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ABSTRACT

A parameter-dependent first-order system arising from elasticity problems is in-
troduced. The system corresponds to the 2D isotropic elasticity equations under
a stress-pressure-displacement formulation in which the nonnegative parameter
measures the material compressibility for the elastic body. Standard and weighted
least squares finite element methods are applied to this system, and analyses for
different values of the parameter are performed in a unified manner. The meth-
ods offer certain advantages such as they need not satisfy the Babuska-Brezzi
condition, a single continuous piecewise polynomial space can be used for the ap-
proximation of all the unknowns, the resulting algebraic system is symmetric and
positive definite, accurate approximations of all the unknowns can be obtained si-
multaneously, and, especially, computational results do not exhibit any significant
numerical locking as the parameter tends to zero which corresponds to the incom-
pressible elasticity problem (or equivalently, the Stokes problem). With suitable
boundary conditions, it is shown that both methods achieve optimal rates of con-
vergence in the H!'-norm and in the L?-norm for all the unknowns. Numerical
experiments with various values of the parameter are given to demonstrate the
theoretical estimates.

Key words. least squares, finite elements, convergence, error estimates, elasticity
equations, Poisson’s ratios, Stokes equations
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1. INTRODUCTION

We are interested in the finite element approximations to the following parameter-
dependent first-order differential system in a bounded domain  C R? with a
smooth boundary 912,

9 { %..%30_";2_%% g’:} f in Q, (1.1)
(G2 -122 1% 049Ph-n me. ()
%f/l - % =0 in Q, (1.3)

%Jr%s“gg:o in 0, (1.4)

e+ %i;. N %’fj - in Q, (1.5)

P2 — g3 — %+ %’f =0 in 9, (1.6)

where U = (i1, ¢2, @3, p, u1,u2)T is the unknown vector field, f = (fi, f2)7 is the
density of a body force, u is a positive constant, and ¢ is a nonnegative parameter
measuring the material compressibility for the elastic body. In general, (1.1)-
(1.2), (1.3)-(1.4), and (1.5)-(1.6) respectively express the equilibrium equations,
the compatibility equations, and the constitutive equations.

The first-order system arises in problems from the field of continuum mechan-
ics. For € > 0, it corresponds to the 2D elasticity equations in a stress-pressure-
displacement formulation (see Section 2 for more details). As e decreases to zero,
the material of the elastic body is nearly incompressible which is more important
in practical applications, and it is well-known that various finite element schemes
result in poor performance as e — 0% due to the so-called locking phenomenon |2,
6, 7]. For the particular case, ¢ = 0, the first-order system corresponds to the 2D
Stokes equations for the incompressible viscous flow in a stress-pressure-velocity
formulation studied in [20].

In the analysis of elasticity problems, the knowledge of the stresses is often of
greater interest than the knowledge of the displacements. It is well-known that the
approximation of the stresses ean be recovered from the displacements by postpro-
cessing in the standard finite element formulation. Their computation, however,
requires the derivatives of the displacement field. From a numerical point of view,
differentiating implies a loss of precision. The most widely used approach for ob-
taining a better approximation of the stresses is based on the mixed finite element
formulation which allows the stresses as new variables along with the primary
variables (see [12] and many references contained therein). Consequently, the ac-
curate stresses can be obtained directly from the discretized problem. However,
the approximation spaces in the mixed method must be required to satisfy the
Babuska-Brezzi condition (i.e., the inf-sup condition) which precludes the appli-
cation of many seemingly natural finite elements.
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We provide herein an alternate way to avoid these difficulties by exploiting
the least squares principles applied on the new first-order formulation (1.1)-(1.6) of
the elasticity problem. This new formulation is different from the usual standard
displacement-stress formulation which is extensively studied in the mixed finite
element method (see, e.g., [12, 26, 27, 28, 34, 35] etc.), but is similar to the
third formulation proposed in [28]. We prove that the first-order formulation is an
elliptic system in the sense of Petrovski, and that, with the displacement boundary
conditions, it satisfies the Lopatinski condition [36]. As a result, the problem can
then be solved by using least squares finite element methods (LSFEMs).

During the past decade, increasing attention has been drawn to the use of
least squares principles in connection with finite element applications in the field
of computational fluid dynamics (see, e.g., [3, 8, 9, 14, 17, 18, 19, 20, 21, 29, 30]
etc.). The least squares approach represents a fairly general methodology that can
produce a variety of algorithms. In the present paper, according to the boundary
treatment, we shall study two types of these methods. The first method is based
on the minimization of a least squares functional that involves only the sum of
the squared L?-norms of the residuals in the differential equations. We refer it as
the standard least squares finite element method (SLSFEM) (cf. (8, 13, 14, 15,
17, 19, 20, 21, 24, 25, 30, 33] etc.). The other is based on the minimization of a
least squares functional which consists of the sum of the squared L-norms of the
residuals in the differential equations and the boundary conditions with the same
weight A~!, where h is the mesh parameter. This method will be referred as the
weighted least squares finite element method (WLSFEM) (cf. [3, 4, 10, 16, 36]
etc.).

