
Comput. & Graphics, Vol. 20, No. 4, pp. 577-588, 1996
Copyright 0 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0097-8493/96 $15.00+0.00

PII: soo97-8493(~3
Technical Section

RWM-CUT FOR COLOR IMAGE QUANTIZATION

CHING-YUNG YANG and JA-CHEN LINt

Institute of Computer and Information Science, National Chiao Tung University, Hsinchu,
Taiwan 300, R.0.C

e-mail: jclin@,cis.nctu.edu.tw

A new simple method for constructing a color palette that uses the radius weighted mean cut (RWM-cut)
is proposed. The method is a hierarchically divisive method, and each two-class partition uses the centroid
and the RWM only. Experiments show that the RWM-cut algorithm is feasible and visually acceptable.
The algorithm can either be used alone or be used to create a good initial palette for the LBG algorithm.
Besides the 3-D version, a 1-D version of the RWM-cut algorithm is also included in the paper for real-
time color quantization. The quantization error is small and the processing speed is competitive. Dithered
images are also provided. Copyright 0 1996 Elsevier Science Ltd

1. INTRODUCTION

The process of reproducing a color image using a
very limited number of colors suitably generated
from that given image is called color quantization. In
general, people quantize a full-color (typically 16
million colors) image into one with 256 (or fewer
than 256) colors. A full-color image can then be
displayed directly on commonly used output devices
such as the monitor of a low-cost workstation or PC.
The other application of color quantization is that:
when a color image is to be compressed, the
compression ratio can often become higher if the
compression technique is combined with color
quantization using, say, 64 colors only. Roughly
speaking, color quantization includes two parts: the
generation of an appropriate palette, and the
correspondence that assigns to each input pixel one
of the palette colors. Since the size of the palette is
quite limited, it is critical to derive a good palette.
The designer, when the palette size is fixed, should try
to make the perceived quality of the reproduced
image as close as possible to the original one [l].

A number of approaches [l-9] have been proposed
to perform color image quantization. The LBG
algorithm developed by Linde et al. [2] is a simple
method that is easy to implement, but it has the
following drawbacks: a poorly selected initial palette
may lead to an undesirable 6nal palette, and a
complete design requires a large number of computa-
tions. Heckbert [3] proposed the mediancut algo-
rithm for color quantization. The algorithm
recursively divided the reduced (S-5-5) RGB color
space (that is, the 24 bit image is 6rst reduced to a
15 bit image in a pre-processing via discarding the
three least significant bits for each RGB component)

+ Author for correspondence.

into two subboxes containing approximately equal
number of colors until the desired number of
subboxes is reached. Finally, the color palette is
formed by collecting the centroids of these subboxes.
Although the algorithm is simple, a greater visible
distortion exists in the quantized image. Kurz [4]
presented another simple algorithm called the uni-
form quantization algorithm to quantize colors. The
principle of the algorithm is that the 3-D color space
is divided into N rectangular subboxes of equal size.
Then, the centers of these subboxes are used as the N
representative colors. In spite of the simplicity of
the uniform quantization technique, false contours
severely exhibit in the quantized images, especially
when the size of the palette is less than 256. Wu and
Witten [5] suggested the mean-split algorithm. The
hyperplane they used for partition passes through the
mean of the longest projected data component. Since
it is simpler to compute the mean than to compute
the median, the processing speed of the mean-split
algorithm is faster than that of the median-cut
algorithm. However, a partition plane passing
through the mean instead of the median does not
necessarily result in lower quantization error [6]. Wan
et al. therefore proposed an elegant method called the
variance-based algorithm [l] to quantize colors based
on the goal of minimizing the sum of squared error.
The idea of that algorithm is to sweep a cutting plane
along a direction parallel to one of the reduced RGB
coordinate axes, and then split the current box at the
position where the sum of squared “1-D” error
(defined in equation (11) of [l]) of the projected
distribution in the corresponding axis is minimized.
Since the algorithm is specifically designed by
inspecting the sum of squared error from time to
time, the algorithm can often produce a quantized
image whose sum of squared “3-D” error, which is
the right hand side of our Eq. (1) given at the end of
this section (without the denominator), is low (but

