the 2-D projection of the quite 
famous 87-point Chernoff Fossil data and 150-point 
Fisher Iris data commonly used as the test data in the 
field of data analysis [13]. We can see that the RWM- 
cut partitions the data better than the median-cut, 
mean-split, and center-cut do. As for the variance- 
based algorithm, although its partition result is 
competitive with that of the RWM-cut in Fig. 1, its 
computation speed is slower than that of the RWM- 
cut. The performance of the partition results are 
summarized in Table 1. It can be seen that the RWM- 
cut algorithm obtains a smaller total sum of squared 
error (TSSE) than the other algorithms do, and the 
computation speed of the RWM-cut algorithm is also 
not bad. Note that the TSSE (of a K-cluster 
partition), which is the sum of the squared Euclidean 
distances between each data point and its cluster 
mean is defined by 

TSSE = 2 c 11x - m# (4 
j=l xeCj 

Also note that x is the data point belong&g to 
cluster C,, and mj is the centroid of the cluster C’: The 
error represents the accumulated deviations~from the 
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Fig. 1. The resulting clusters generated by different methods. 
Each row corresponds to a method; each column corre- 
sponds to a data set; each straight line i (i= 1,2) corresponds 

to the ith partition boundary. 

data points to the centroids. In other words, the 
smaller the TSSE, the better the partition result. We 
also point out here that, as stated in the second 
paragraph of the introduction section, the variance- 
based algorithm cannot guarantee the smallest (2-D) 
TSSE although its cutting point is at the position 
where the sum of squared “1-D” error is minimized. 
[In Fig. l(b), the variance-based algorithm only 
minimizes c(x,y)eA lY-~~l++(,,y)eBIY-~El. 

Here, jj~ and j$ are the means of the y coordinate 
of the two resulting 2-D subclasses A and B, 
respectively.] 

We discuss below the procedure that we will use 
to partition data. To make the reading easier, two 
examples are provided to illustrate the procedure. 
Although the examples shown here are 2-D, the 
reader can still get the idea how the algorithm 
proceeds, and then extend the idea to the 3-D case. 
Note that when the data are 2-D, say, 

s = {(x. y.)}!! I, I I lj 

the centroid 0 is 

whereas the RWM R (defined by Mitiche and 
Aggarwal [IO]) is 

C WiXi C WYi 

(2, y’) = i 
n-&l 

i i 

with 

Wi = d(Xi - 2)’ + bi - Y)* 

being the distance between the centroid and the ith 
data point. The boundary that we proposed to 
partition the 2-D data set S into two subsets is then 
taken to be the line through R and perpendicular to 
oft. 

Example I (see Fig. 2). If the data are {(S,ll), 
(5,5), (14,8)}, then the centroid is (a, 9) = (8,B). 
Therefore, w1 = 11(5,11) - (S,S)] = dm = 
m w2 = II@, 5) - (8,S)ll = A-- 3* + 3* = diti, 
and w3 = ]](14,8) - (8, S)]] = 6. Since 
W=wt+w2+w3=2&8+6, the RWM is 
b’, Y’) with 

d = [a(S) + a(5) + 6(14)]/[2J18 + 61 = 8.73 

(3) 

2-D Data 

Fig. l(a) 
Fig. l(b) 

Table 1. Total sum of squared error (TSSE) and CPU time (in s) for different algorithms 

RWM-cut Median-cut Mean-split Center-cut Variance-based 
TSSE/time TSSE/time TSSE/time TSSE/time TSSE/time 

21047/0.0007 45333/0.0011 43756/0.0003 43756/0.0003 21678/0.0018 
3710/0.0006 9320/0.0010 8739/0.0002 8739/0.0002 4156/0.0015 
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Euclidean distance.) After the computation, we 
found that Var(A) > Var(B); we therefore split class 
A. The RWM RR of class A is computed and the 
partition boundary is the line @ine 2 in Fig. 3(c)] 
passing thrzugh the RWM RA and perpendicular to 
the line OARS. Class A is therefore split into two 
finer subsets, namely, classes Aa and Ab. Since we 
already have three classes {B,Aa,Abj. and the 
expected number of classes is four, we have to split 
the data once more. After comparing Var(Aa), 
Var(Ab), and Var(B), we found that Var(B) is the 
largest; we therefore split B. The procedure is 
analogous to the one that we split A, and the 
resulting two smaller subsets are the Ba and Bb 
shown in Fig. 3(d). The final output of the system is 
the {Aa,Ab,Ba,Bb} shown in Fig. 3(e). 