The present LSFEMs offer many advantageous features as follows.

e Both methods lead to minimization problems rather than a saddle point prob-
lem by the mixed method. Thus they are not subject to the restriction of the
Babuska-Brezzi condition, and a single continuous piecewise polynomial space
can be used for the approximation of all the unknowns.

o The resulting linear algebraic systems are symmetric and positive definite.
Thus efficient solvers, such as the general SOR or conjugate gradient methods,
can be used to solve the corresponding large linear systems.

e Since the stresses and the pressure serve as additional dependent variables,
accurate approximations of the displacements, stresses, and the pressure are
obtained simultaneously. Furthermore, with suitable regularity assumptions,
convergence results of both least squares approximations can be established
for general boundary conditions in the natural norms associated with the least
squares bilinear forms. '

e It is shown that, with the displacemeht boundary conditions, both LSFEMs
achieve optimal rates of convergence in the H!'-norm and in the L?-norm
for the sufficiently smooth unknowns. As a special case, the analysis proves
a conjecture made in [20] in which the SLSFEM is applied to the Stokes
equations with the displacement boundary conditions (cf. Remark 5.3).

o Numerical experiments with various values of the parameter support the the-
oretical analysis. Especially, computational results do not exhibit any signif-
icant numerical locking as the parameter € tends to zero.
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The remainder of the paper is organized as follows. We introduce the stress-
pressure-displacement formulation (1.1)-(1.6) for the elasticity problem in Section
2. The LSFEM:s are given in Section 3, as well as their fundamental properties. A
priori estimates with the displacement boundary conditions are derived in Section
4. Error analyses are presented in Section 5. Finally, some numerical experiments
are examined in Section 6 to demonstrate the approach.

2. THE STRESS-PRESSURE-DISPLACEMENT ELASTICITY

Consider the following 2D elasticity problem in the usual displacement formulation,

—2p{V-E(u)+ 1_2’/V(V~u)} —f in Q (2.1)
u=0 on I'y, (2.2)
2p{5(u)+ 1 _Uzy(V~u)I} ‘n=g on Ty, (2.3)

with the following notation:
e O C R? is a bounded domain representing the region occupied by an elastic
body.
e 9Q =T UT, the smooth boundary of § is partitioned into two disjoint parts
I’} and I'; with the measure of I'; being strictly positive.
i is the shear modulus given by

A TE N Ry

where v is the Poisson ratio, 0 < v < 0.5, and E > 0 is the Young modu-
lus. The upper limit of the Poisson ratio, i.e., v — 0.57, corresponds to an
incompressible material. -

u = (uy,uz)7 is the displacement vector field.

f = (f1, f2)7 is the density of a body force acting on the body.

g = (g1,92)7 is the density of a surface force acting on T's.

n = (n1,n2)7 is the outward unit normal vector to 9.

£(u) is the strain tensor given by

cw) = (sow), , = (50@m+awy),

o Iis the 2 x 2 identity matrix.
Introducing the auxiliary variables

_ 3u1
Y1 = *5;‘» (2-4)

Ou,
P2 = B_y_’ (2.5)
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811.2
Y3 = 8_33’ (2~6)
v
=— v - .
P TV (2.7)
defined on Q and letting
=1_2v>0, 0<1/<l,
v 2

Op1 Pl _ .
2~ =35 e ta =h B @8

o1 109p; 105 9p :

—_— o= ———— 41 —}:—. Q. 2.9
#{ 8y 20z 20z +( +€)0y f2 " (29
We call ¢; the stresses and p the artificial pressure, and remark that the “pressure”
p gives the hydrostatic pressure only in the incompressible limit, € = 0 (cf. Remark
2.1). Note that a combination of ¢;, ¢ = 1,2,3, and p can represent the actual
stresses 0ij, t,j = 1,2, which are given by

o(u) = (a,,(u))zx2 = 2p{e(u) + (V- wi}.