517

578 C.-Y. Yang and J.-C. Lin

not minimal). Unfortunately, the computation com-
plexity is not attractive. (The computation complex-
ity would have been even higher if they had tried to
cut along one of the coordinate axes at the position
where the sum of “3-D” error is minimized.) Orchard
and Bouman [7] presented a delicate algorithm for
the design of a treestructured color palette incorpor-
ating a performance criterion which reflects the
subjective evaluation of image quality. Although
the algorithm results in images with small artifacts,
the implementation of the algorithm is not very
simple, because the computation for the principal
axis is required each time a node is split during the
construction of the color palette. Wu [8] used the
dynamic programming technique to derive a nearly
optimal color palette. The basic idea of the algorithm
is to simultaneously optimize K-l cuts along the
principal axis if K colors are desired. This partition
strategy leads to small quantization error. However,
the time complexity of the algorithm is a problem.
For example, it may take about 3 min on a personal
IRIS workstation to quantize a full-color image into
one with 256 colors. This method is therefore not
suitable for the applications in which the processing
speed is of big concern. A method faster than Wu’s
dynamic programming technique is the center-cut
algorithm [9] proposed by Joy and Xiang who made
three modifications to the median-cut method. The
three modifications are (1) to utilize 5-6-4 instead of
5-S-5 color reduction for each RGB pixel; (2) to
partition the color box whose longest-dimension is
the longest among all boxes (explained in [9]) instead
of partitioning the color box whose pixel count is the
largest; and (3) to cut through the center of the color
box instead of bisecting the box’s pixel count.
Basically, the center-cut algorithm inherits the
advantages of the median-cut method and improves
the performance of that technique. However, the
distortion of the color hue introduced by the center-
cut algorithm is severe.

representative color of the palette.) A major reason
for adopting the nearest neighbor rule is that the
mean-squared error (MSE) of the quantized images
can be minimized by mapping each pixel to the
palette color that is closest to it. The MSE is defined
as

From the above analysis, we can see that the
existing algorithms often become computationally
inconvenient or yield unsatisfactory quantization
error. In this paper, we develop a new simple method
for color palette generation. The method can work
well if it is used alone; on the other hand, it can also
be used to initialize and accelerate the LBG
algorithm. In the new method, we employ the radius
weighted mean (RWM), a special kind of point
originally introduced to register shapes [lo, 111. We
refer to our method as the RWM-cut method, which
is a hierarchically divisive method [12], and will be
described in detail in the next section. Once the
palette is created, each color pixel can then be
reproduced by finding the nearest neighbor of the
color in the palette, if processing time is not of big
concern. (For real-time applications, however, a
faster way to do color mapping is that: at the final
step of a K-color palette-generating procedure, just
map all color pixels in color box j (15 j 5 K) to the
centroid of these color pixels, i.e. to the jth

MSE = iii

if the image size is M x N. Here, P and P’ denote the
3-D color values of the input image and the
quantized image, respectively.

The remaining part of the paper is organized as
follows. The proposed RWM-cut algorithm for
deriving a color palette is described in Section 2. In
Section 3, the RWM-cut algorithm is first used alone.
Then, the LBG algorithm with initial palette
generated by different methods are discussed. In
Section 4, we compare the real-time simulations
obtained from various algorithms, including the
RWM-cut, median-cut, mean-split, center-cut, and
variance-based algorithms. Examples of applying the
spatial dithering to the quantized images generated
by the proposed RWM-cut algorithm are also
provided there. The summary of the paper is given
in Section 5.