(5,ll) : 

X-axIS 

*  

Fig. 2. A 2-D example showing how to evaluate the RWM 
so that the given data can be split into two classes. The given 
data are {(5,11),(5,5),(14,8)}. Note that the partition 
boundary is through the RWM and perpendicular to the 
line connecting the centroid and the RWM. Also note that 

each wi is a distance 

y’= [J18(11) +J18(5) +6(8)]/[2J18+6] = 8. 

(4) 

If we want to partition this (2-D) data set into two 
classes, the partition boundary would be the (1-D) 
line passing through the RWM point (8.73,8) and 
perpendicular to the line connecting the centroid 
(8,8) and the RWM (8.73,8). From Fig. 2, we can 
see that {(5,11),(5,5)} is a class, while {(14,8)} is the 
other class. 

The next example shows how we split a data set 
into more than two classes. 

Example 2 (see Fig. 3). Let the data be the four- 
class data set shown in Fig. 3(a). First, we compute 
the centroid [represented by a “ + ” in Fig. 3(b)] 
and the RWM (represented by an “ x “) of the 
whole data set. Then the data set is split into 
classes A and B by the line [line 1 in Fig. 3(b)] 
passing through the RWM and perpendicular to 
the line connecting the centroid and the RWM. 
Now, we have to determine whether class A or 
class B should be split. Let OA and 0~ be the 
centroids of classes A and B, respectively. Simi- 
larly, let ]A] and ]B] be the number of points in 
classes A and B, respectively. The variances are 
defined as 

Var(A) = c II(Xi7 Yi) - o.4112/IAl 
(.%yrW--f 

and 

“dB) = C IICxi, Yi) - oBl12/14, 
h~r)eclarsB 

respectively. (The norm symbol denotes the 

Having seen how 2-D data can be partitioned using 
RWM, we give below the 3-D RWM-cut algorithm 
used to construct a color palette. Let 
S={(ri, gi, &)ji= 1,2,...,/S]} be the given 3-D 
data set to be partitioned. The centroid (r:. jjj $) of S 
is evaluated by 

is/ 

i-y& i=, Ck 

The RWM (r’, g’, b’) of S is defined by extending 
the 2-D definition to 3-D case: 

(8) 

b’ = $ fJ biWi, 
Gl 

where 

W = 2 wi = fJ hi - F)’ + (gi - 2)’ + (bi - 6F. 
i=l i=l 

(11) 

Note that Wi is the distance from the centroid 
(P, g, 6) to the ith point (ri. gi, &). Once the RWM 
R=(r’, g’, P) and the centroid 0 = (F, g, 6) are 
known, the decision boundary proposed here to split 
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Fig. 3. A 2-D example showing how the RWM-cut algorithm splits a data set into four classes. The input is 
(a), and the final output is (e). Each “ +” represents a centroid, whereas each “ x ” represents an RWM 

point. 
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the given set S into two smaller subsets is then taken 
to be the plane passing thrzugh the RWM R and 
perpendicular to the line OR The technique parti- 
tions a data set into two subsets, and we can repeat 
the technique K- 1 times to obtain K mutually 
disjoint subsets. The method proceeds in a hierarchi- 
cally divisive manner. The details of the method are 
described in the following algorithm. 

Algorithm. The design of a color palette by the 3-D 
RWM-cut. 