Also, by (2.4)-(2.7), we obtain the following two compatibility equations

.0991 6992 .
Y. Zre 2.1
39 P 0 in Q, (2.10)
Op1  Opsz = Op :
rt, Ire = = . 1
(99:+0y +63x 0 in Q (2.11)

To recover the displacements, we have the equations

r _ —_— = 1 Q 2.12

ep + % + By 0 in Q, (2.12)

¢2—¢3—§ﬂ+6—“3=0 in Q. (2.13)
Oy Oz

Equations (2.8)-(2.13) are the so-called stress-pressure-displacement formula-
tion for the elasticity equations (2.1) and may be written in the matrix form

LU := AU, + BU,+DU =F in Q, (2.14a)

where
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(=2 00 2 00 0 —p —p 0 0 0
0 —u —p 0 00 20 0 0 2u(l4+e 0 O
A= 0 -1 0 0 0 O B = 1 0 0 0 0 0
1 0 0 e 0 0}’ 0 0 1 0 0 O
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 -1 0
00 0 00 0 o1 A
00 0 000 . 2
oo 0o 000 | s lo
D=fo 0 0 000 U=|p | ®™F=]y
0 0 0 € 0O Uy 0
01 -1 0 0O Ug 0

Remark 2.1. For the incompressible limit, ¢ = 0, using the equations (2.10) and
(2.11), the first-order system (2.14a) can be rewritten in form of the so-called
stress-pressure-velocity Stokes equations which have been studied in [20]. In the
contezt, u represents the velocity for the Stokes flow, p expresses the pressure with
appropriate scaling, and u denotes the inverse of the Reynolds number. |

The system of differential equations (2.14a) will be also supplemented with
the boundary conditions (2.2)-(2.3) which may be written as

0 000 10 0
(0 000 0 1>U—<O) on I't, (2.15)

2uny  png  png —2uny 0 0 e
<“2/m2 pny ung —2p(l+eng 0 0) U= <g2 on I';.(2.16)

The boundary conditions (2.15) imply that the tangential derivatives of u;,7 = 1,2,

vanish
nap1 —nipz =0 on I'y,

nip1 +news + enyp =0 on I'y,

and that
niuy + noug =0 on I';.

So, we have

ny —nNny 0 0 0 0 0
nt 0 ny eny 0 0 |U=1]0 on I'y. (2.17)
0 0 0 0 ny na 0

Conversely, we can show that (2.17) with (2.4)-(2.7) imply (2.15) as well. The
boundary conditions (2.17) will play. an important role in the later analyses.
Rewrite (2.16) and (2.17) as the following operator form:

RU=G  on Q. (2.14b)

In the sequel, we shall always assume that problem (2.14a/b) has a unique
strong solution U € [H'(Q)]® with the given functions F € [L*(Q)]° and g €

3
,
X
4
:
i
a
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[L3(T';)]?. Hereinafter, it is also understood that we further require (p,1)o,0 = 0,
as well as in the approximations, when € = 0.

3. LEAST SQUARES FINITE ELEMENT METHODS

Throughout this paper, the classical Sobolev spaces H*(§), s > 0 integer, L3(Ty),
and L2?(T;) with their associated inner products (-,")s,q, (,))o,rss (+y-)o,r, and
norms || - ||s.0, Il - llo,r1s || - llo,r, are employed [22, 32]. As usual, L*(Q) = H'(Q).
For the product spaces [H*()]°, [L?(T'1)]®, and [L*(T;)]?, the corresponding inner
products and norms are also denoted by (-,)s,2, (,")o,Ts; (-,)or,, and || - |ls,a,
Il - llo,rss Il - llo,r» respectively, when there is no chance for confusion.

Let H$ () be the closure of D(2) with respect to the norm IIIls.@, where D(Q)
denotes the linear space of infinitely differentiable functions on with compact
support. We denote by H~*(Q) the dual space of H§(f2) normed by
<u,v>

lull-s,0 =  sup
° 0#vEH(Q) llvls,e ’

where < -,- > denotes the duality pairing.
Since the boundary 89 of the bounded domain  is smooth, there exists an
operator 7o : H'(Q) — L*(8Q), linear and continuous, such that

vov = restriction of v on I for every v € cHQ).

The space vo(H!(Q)) is not the whole space L%(0Q), which is denoted by Hz(8Q)
with norm defined by :

lely,o0 = inf{Jlvlla; v € H'(R), 00 =}

which makes it a Hilbert space. Its dual is denoted by H~%(dQ) with the norm
I - ”-—%,arp Also, the associated norms of the product spaces [H2(09Q)]® and

[H=%(8Q)]® are still denoted by || - ll1,50 and Il - 1l—1 aq, respectively.

We now introduce the standard and the weighted’E LSFEMs for solving problem
(2.14a/b) in the following two subsections. For simplicity, we assume that G=0
on 89, that is, g = 0 on I's.