2. THE RWM-CUT ALGORlTHM

Before giving the formal definition of the RWM-
cut algorithm, which can handle data of any
dimension, we first show the good partition ability
of the RWM-cut. The examples are 2-D becausethey
are easier to illustrate. The data listed in Fig. I(a and
b) are, respectively, the 2-D projection of the quite
famous 87-point Chernoff Fossil data and 150-point
Fisher Iris data commonly used as the test data in the
field of data analysis [13]. We can see that the RWM-
cut partitions the data better than the median-cut,
mean-split, and center-cut do. As for the variance-
based algorithm, although its partition result is
competitive with that of the RWM-cut in Fig. 1, its
computation speed is slower than that of the RWM-
cut. The performance of the partition results are
summarized in Table 1. It can be seen that the RWM-
cut algorithm obtains a smaller total sum of squared
error (TSSE) than the other algorithms do, and the
computation speed of the RWM-cut algorithm is also
not bad. Note that the TSSE (of a K-cluster
partition), which is the sum of the squared Euclidean
distances between each data point and its cluster
mean is defined by

TSSE = 2 c 11x - m# (4
j=l xeCj

Also note that x is the data point belong&g to
cluster C,, and mj is the centroid of the cluster C’: The
error represents the accumulated deviations~from the

RWM-cut for color image quantization 579

RWM-cut
all

. . .2 ..” : ‘i :.. . I

. ‘>”
. 1 ::..: . -

” .>w . :..:::.: :.
.‘A. : ...

. ..a.

fled&cut -“’ .“.
1 . “:.” :::: ::..

i ::’ .’
i’ 2 i :. :

..>‘* . . :‘.: .

1

..- .:,,*
..,C. 9.v.. ..:..:::.: :.
” . ”

1
: **.

Mesa-split “:.”
. . .- 2 . .*::.
*.

. :::: ::..
.:> c . 1.. . ; .: .:. * .: :.. . : .

1

Center-cut

*:;<
a\<* . :..:::.: :.

. ..a . * .- ...
. . . .

1 * “:.”I
. . . :I::.::.
‘;“.” 2 : : *: . .:.

+::. >
:

. . ‘:‘.: .

1

2 ,i:..:.:.: :.
..- .:v ’

1
. .:+I”.

. 1 “sriance

based -“’ . .
. .y::;:...

1 i :‘**” : :. . :
‘.$..

. : :.. . : .
. . 2’”

(4 CJ)

Fig. 1. The resulting clusters generated by different methods.
Each row corresponds to a method; each column corre-
sponds to a data set; each straight line i (i= 1,2) corresponds

to the ith partition boundary.

data points to the centroids. In other words, the
smaller the TSSE, the better the partition result. We
also point out here that, as stated in the second
paragraph of the introduction section, the variance-
based algorithm cannot guarantee the smallest (2-D)
TSSE although its cutting point is at the position
where the sum of squared “1-D” error is minimized.
[In Fig. l(b), the variance-based algorithm only
minimizes c(x,y)eA lY-~~l++(,,y)eBIY-~El.

Here, jj~ and j$ are the means of the y coordinate
of the two resulting 2-D subclasses A and B,
respectively.]

We discuss below the procedure that we will use
to partition data. To make the reading easier, two
examples are provided to illustrate the procedure.
Although the examples shown here are 2-D, the
reader can still get the idea how the algorithm
proceeds, and then extend the idea to the 3-D case.
Note that when the data are 2-D, say,

s = {(x. y.)}!! I, I I lj

the centroid 0 is

whereas the RWM R (defined by Mitiche and
Aggarwal [IO]) is

C WiXi C WYi

(2, y’) = i
n-&l

i i

with

Wi = d(Xi - 2)’ + bi - Y)*

being the distance between the centroid and the ith
data point. The boundary that we proposed to
partition the 2-D data set S into two subsets is then
taken to be the line through R and perpendicular to
oft.

Example I (see Fig. 2). If the data are {(S,ll),
(5,5), (14,8)}, then the centroid is (a, 9) = (8,B).
Therefore, w1 = 11(5,11) - (S,S)] = dm =
m w2 = II@, 5) - (8,S)ll = A-- 3* + 3* = diti,
and w3 =]](14,8) - (8, S)]] = 6. Since
W=wt+w2+w3=2&8+6, the RWM is
b’, Y’) with

d = [a(S) + a(5) + 6(14)]/[2J18 + 61 = 8.73

(3)

2-D Data

Fig. l(a)
Fig. l(b)