Input: a data set S = {(ri, gi, bi)li = 1,2,. . , ISI} 
and a predetermined value K. 
Output: a K-color palette C = ((3, gj, h)I 1 <i < K}. 
Method: 

Step 0: Initially, let cell cl be the entire data set S 
and go to Step 2. 
Step 1: Choose the cell c/ with the largest 
variation for further partition. 
Step 2: Compute the centroid 0 = (r, g, 5) of 
the cell cl. 
Step 3: Compute the RWM R=(r’, g’, b’) of the 
cell cl. 
Step 4: Partition cell cl into two smaller cells. 
The partition boundary is the plane passis 
through R and perpendicular to the line OR 
(When 0 = R, although this case seldom occurs, 
just take the partition boundary to be the plane 
passing through R and perpendicular to the 
coordinate axis with the largest variance.) 
Step 5: Repeat Steps l-4 until the number of 
cells reaches K. 
Step 6: Collect the centroids of the K cells. These 
centroids form the K desired representative 
colors. Therefore, a K-color palette C has been 
produced. 
Step 7. Stop. 

3. EXPERIMENTAL RRSULTS 

Three full-color 512 x 512 images, namely, Lena, 
Peppers, and Painting, are shown in Fig. 4. Each 

RGB pixel of these three input images is represented 
by 24 bits, 8 bits per component. All tests were 
implemented on a Sun SPARC 10 workstation. Our 
simulations were performed with the following two 
aims: (i) to know the MSE and execution time when 
the RWM-cut algorithm is used alone, and (ii) to 
show that the RWM-cut algorithm can be used to 
generate a good initial palette for the LBG algorithm. 
In (ii), we also list the experimental results when the 
LBG algorithm is equipped with other kinds of initial 
palettes, such as the palettes generated by the 
median-cut, uniform quantization, and mean-split 
algorithms. 

The RWM-cut algorithm was first applied to 
quantize the three input images to 256 colors. The 
256-color quantized images generated by the RWM- 
cut algorithm are depicted in Fig. 5. The MSE and 
execution time produced by the RWM-cut algorithm, 
and by the LBG algorithm with a random initializa- 
tion, are shown in Table 2. Note that there is nothing 
to be initialized in the RWM-cut algorithm, while the 
LBG algorithm will need to choose the initial palette 
carefully. We then tried to improve the performance 
of the LBG algorithm by using a better initial palette. 
The four initial palettes used were the palettes 
generated by the RWM-cut, median-cut, uniform 
quantization, and mean-split algorithms, respect- 
ively. The results are given in Table 3. The LBG 
algorithm is stopped when no obvious improvement 
is made between two consecutive iterations. The 
threshold for stopping the LBG algorithm is the same 
for these four approaches. We can see that the 
RWM-cut is the best among these four approaches. 

4. REAL-TIME APPLICATIONS 

For real-time applications, many authors used a 
pre-processing to truncate the 24 bit input image to a 
15 bit image, and then apply their color quantization 
methods to this partially quantized image. In the 
following, we will also use this pre-processing. The 
24 bit image is reduced to a 15 bit image first, with 
5 bits for each of the RGB components (that is to 

Fig. 4. The three full-color (24 bit) input images. (a) Lena, (b) Peppers, and (c) Painting. 



RWM-cut for color image quantization 583 

say, we discard the three least significant bits for each 
8 bit component). A (modified) 1-D RWM-cut 
algorithm is then hierarchically applied to the 
coordinate component with the largest variance. 
(Using 1-D RWM-cut is faster than using 3-D 
RWM-cut.) 

Below we illustrate how to partition a 3-D data set 
into two subsets using a 1-D RWM-cut algorithm. 
First, inspect the variance in each of the three 
coordinate components {R,G,B}. Without the loss 
of generality, let H = {hi]i = 1,2, . . , Iq} be the 1-D 
component with the largest variance. The centroid z 
of H is then defined by 

(14 

Analogously, the RWM h’ of H is defined by 

h’ = (g wih)/( f$ wi) (13) 

with wi = ]hi - 61 for all i. The decision boundary 
used to split the 3-D data set into two subsets is then 

taken to be the plane intersecting the component axis 
at h’, and perpendicular to the component axis. The 
procedure is repeated K - 1 times until the desired K 
subsets are obtained. The detail is omitted. 