3.1. SLSFEM

Introduce the function space
vi={ve QI RV = o}, (3.1)
and then define a standard least squares energy functional £°: V* — R by

£(V) =|ILV — F|2 - (3.2)
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Obviously, the exact solution U € V* of problem (2.14a/b) is the unique zero
minimizer of the functional £* on V?, that is,

£(U)=0= min{E’(V); Ve V’}. (3.3)
Applying the techniques of variations, we can find that (3.3) is equivalent to
B(U,V)=F*(V) YV eV, (3.4)

where the bilinear form and the linear form are defined, respectively, by
BV, W) = / LV - LW, (3.5)
Q
FV) = / F-Lv, (3.6)
Q

for all VW € V*. The SLSFEM for problem (2.14a/b) is therefore to determine
U; € V} such that

B(Up,Va) = F*(Va) VY VaeVy, (3.7)
where the finite element space V] C V* is assumed to satisfy the following ap-

proximation property. For any V € V* N [HP*1(Q)], p > 0 integer, there exists
Vi € V} such that :

IV =Vhillo,o + AV = Valli,o < CRP¥Y[V]|p41,0, (3.8)
where the positive constant C is independent of V and the mesh parameter A.
Throughout this paper, in any estimate or inequality the quantity C will denote a

generic positive constant and need not necessarily be the same constant in different
places.

3.2. WLSFEM

Similar to the standard least squares case, we define
v =[HY(Q)", (3.9)
and define a weighted least squares energy functional £¥ : V¥ — R by
E4(V) = |ILV = Flit g + k™ RV 0. (3.10)

The exact solution U € V¥ of problem (2.14a/b) is the unique zero minimizer of
the weighted least squares functional £ on V¥, i.e.,

Y (U)=0= min{fw(V); Ve vw}, (3.11)
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Taking the first variation, we can find that (3.11) is equivalent to
B¥(U,V)=F¥“(V) YVevy, (3.12)

where the bilinear form and the linear form are defined, respectively, by

B’”(V,W):/cV-LVV+h-1 RV -RW, (3.13)
Q 12193

FUV) = L F.-LV, (3.14)

for all V,W € V¥. The WLSFEM for problem (2.14a/b) is then to determine
Uy € V¥ such that

BY(UY, Vi) =F*(Vh) VYV VieWVy, (3.15)

where the finite element space V;* C V¥ is also required to satisfy the following
approximation property. For any V € V¥ N[H?PT1(Q)]%, p > 0 integer, there exists
Vi € V) such that

IV = Villoa + IV = Villua < CRP*[[Vlp41,0, (3.16)

where C is a positive constant independent of V and h.

3.3. SOME FUNDAMENTAL PROPERTIES

In this subsection, we shall discuss the unique solvability of the numerical schemes
(3.7), (3.15), and some of their fundamental properties. Before presenting these
properties, it is of interest to note that the trial and test functions in the WLSFEM
(3.15) need not satisfy the boundary conditions. In contrast, in the SLSFEM (3.7),
both the trial and test functions are required to fulfill the boundary requirements.
Moreover, since the original system of second-order equations (2.1) is transformed
into the system of first-order equations (2.14a), the same C° piecewise polynomials
can be used to approximate all the unknown functions.

It is clearly that B*(-,+) and B*(-,-) define inner products on V* x V* and
V¥ x V¥, respectively, since the positive-definiteness is implied by the fact that
problem (2.14a/b) possesses the unique solution U = 0 for F' = 0 and G = 0.
Denote the associated natural norms by

IVIls = {B‘(V,V)}% VVev, (3.17)
Vi = {5 v}’ vvevs (3.18)

We first state the fundamental properties of the SLSFEM (3.7).

Theorem 3.1. Let U € [H'(Q)]® be the ezact solution of (2.14a/b) with the given
functions F € [L*(Q)]® and G =0.
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(i) Problem (3.7) has a unique solution U} € Vi which satisfies the following
stability estimate,
10l < 1Flo,0- (3.19)

(i1) The matriz of the linear system associated with problem (3.7) is symmetric
and positive definite.
(iii) The following orthogonality relation holds,

BS(U—U,‘:,V;,)=O Y Vi €V;. (3.20)
(iv) The approzimate solution U} is a best approzimation of U in the || -||,-
norm, that 1s,
-Ullls = i - . .
v =Uklls V:Ig/; U = Valls (3:21)

(v) If U € [HP*Y(Q)]®, p > 0 integer, then there exists a positive constant C
independent of h such that

U= Uills < CRP|[U]|p+1,0- (3.22)

Proof. To prove the unique solvability, it suffices to prove the uniqueness of solu-
tion since the finite dimensionality of V;. Let U} be a solution of (3.7), then, by
the Cauchy-Schwarz inequality,

IURNS = B°(Ui, Ui) = (F, LU )o,a
< [Elo.all£UR 0.0
< F Mo, lURIls

which implies (3.19). Consequently, the solution U} of (3.7) is unique.