Table 1. Total sum of squared error (TSSE) and CPU time (in s) for different algorithms

RWM-cut Median-cut Mean-split Center-cut Variance-based
TSSE/time TSSE/time TSSE/time TSSE/time TSSE/time

21047/0.0007 45333/0.0011 43756/0.0003 43756/0.0003 21678/0.0018
3710/0.0006 9320/0.0010 8739/0.0002 8739/0.0002 4156/0.0015

580 C.-Y Yang and J.-C. Lin

y-axis

t

pa&ion boundary

cenuoid=(8,8)
- RWI+(8.73,8)

Euclidean distance.) After the computation, we
found that Var(A) > Var(B); we therefore split class
A. The RWM RR of class A is computed and the
partition boundary is the line @ine 2 in Fig. 3(c)]
passing thrzugh the RWM RA and perpendicular to
the line OARS. Class A is therefore split into two
finer subsets, namely, classes Aa and Ab. Since we
already have three classes {B,Aa,Abj. and the
expected number of classes is four, we have to split
the data once more. After comparing Var(Aa),
Var(Ab), and Var(B), we found that Var(B) is the
largest; we therefore split B. The procedure is
analogous to the one that we split A, and the
resulting two smaller subsets are the Ba and Bb
shown in Fig. 3(d). The final output of the system is
the {Aa,Ab,Ba,Bb} shown in Fig. 3(e).

(5,ll) :

X-axIS

*

Fig. 2. A 2-D example showing how to evaluate the RWM
so that the given data can be split into two classes. The given
data are {(5,11),(5,5),(14,8)}. Note that the partition
boundary is through the RWM and perpendicular to the
line connecting the centroid and the RWM. Also note that

each wi is a distance

y’= [J18(11) +J18(5) +6(8)]/[2J18+6] = 8.

(4)

If we want to partition this (2-D) data set into two
classes, the partition boundary would be the (1-D)
line passing through the RWM point (8.73,8) and
perpendicular to the line connecting the centroid
(8,8) and the RWM (8.73,8). From Fig. 2, we can
see that {(5,11),(5,5)} is a class, while {(14,8)} is the
other class.

The next example shows how we split a data set
into more than two classes.

Example 2 (see Fig. 3). Let the data be the four-
class data set shown in Fig. 3(a). First, we compute
the centroid [represented by a “ + ” in Fig. 3(b)]
and the RWM (represented by an “ x “) of the
whole data set. Then the data set is split into
classes A and B by the line [line 1 in Fig. 3(b)]
passing through the RWM and perpendicular to
the line connecting the centroid and the RWM.
Now, we have to determine whether class A or
class B should be split. Let OA and 0~ be the
centroids of classes A and B, respectively. Simi-
larly, let]A] and]B] be the number of points in
classes A and B, respectively. The variances are
defined as

Var(A) = c II(Xi7 Yi) - o.4112/IAl
(.%yrW--f

and

“dB) = C IICxi, Yi) - oBl12/14,
h~r)eclarsB

respectively. (The norm symbol denotes the

Having seen how 2-D data can be partitioned using
RWM, we give below the 3-D RWM-cut algorithm
used to construct a color palette. Let
S={(ri, gi, &)ji= 1,2,...,/S]} be the given 3-D
data set to be partitioned. The centroid (r:. jjj $) of S
is evaluated by

is/

i-y& i=, Ck

The RWM (r’, g’, b’) of S is defined by extending
the 2-D definition to 3-D case:

(8)

b’ = $ fJ biWi,
Gl

where

W = 2 wi = fJ hi - F)’ + (gi - 2)’ + (bi - 6F.
i=l i=l

(11)

Note that Wi is the distance from the centroid
(P, g, 6) to the ith point (ri. gi, &). Once the RWM
R=(r’, g’, P) and the centroid 0 = (F, g, 6) are
known, the decision boundary proposed here to split

RWM-cut for color image quantization 58

: ;
.~ ; , I

‘.
. I

(4

Class Bb ”

Class Aa

B,, ‘;;‘,:,:.. :

Fig. 3. A 2-D example showing how the RWM-cut algorithm splits a data set into four classes. The input is
(a), and the final output is (e). Each “ +” represents a centroid, whereas each “ x ” represents an RWM

point.