According to [9], the 5-6-4 bit-allocation [shown in 
Figs 6(b), 7(b), and 8(b)] was used as the 15 bit 
version for the center-cut algorithm. As for the 
remaining algorithms, the 5-5-5 bit-allocation [shown 
in Figs 6(a), 7(a), and 8(a)] was used. The 256-color 
Lena generated by different algorithms are shown in 
Fig. 6. Similarly, the 64-color Peppers and Painting 
produced by different algorithms are shown in Figs 7 
and 8, respectively. Some wrong blue dirty spots 
appear on the hat and inside the mirror in Fig. 6(d) 
(the median-cut algorithm), while a long (but not too 
obvious) red scar appears on the right cheek of Lena 
in Fig. 6(g) (the variance-based algorithm). On the 
other hand, although the perceived quality of Fig. 
6(f) (the center-cut algorithm) is better than those of 
Fig. 6(c) (the RWM-cut algorithm) and Fig. 6(e) (the 
mean-split algorithm), the color hue of the quantized 
image is somewhat too yellow in Fig. 6(f), as is 
compared with Fig. 4(a). (In fact, the color hue is still 
not quite right in Fig. 7(f) where the red peppers and 
the white reflection are too yellow [cf: Fig. 4(b)].) In 
the right part of Fig. 8(d) (the median-cut algorithm) 
and Fig. 8(e) (the mean-split algorithm), some 
orange-color spots appear on the two red plants, 

Table 2. Performance of the RWM-cut algorithm and the LBG algorithm with random 
initialization 

24 bit images No. of colors 
RWM-cut 

MSE/time (s) 
LBG algorithm 
MSE/time (s) 

Lena 16 15.16/18.25 20.391359.32 
32 11.08/21.83 18.10/708.10 
64 8.81j25.75 11.70/1223.98 

128 6.85/29.57 8.20/1948.64 
Painting 16 15.75/18.78 19.39/368.69 

32 12.12127.72 12.20/743.30 
64 10.76/32.75 11.00/1192.84 

128 9.28/39.90 10.79/1952.49 
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Table 3. MSE and execution time (in s) for the LBG algorithm with initial palette gzoerated by ditkreat algotitbms 

24 bit images 

Lena 

Painting 

No. of 
colors 

16 
32 
64 
16 
32 
64 

RWMcut Me&au-cut 
MSEjtime 

UnifQnn quauti~on 
r&SE/time MS&kime 

Mean-spiit 
MSWtitne 

13.10/156.81 13.181275.07 13.421747.15 13:20/272.49 
9.83/400.15 9.861490.72 11.07/1769.66 9.91p3.55 
1.74/878.56 7.80/1403.44 10.83j2916.78 7.7%/1052.77 

13.35/64.18 13.36/64.68 17.64/606.99 13.37f129.16 
10.29/126.39 10.49/189.98 12.591753.84 10.67/126.41 
1.43t495.61 7.45/!#0.06 12.3212124.22 7.45i620.43 

Fig. 6. The 256color quantized images generated by using ditferent algorithms on the 15 bit versions of 
.&ma. (a) The (S-5-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e) 

mean-split, (f) center-cut, and (g) variance-based algorithms. 
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Cd) 

Fig. 7. The 64color quantized images generated by using different algorithms on the 15 bit versions of 
Peppers. (a) the (5-5-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e) 

mean-split, (f) center-cut, and (g) variance based algorithms. 

while the purple color of the third wave in the sea sea, waves, etc. are all wrong). The MSE (distor- 
becomes wrong. (For the mean-split algorithm, the tion from the 24 bit images) and execution time 
third wave even becomes broken or thinner, and generated by different algorithms for different 
the color of the pink palm is changed.) In Fig. 8(g) numbers of representative colors are provided in 
(the variance-based algorithm), white dots become Table 4. It is observed that the MSE for the 
too obvious on the pink palm and the third RWM-cut algorithm is quite often the smallest 
(purple) wave. As for Fig. 8(f) (the center-cut among these five quantization algorithms, and the 
algorithm), many colors are wrong (the colors of execution time for the RWM-cut algorithm is 
the pink palm, pink tree, green land, orange island, similar to the one for the mean-split algorithm 
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Fig. 8. The M-color quantized images generated by using different algorithms on the 1.5 bit versions of 
Painting. (a) The (S-S-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e) 

mean-split, (f) center-cut, and (g) variance-based algorithms. 