Assertion (ii) follows from the fact that the bilinear form B*(:,-) is symmetric
and positive definite. (iii) is obtained by subtracting equation (3.7) from equation
(3.4). Using (3.20) and the Cauchy-Schwarz inequality,

IU = URIIS = B°(U - Ui, U = UR)
=BU -U;,U—-Vy) VVweV;
SHU =TIV = Valls ¥V Vi €V,
we prove (iv).
Finally, assume that U € [HP*'(Q)]°. Let Vi € V} be such that (3.8) holds

with V' replaced by U. Then, by (3.21) and the fact that £ is a first-order differ-
ential operator, we have

IU = Uklls <NU = Valls < CIIU = Villi,0 < CRP|[U] p+1,0.

Similarly, we have the following results for the WLSFEM (3.15).
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Theorem 3.2. Let U € [H'(Q)]® be the ezact solution of (2.14a/b) with the given
functions F € [L*(Q)]® and G = 0.

(i) Problem (3.15) has a unique solution Uy’ € Vy? which satisfies the following
stability estimate,

NUR Nlw < N1E 0,0 (3.23)

(ii) The matriz of the linear system associated with problem (3.15) is symmet-
ric and positive definite. :
(iii) The following orthogonality relation holds,

B¥(U-Uy¥,Vi)=0 VVieVy. (3.24)
(iv) The approzimate solution U}’ is a best approzimation of U in the || - ||w-
norm, that 1s,
CUY | = i A 2
U = Ul = ing, IU = Vil (325)

(v) If U € [HPT(Q))S, p > 0 integer, then there exists a positive constant C
independent of h such that

U = U¥llw < CRPU[p+1,0- (3.26)

Proof. The proofs for (i), (ii), (iii), and (iv) are similar to the standard least
squares case. For proving part (v), we need the following result whose proof can
be found in [11]: there exists a positive constant C such that, for any V € [H LQ))®

and any § > 0,
1
IVlloon < C(81V 0+ 51Vlos).

Taking 6§ = k% and replacing V by U — Vi, where Vi € V) is chosen such that
(3.16) holds with V replaced by U, we have

U = Villoon < C(B3IU = Villua + 54U = Vallo)

< CRPH||U|p41.0-

Thus,
WU —UEN% < IU = Valls

<L - Vi)l3q + B IR = Va)lG o0
< C(IU = Vil o + 571U = Vil a0)

< ChP||UI341 0

This completes the proof. ]

As a consequence of part (v) in the above theorems, the consistency of the

approximations follows.

Corollary 3.3. Let U be the ezact solution of problem (2.14a/b) with the given
functions F € [L2(Q)]® and G =0. IfU € [HPT1(Q)]°, p > 0 integer, then there
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exzists a positive constant C independent of h such that

LU = Fllo,e < CRP||U|lp+1,0, (3.27)
ICUY = Fllo,a < CR?|[U[p41,0, (3.28)
IRUY = Gllo,o < CRPFE|[U][p41,0. (3.29)
|

4. A PRIORI ESTIMATES

The error estimates of the previous approximations in the H!- and L?-norm are
primarily based on the thories of Agmon-Douglis-Nirenberg [1] and of Dikanskij
[23]. Our approach in exploiting these thories principally follows that of Wendland
(36, Section 3.1 and Chapter 8] for two-dimensional first-order elliptic systems in
the sense of Petrovski. The application of the theories to our problem involves
some unavoidable difficulties concerning the Lopatinski condition if the boundary
condition (2.14b) is taken to be such general. For simplicity, we only consider the
displacement boundary conditions

ng —ni 0 0 O 0 0
RU=| m 0 ny eny 0 0 |U=1{0 onT'| =00Q. (2.14Y)
0 0 0 0 ny ny 0

We first show that £ is an elliptic operator in the sense of Petrovski, and
that the boundary operator R in (2.14}') satisfies the Lopatinski condition. So
(2.14a/¥") is a regular elliptic boundary value problem and then (£, R) is a Fred-
holm operator with zero nullity. This enables us to get the coercive type a priori
estimates (see Theorem 4.1).

For all (¢,7) € R? and (£,7) # (0,0),
det(6A +nB) = 2%(1 + €)(62 +n?)?
£0.