582 C.-Y. Yang and J.-C. Lin

the given set S into two smaller subsets is then taken
to be the plane passing thrzugh the RWM R and
perpendicular to the line OR The technique parti-
tions a data set into two subsets, and we can repeat
the technique K- 1 times to obtain K mutually
disjoint subsets. The method proceeds in a hierarchi-
cally divisive manner. The details of the method are
described in the following algorithm.

Algorithm. The design of a color palette by the 3-D
RWM-cut.

Input: a data set S = {(ri, gi, bi)li = 1,2,. . , ISI}
and a predetermined value K.
Output: a K-color palette C = ((3, gj, h)I 1 <i < K}.
Method:

Step 0: Initially, let cell cl be the entire data set S
and go to Step 2.
Step 1: Choose the cell c/ with the largest
variation for further partition.
Step 2: Compute the centroid 0 = (r, g, 5) of
the cell cl.
Step 3: Compute the RWM R=(r’, g’, b’) of the
cell cl.
Step 4: Partition cell cl into two smaller cells.
The partition boundary is the plane passis
through R and perpendicular to the line OR
(When 0 = R, although this case seldom occurs,
just take the partition boundary to be the plane
passing through R and perpendicular to the
coordinate axis with the largest variance.)
Step 5: Repeat Steps l-4 until the number of
cells reaches K.
Step 6: Collect the centroids of the K cells. These
centroids form the K desired representative
colors. Therefore, a K-color palette C has been
produced.
Step 7. Stop.

3. EXPERIMENTAL RRSULTS

Three full-color 512 x 512 images, namely, Lena,
Peppers, and Painting, are shown in Fig. 4. Each

RGB pixel of these three input images is represented
by 24 bits, 8 bits per component. All tests were
implemented on a Sun SPARC 10 workstation. Our
simulations were performed with the following two
aims: (i) to know the MSE and execution time when
the RWM-cut algorithm is used alone, and (ii) to
show that the RWM-cut algorithm can be used to
generate a good initial palette for the LBG algorithm.
In (ii), we also list the experimental results when the
LBG algorithm is equipped with other kinds of initial
palettes, such as the palettes generated by the
median-cut, uniform quantization, and mean-split
algorithms.

The RWM-cut algorithm was first applied to
quantize the three input images to 256 colors. The
256-color quantized images generated by the RWM-
cut algorithm are depicted in Fig. 5. The MSE and
execution time produced by the RWM-cut algorithm,
and by the LBG algorithm with a random initializa-
tion, are shown in Table 2. Note that there is nothing
to be initialized in the RWM-cut algorithm, while the
LBG algorithm will need to choose the initial palette
carefully. We then tried to improve the performance
of the LBG algorithm by using a better initial palette.
The four initial palettes used were the palettes
generated by the RWM-cut, median-cut, uniform
quantization, and mean-split algorithms, respect-
ively. The results are given in Table 3. The LBG
algorithm is stopped when no obvious improvement
is made between two consecutive iterations. The
threshold for stopping the LBG algorithm is the same
for these four approaches. We can see that the
RWM-cut is the best among these four approaches.

4. REAL-TIME APPLICATIONS

For real-time applications, many authors used a
pre-processing to truncate the 24 bit input image to a
15 bit image, and then apply their color quantization
methods to this partially quantized image. In the
following, we will also use this pre-processing. The
24 bit image is reduced to a 15 bit image first, with
5 bits for each of the RGB components (that is to

Fig. 4. The three full-color (24 bit) input images. (a) Lena, (b) Peppers, and (c) Painting.

RWM-cut for color image quantization 583

say, we discard the three least significant bits for each
8 bit component). A (modified) 1-D RWM-cut
algorithm is then hierarchically applied to the
coordinate component with the largest variance.
(Using 1-D RWM-cut is faster than using 3-D
RWM-cut.)