(but shorter than those for the remaining three It is well-known that the subjective quality of 
algorithms). We therefore think that the proposed the quantized images can be improved by applyiag a 
RWM-cut algorithm is a method with small digital halftoning (or spatial dithering) technique. 
quantixation error and competitive processing Existing spatial dithering techniques include err& 
speed. Alao note that a very simple method, the diffusion [14, 151, o&red dithering [16, 17, and dot 
so-called uniform quantization method, is not listed diffusion [18]. Since contouring effects can -be 
here because that method was observed to give considerably alleviated by error di%usion, we -used 
false contours in most of the experiments. it in our experiments to improve the quality of the 
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Table 4. MSE and execution time (in s) for different algorithms+ when the 15 bit version is used in each input image 

15 bit images 

Lena 

Peppers 

Painting 

No. of RWM-cut Median-cut Mean-split 
colors MSEjtime MSE/time MSE/time 

32 16.39/1.32 20.55/1.48 17.05/1.32 
64 15.00/1.43 17.68/1.61 15.58/1.43 

128 13.8511.57 16.19/1.78 14.02/1.56 
32 18.99/1.35 22.30/1.50 21.01/1.34 
64 17.21/1.50 19.51/1.62 18.4711.46 

128 15.2911.57 17.59j1.79 15.92/1.57 
32 16.89/1.33 17.81/1.49 17.8411.33 
64 15.21/1.45 17.4211.63 15.76/1&I 

128 13.68/1.57 16.0611.82 135911.57 

Center-cut* Variance-based 
MSE%/time MSEjtime 

21.20/1.47 17.38/1.68 
20.15j1.57 15.74/1.80 
18.92/1.76 14.86/2.01 
25.0711.48 20.85/1.70 
21.4711.61 17.97jl.92 
19.48/1.76 16.17/2.12 
24.1311.48 18.74/l .69 
23.7611.63 17.06/1.92 
22.07/1.80 15.64/2.02 

+The LBG was not used. 
tAlthough a post-processing, which uses the “24 bit” pixel values of the original image to modify the color palette, can be 

used to improve the color hue for the center-cut algorithm; the total computation time will make the algorithm less 
competitive in real-time application. Therefore, there is no post-processing throughout the paper presented here. 

%ome other control polices can be used to alleviate the high MSE, but false contours will then appear in the images, and 
the major advantage of using the center-cut will then disappear. 

quantized images. The main steps of the dithering 
technique are listed below: 

for i: = 1 to M do 
for j: = 1 to N do begin 
e: = P [i, f  -P ‘[i, j]; 
P]i,j+l]:=P[i,j+l]+ex7/16; 
P[i+l,j-l]:=P[i+l,j-l]+ex3/16; 
P[i+l,j]:=P[i+l,j+ex5/16; 
P[i+l,j+l]:=P[i+l,j+l]+ex1/16; 
end for 
end for. 

In the above, both M and N are 512; P, P’, and e 
are the 3-D color values of the input image, the 
quantized image, and the difference between these 
two images, respectively. The 32-color dithered 
images of Lena and Painting are shown in Fig. 9. 
As expected, with dithering technique, a 32-color 
quantization is also not bad. 

5. SUMMARY 

In this paper, we have proposed a new simple 
method that uses the radius weighted mean (RWM) 
to generate color palettes. Experiments show that the 
RWM-cut algorithm is feasible and visually accept- 
able. When used alone, the method is more reliable 
and much faster than the LBG method if random 
initialization is used in the LBG algorithm. The 
method can also be regarded as a good initial palette 
generator for the LBG method. This was confirmed 
by our experiments, which compared the MSE 
produced by the LBG algorithm when the initial 
palette was generated by the RWM-cut algorithm 
and by other well-known methods. Besides the 
proposed 3-D RWM-cut algorithm, we had also 
proposed a simplified I-D RWM-cut algorithm to 
quantize colors for real-time applications. The 
quantization error is small and the processing speed 
is competitive. In other words, a visually acceptable 
result can be obtained by the proposed RWM-cut 
algorithm in a reasonable amount of time. 

(a) (b) 

Fig. 9. The 32-color dithered images generated by using the RWM-cut algorithm on the 15 bit version of 
(a) Lena and (b) Painting. 
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