Thus (2.14a) is an elliptic system in the sense of Petrovski. Obviously, by taking
(&,m) = (1,0), the matrix A4 is nonsingular and its inverse is

~mnsg 0 0 g 00

0 0 -1 0 0 0
. 0 -1 1 o0 00
- 1

marg 0 0 g 00

0 0O 0 0 10

0 0O 0 0 0 1

Then the original elliptic system (2.14a) can be transformed into the following
form:

3
:
;
i
3
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where

(W]

:A_lDz

Il o
=
|
o ofs
2

o
!
—

[es]
=
+
N

o

coococoo

;Hooo'oo
Looooooo
o oo o

T 2u(le)
0

_f2
1#
2#((1)+e)

0

OO OO OO

U,+BU,+DU=F

in £,

OO O OO

O H OO OO

203

We now check the Lopatinski condition as follows. After elementary opera-
tions, we find that the eigenvalues of the matrix BT are the imaginary numbers
Consider the eigenvalue 74+ = ¢ in the
upper halfplane, to which there exists a chain of linearly independent generalized

t and —1 both with multiplicities three.

eigenvectors p; and ps of BT defined by

BTp, —r4p1 =0,

BTp, — r4p2 = p1,

and a third eigenvector p; is given by

where

Notice that

1= (0,1,-

~

BTp:; — T+P3 = 0,

T
1,-2(1 +¢);,0,0) ",

_ (_4(1+e) 0 4(1+e) ‘7(1+e)(2+3e)
P2 = 2te ' 2+4e 7 2+e
T
=(0,0,0,0,1,—i) :

T
P = (pl7§1’p21§21p3153)

00),
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is nonsingular. Let

Q = (quql?quq‘quZ!vQS)

be the inverse matrix of P, then

_243¢ i 2+43¢ i __2+e¢ _ _24€ 0 0
s(i+e) 8(1-1f-e) 8§1+e) g(1+e)
7 2 _8(1+€e)l 8(l+€e)2 0 0
24¢ - 24e -
Q= 10 ‘ 01 ’ _8(1+€e)’ 8(1+ee)1' 0 0
WMot —IaEg? 0 0 0 0
0 0 0 0 1 1
0 0 0 0 -I-Zi —Zli
2 2

Now we have

No —nq 0 0 0 0
det{2 nt 0 ny en; 0 O (ql,qg, q3) }
0 0 0 0 ny np
_ 2+
 16(14¢€)?
for all € > 0 and (n1,n2) # (0,0). That is, the Lopatinski condition is satisfied for
the boundary conditions (2.144'). The following estimates then follow the standard
results of [36].

Theorem 4.1. For the boundary value problem (2.14a/b"), (2.14a) is an elliptic
system in the sense of Petrouski, and the boundary conditions (2.14b') satisfy the

Lopatinski condition. Thus we have the a priori estimates: for each | > 0 there is
a constant C > 0 such that if V € [H't1(Q)])®, then

(77«1 +n2i)3 # 0,

IVllisra < C(

LVlia + IRV Iy y.00)- (4.1)

By an interpolation argument [23] (cf. [36, Lemma 8.2.1]), the estimates (4.1)
can be extended to the case | > —1. Taking ! =1,/ =0, and | = —1in (4.1), we
have

Vlze S ClitVIhe YV eV n[HYQ), (4.2)
Vile < CliLVifoe YV €V, (4.3)
Vlloa < CliLV]|-10 YV VeV, (4.4)

Vliea < C(IEVIa + IRV Ig0n) ¥V V' NHEXQL,  (45)
Vlive < C(1EVIon + IRV 0n) ¥V eV, (46)
WVlloo < C(ILVII-ra + IRVII_y00) ¥V eV (47)
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Two sets of estimates (4.2)-(4.4) and (4.5)-(4.7) imply respectively the error esti-
mates for SLSFEM and WLSFEM in the following two subsections.

Remark 4.2. It is unclear whether the constant C in (4.2)-(4.7) 1s independent
of the nonnegative parameter € since the constant in (4.1) is not explicitly known
(cf. (1], page 74, Remark 2). _ |

5. ERROR ANALYSES

5.1. ERROR ESTIMATES FOR THE SLSFEM

For the standard least squares case, by (4.3), we have the coercivity
B(V,V)=|LV|§ a2 ClIVIia VYVeV. (5.1)
Thus, by using the standard argument, we obtain the following theorem.

Theorem 5.1. Let U € V* N [HPYY(Q)], Up € V} be the solutions of (2.14a/b")
and (3.7), respectively. Then

U = Uillia < CRP||U]|p+1,0- (52)
Proof. Utilizing (5.1) and (3.20), we have

|U-Usl2q < CBU - U;,U = Up)
=CB(U-Uz,U~-V,) VVieV;
< CIU - UilhellU = Vil e,
Thus,
WU —-=Uplhia <CIU = Villia Y Vi €Vy.
Taking Vi € V; such that (3.8) holds with V replaced by U, we obtain (5.2). #

Theorem 5.1 shows that the SLSFEM (3.7) achieves optimal convergence in
the H'-norm. For deriving the optimal L2-estimates, we need the following reg-
ularity assumption. Assume that, for any V € [H{(Q)]® and Q € [H2(8Q)], the
unique solution U to the following problem

LU=V inQ,

~ (5.3)
RU =Q on 0N

belongs to [H?(Q)]®, where R is the displacement boundary operator (cf. (2.14%')).
This assumption is reasonable since £ is a first-order differential operator.