Below we illustrate how to partition a 3-D data set
into two subsets using a 1-D RWM-cut algorithm.
First, inspect the variance in each of the three
coordinate components {R,G,B}. Without the loss
of generality, let H = {hi]i = 1,2, . . , Iq} be the 1-D
component with the largest variance. The centroid z
of H is then defined by

(14

Analogously, the RWM h’ of H is defined by

h’ = (g wih)/(f$ wi) (13)

with wi =]hi - 61 for all i. The decision boundary
used to split the 3-D data set into two subsets is then

taken to be the plane intersecting the component axis
at h’, and perpendicular to the component axis. The
procedure is repeated K - 1 times until the desired K
subsets are obtained. The detail is omitted.

According to [9], the 5-6-4 bit-allocation [shown in
Figs 6(b), 7(b), and 8(b)] was used as the 15 bit
version for the center-cut algorithm. As for the
remaining algorithms, the 5-5-5 bit-allocation [shown
in Figs 6(a), 7(a), and 8(a)] was used. The 256-color
Lena generated by different algorithms are shown in
Fig. 6. Similarly, the 64-color Peppers and Painting
produced by different algorithms are shown in Figs 7
and 8, respectively. Some wrong blue dirty spots
appear on the hat and inside the mirror in Fig. 6(d)
(the median-cut algorithm), while a long (but not too
obvious) red scar appears on the right cheek of Lena
in Fig. 6(g) (the variance-based algorithm). On the
other hand, although the perceived quality of Fig.
6(f) (the center-cut algorithm) is better than those of
Fig. 6(c) (the RWM-cut algorithm) and Fig. 6(e) (the
mean-split algorithm), the color hue of the quantized
image is somewhat too yellow in Fig. 6(f), as is
compared with Fig. 4(a). (In fact, the color hue is still
not quite right in Fig. 7(f) where the red peppers and
the white reflection are too yellow [cf: Fig. 4(b)].) In
the right part of Fig. 8(d) (the median-cut algorithm)
and Fig. 8(e) (the mean-split algorithm), some
orange-color spots appear on the two red plants,

Table 2. Performance of the RWM-cut algorithm and the LBG algorithm with random
initialization

24 bit images No. of colors
RWM-cut

MSE/time (s)
LBG algorithm
MSE/time (s)

Lena 16 15.16/18.25 20.391359.32
32 11.08/21.83 18.10/708.10
64 8.81j25.75 11.70/1223.98

128 6.85/29.57 8.20/1948.64
Painting 16 15.75/18.78 19.39/368.69

32 12.12127.72 12.20/743.30
64 10.76/32.75 11.00/1192.84

128 9.28/39.90 10.79/1952.49

584 C.-Y. Yang and J.-C. Lin

Table 3. MSE and execution time (in s) for the LBG algorithm with initial palette gzoerated by ditkreat algotitbms

24 bit images

Lena

Painting

No. of
colors

16
32
64
16
32
64

RWMcut Me&au-cut
MSEjtime

UnifQnn quauti~on
r&SE/time MS&kime

Mean-spiit
MSWtitne

13.10/156.81 13.181275.07 13.421747.15 13:20/272.49
9.83/400.15 9.861490.72 11.07/1769.66 9.91p3.55
1.74/878.56 7.80/1403.44 10.83j2916.78 7.7%/1052.77

13.35/64.18 13.36/64.68 17.64/606.99 13.37f129.16
10.29/126.39 10.49/189.98 12.591753.84 10.67/126.41
1.43t495.61 7.45/!#0.06 12.3212124.22 7.45i620.43

Fig. 6. The 256color quantized images generated by using ditferent algorithms on the 15 bit versions of
.&ma. (a) The (S-5-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e)

mean-split, (f) center-cut, and (g) variance-based algorithms.