Theorem 5.2. Let U € V* N [HPT(Q)]®, U € V; be the solutions of (2.14a/b')
and (3.7), respectively. If the regularity assumption of (5.3) holds with Q = 0,
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then
|U = Uillo.a < CAP*H|Ullp+1,0. (5.4)

Proof. For V € [HL(Q)]®, let U € [H2(Q)]® be the solution of (5.3) with @ = 0.
Then,

(LU = U, VYool = (LU = U2, LU0l
= (LU = U3, £(T = Vi)l VVieVi (by(3.20)
< CILU = UDloall £ = Villow ¥ Vi € Vi
<OIU - UilhallT = Valha ¥ Vi €Vi
< ChIIU = UilhallUllze  (by (3.8))
< CHIU = Uilhall£Ulha  (by (42))
= Ch|lU = Uil allVih -
In addition, the L2-inner product (L(U — U}),V)o,q defines a bounded linear
functional on [H{(Q)]° since
(LU = UL, VYol S ILU = UdloallVina V'V € [H (@)
It follows that
LU = U102 < CRIU = Uilh 0 (5.5)
Therefore, the proof is completed by combining (5.5), (4.4), and (5.2). 1

Remark 5.3. As a special case of Theorem 5.2, we prove a conjecture made in [20]
in which the SLSFEM is applied to the 2D stress-pressure-velocity Stokes equations
with the displacement boundary conditions (2.14b'), and numerical ezperiments

contained therein predict that the rate of convergence in the L%-norm 1is optimal.
|

5.2. ERROR ESTIMATES FOR THE WLSFEM

Following the techniques developed in [36, pp. 352-356], we shall first present the
optimal L?-estimates and then the optimal H 1_estimates for the WLSFEM.

Similar to the proof of part (v) in Theorem 3.2, we note that, for any W €
[HPT1(Q)]%, p > 0 integer, there exists W, € V}’ such that

W = Whllw < CRP[[Wlp+1,0, (5.6)

where C is a positive constant independent of h.

Theorem 5.4. Let U € V¥ N [HPTL(Q)], U € V¥ be the solutions of (2.14a/b’)
and (3.15), respectively. Assume that the regularity assumption of (5.3) holds, then

U =UZloa < CRTHU | pr1,0- (5.7)

Proof. For V € [HL(Q)]®, let U € [H*(R)]® be the solution of (5.3) with @ = 0.
Then,
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I(£(U = UR), V)o,al
=|(L(U = Uy), LU)o,0l
=[B*(U - Uy, U)|
=|B(U - U, U-Vi)| VVieVy (by(3.24)
< {B"’(U —URU - U,'f)}i {3_"’(6 Vi, U - v,,)}’ V VeV

l o~
< Ch{B2(U - Up,U = Ui)} 0z (by (5.6)
< ChI?||Ulp11,0llC0 1,0 (by (3.26),(4.5))
= CR**!|Ullp41.0]V I 0-

It follows that
IL(U = U)ll-1,0 < CRPFHU | p+1,0- (5.8)

On the other hand, take V = 0 € [H}(Q)]® in (5.3), then for any Q € [H #(3Q)],
[ (R(U = UY), Q)o,00]
= [R"Y(R(U - U), RT )o,00l
=|B*(U - Uy, U)|
= |BY(U -UP,U-Vi)| VVaeV¥ (by(3.24))
< {B"’(U —UPU - U,',")}i {Bw(ﬁ Vi, U — v,,)}’ V Vi€ VY

<o{Bw -vp,u-u)} 1Tha (b (56))
< CP||Ulp41,0 RT3 00 (by (3.26),(46))
= C?(|U]lp+1,011Qll 3, 00-

Thus, for any Q € [H2(9Q)]* we have
(R(U = U), Qo,0al < CRPFHU|lp+1,2l1Qll 3 00
and so
IR = U)ll=3,00 < CHP*H[Ullp41,0- (5.9)

Therefore, the proof is completed by combining (4.7), (5.8), and (5.9). ]

Note that in the proof of Theorem 5.4, we utilize the estimates (3.26) to cir-
cumvent the use of the optimal H!-estimates which have not been yet established.
In order to give the optimal H!-estimates, we need to define the following Gauss
projection [36):

Gr: VY >V, G W =Wy, (5.10)
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where W is the solution of the discretized problem (3.15) corresponding to prob-
lem (2.14a/b") with suitable data function F such that its unique exact solution
is W. Since problem (3.15) is uniquely solvable, the Gauss mapping Gy is well-
defined, and we have