RWMcut for color image quantization

Cd)

Fig. 7. The 64color quantized images generated by using different algorithms on the 15 bit versions of
Peppers. (a) the (5-5-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e)

mean-split, (f) center-cut, and (g) variance based algorithms.

while the purple color of the third wave in the sea sea, waves, etc. are all wrong). The MSE (distor-
becomes wrong. (For the mean-split algorithm, the tion from the 24 bit images) and execution time
third wave even becomes broken or thinner, and generated by different algorithms for different
the color of the pink palm is changed.) In Fig. 8(g) numbers of representative colors are provided in
(the variance-based algorithm), white dots become Table 4. It is observed that the MSE for the
too obvious on the pink palm and the third RWM-cut algorithm is quite often the smallest
(purple) wave. As for Fig. 8(f) (the center-cut among these five quantization algorithms, and the
algorithm), many colors are wrong (the colors of execution time for the RWM-cut algorithm is
the pink palm, pink tree, green land, orange island, similar to the one for the mean-split algorithm

C.-Y. Yang and J.-C. Lin

Fig. 8. The M-color quantized images generated by using different algorithms on the 1.5 bit versions of
Painting. (a) The (S-S-5) 15 bit version, (b) the (5-6-4) 15 bit version, (c) the RWM-cut, (d) median-cut, (e)

mean-split, (f) center-cut, and (g) variance-based algorithms.

(but shorter than those for the remaining three It is well-known that the subjective quality of
algorithms). We therefore think that the proposed the quantized images can be improved by applyiag a
RWM-cut algorithm is a method with small digital halftoning (or spatial dithering) technique.
quantixation error and competitive processing Existing spatial dithering techniques include err&
speed. Alao note that a very simple method, the diffusion [14, 151, o&red dithering [16, 17, and dot
so-called uniform quantization method, is not listed diffusion [18]. Since contouring effects can -be
here because that method was observed to give considerably alleviated by error di%usion, we -used
false contours in most of the experiments. it in our experiments to improve the quality of the

RWM-cut for color image quantization 587

Table 4. MSE and execution time (in s) for different algorithms+ when the 15 bit version is used in each input image

15 bit images

Lena

Peppers

Painting

No. of RWM-cut Median-cut Mean-split
colors MSEjtime MSE/time MSE/time

32 16.39/1.32 20.55/1.48 17.05/1.32
64 15.00/1.43 17.68/1.61 15.58/1.43

128 13.8511.57 16.19/1.78 14.02/1.56
32 18.99/1.35 22.30/1.50 21.01/1.34
64 17.21/1.50 19.51/1.62 18.4711.46

128 15.2911.57 17.59j1.79 15.92/1.57
32 16.89/1.33 17.81/1.49 17.8411.33
64 15.21/1.45 17.4211.63 15.76/1&I

128 13.68/1.57 16.0611.82 135911.57

Center-cut* Variance-based
MSE%/time MSEjtime

21.20/1.47 17.38/1.68
20.15j1.57 15.74/1.80
18.92/1.76 14.86/2.01
25.0711.48 20.85/1.70
21.4711.61 17.97jl.92
19.48/1.76 16.17/2.12
24.1311.48 18.74/l .69
23.7611.63 17.06/1.92
22.07/1.80 15.64/2.02

+The LBG was not used.
tAlthough a post-processing, which uses the “24 bit” pixel values of the original image to modify the color palette, can be

used to improve the color hue for the center-cut algorithm; the total computation time will make the algorithm less
competitive in real-time application. Therefore, there is no post-processing throughout the paper presented here.

%ome other control polices can be used to alleviate the high MSE, but false contours will then appear in the images, and
the major advantage of using the center-cut will then disappear.

quantized images. The main steps of the dithering
technique are listed below:

for i: = 1 to M do
for j: = 1 to N do begin
e: = P [i, f -P ‘[i, j];
P]i,j+l]:=P[i,j+l]+ex7/16;
P[i+l,j-l]:=P[i+l,j-l]+ex3/16;
P[i+l,j]:=P[i+l,j+ex5/16;
P[i+l,j+l]:=P[i+l,j+l]+ex1/16;
end for
end for.

In the above, both M and N are 512; P, P’, and e
are the 3-D color values of the input image, the
quantized image, and the difference between these
two images, respectively. The 32-color dithered
images of Lena and Painting are shown in Fig. 9.
As expected, with dithering technique, a 32-color
quantization is also not bad.

5. SUMMARY

In this paper, we have proposed a new simple
method that uses the radius weighted mean (RWM)
to generate color palettes. Experiments show that the
RWM-cut algorithm is feasible and visually accept-
able. When used alone, the method is more reliable
and much faster than the LBG method if random
initialization is used in the LBG algorithm. The
method can also be regarded as a good initial palette
generator for the LBG method. This was confirmed
by our experiments, which compared the MSE
produced by the LBG algorithm when the initial
palette was generated by the RWM-cut algorithm
and by other well-known methods. Besides the
proposed 3-D RWM-cut algorithm, we had also
proposed a simplified I-D RWM-cut algorithm to
quantize colors for real-time applications. The
quantization error is small and the processing speed
is competitive. In other words, a visually acceptable
result can be obtained by the proposed RWM-cut
algorithm in a reasonable amount of time.

(a) (b)

Fig. 9. The 32-color dithered images generated by using the RWM-cut algorithm on the 15 bit version of
(a) Lena and (b) Painting.

588 C.-Y. Yang and J.-C. Lin

Acknowledgement-This work was supported by the Na-
tional Science Council, Republic of China, under grant
NSC85-221%EOO9-111.

REFERENCES

1. S. J. Wan, P. Prusinkiewicz and S. K. M. Wong,
Variance-based color image quantization for frame
buffer display. Color Research and Application 15, 52-
58 (1990).

2. Y. Linde, A. Buzo and R. M. Gray, An algorithm for
vector quantifier design. IEEE Transactions on
Communications 28, 84-95 (1980).

3. P. Heckbert, Color image quantization for frame buffer
display. Computer Graphics 16, 297-307 (1982).

4. B. Kmz, Optimal color qua&&ion for color displays.
In Proceed-bgs of IEEE-Computer Vision and P&&n
Recoanition Conference. 217-224 (1983).

5. X. Wi and I. H: Wit&, A fast k-&a& type clustering
algorithm. Technique Report, Department of Computer
Science, University of Calgary, Calgary, Canada (1985).

6. S. J. Wan, S. K. M. Wong and P. Prusinkiewicz, An
algorithm for multi-dimensional data clustering. ACM
Transactions on Mathematical Software 14, 153-163
(1988).

7. M. T. Orchard and C. A. Bouman, Color quantization
of images. IEEE Transactions on Signal Processing 32,
2677-2690 (1991).

8. X. Wu, Color quantization by dynamic programming
and principai analysis. ACM Transactions on Graphics
11, 348-372 (1992).

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Joy and Z. Xiang, Center-cut for color-image
quantization. The Visual Comuuter 10. 62-66 f19931.
A. Mitiche, and J. K. Agga&l, Contour re&ra&
by shape-specific point for shape matching Computer
Vision, Graphics and Image Processing 22, 396-408
(1983).
J. C. Lin, S. L. Chou and W. H. Tsai, Detection of
rotationally symmetric shape orientations by foid-
invariant shape-specific points. Pattern Recognition 25.
473-482 (1992).
J. C. Lin and W. H. Tsai, Feature-preserving clustering
of 2D data for two-class problems using analytical
formulas: an automatic and fast approach. IEEE
Transactions on Pattern Analysis and Machine
Intelligence 16, 554-560 (1994).
Y. T. Cb.ien, Interactive Pattern Recognition, Marcel
Dekker, New York (1978).
R. W. Floyd and L. Steinberg,An adaptive algc&hm
for spatial gray scale. Proceedings of SZD 17, 75-71
(1976).
J. F. Jarvis, C. N. Judicc and W. H. Ninke, A survey of
techniques for the display of continuous tone pictures
on bilevel displays. Computer Vision, Graphics and
Image Processing 5, 13-40 (1976).
R. A. Ulichney, Digital Halftoning, MIT Press, Cam-
bridge, MA (1987).
A. K. Jain, Fundamentals of Digital Image Processing,
Prentice-Hall, New Jersey (1988).
D. E. Knuth, Digital halftones by dot diffusion. ACM
Transactions on Graphics 6, 245-273 (19871.