GVi=Ve  VV,eVy. (5.11)
Taking p = 0 in (5.7), we get
18 Ullo,2 = UK llo,0

<HUllo2 + IIU = Uyllo,@
<NWUlo,2 + CRIU |10

Thus, we can conclude that, for any V € V¥,
1G:V llo,a < [Vllo,0 + CR[IV (1,0 (5.12)

We also need the following inverse assumption on the finite element space V}*.
There exists a constant C' > 0 independent of h such that

Villi,e < CA7Y|Villo.a VVieVy. (5.13)

The inverse assumption is commonly used in many least squares finite element
analyses [3, 36]. More precisely, if the regular family {73} of triangulations of £
associated with the finite element space V}* is quasi-uniform [22, 31], i.e., there
exists a positive constant C independent of h such that

h<Cdiam(Q}), VYQFe€Th,Th € {Th},

then (5.13) is satisfied.

The optimal order of convergence for the WLSFEM in the H'-norm is thus
concluded.

Theorem 5.5. Let U € V¥ N[HPY(Q)]%, U¥ € VY be the solutions of (2.14a/b')
and (3.15), respectively. Suppose that the regularity assumption of (5.3) and the
inverse assumption (5.13) hold, then

U =Uille < CRP|Ulp41,0. (5.14)
Proof. By (5.11), (5.13), (5.12), and the approximation property (3.16), we have

WU =Ullie <U=Valla +|IUF = Valia ¥V Vi € VP
=||U = Vall,e +1Gh(U = Va)llia ¥V Vi € VY
SNWU = Vallna + CA7YIGh(U = Villo,o ¥V Vi € V¥
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Table 6.1. The SLSFE approximations with E = 2.5 and v = 0.25 (e = 2.0)

1/h | le|lo.0 RelErr conv. rate lle]ls RelErr conv. rate
2 0.92226 | 3.05125e-1 -~ 7.25450 | 4.64876e-1 -
4 | 0.26879 | 8.89285e-2 1.78 3.58707 | 2.29863e-1 1.02
8 0.07245 | 2.39709e-2 1.89 1.80001 | 1.15347e-1 0.99
16 | 0.01861 | 6.15548e-3 1.96 0.90161 | 5.77763e-2 1.00
32 | 0.00469 | 1.55220e-3 1.99 0.45105 | 2.89037e-2 1.00
Table 6.2. Rates of convergence in the || - ||,-norm with E = 2.5 and small €
v=0.49 | v=0.499 | v=0.4999 | v=0.49999 | v=0.499999
1/h | e~4.1e-2| e ~4.0e-3| €~4.0e-4 | € ~4.0e-5 € ~4.0e-6
9 _ — - - —
4 0.97 0.96 0.96 0.96 0.96
8 0.98 0.98 0.98 0.98 0.98
16 0.99 0.99 0.99 0.99 0.99
32 1.00 1.00 1.00 1.00 1.00

Table 6.3. Rates of convergence in the L?-norm with E = 2.5 and small ¢
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v=0.49 | v=0.499 | v=0.4999 | v=0.49999 | v=0.499999
1/h | e~4.1e-2| e ~4.0e-3| €~4.0e-4 | €~4.0e-5 € ~4.0e-6
D) — — — —
4 1.77 1.75 1.75 1.75 1.75
8 1.89 1.88 1.88 1.88 1.88
16 1.96 1.95 1.95 1.95 1.95
32 1.99 1.98 1.98 1.98 1.98
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< U = Vil + Ch=H{IU = Vil + ChIIU = Valla} ¥ Vi € Vi
< CRP|Ulp41,0-

6. NUMERICAL EXPERIMENTS

We shall give a simple example which will be solved by using the SLSFEM (3.7).
Consider the stress-pressure-displacement elasticity equations (2.14a) equipped
with the homogeneous displacement boundary conditions (2.14b"). Taking Q =
(0,1) x (0,1) and choosing

3 1 1 1
— 205 1L 2y i —(=+ =
fi =2ur {(2 + . )sin(wz)sin(7y) (2 + e)c:os.(ﬂ'a:) cos(ﬂ'y)},
3 1 1 1
—_ 2002 4 yeg i (=4 =
fa =2un {(2 + 6)sm(ﬂ':::) sin(my) (2 + E)cos.(1r:c)cos(ﬂ'y)},
the exact solution is then given by

7 cos(mz) sin(my)

i: msin(wz) cos(my)

03 7 cos(mz) sin(ny)

p |~ -z (cos(wz) sin(ry) + sin(7z) cos(ry))
U1 sin(rz) sin(7ry)

U2 sin(rz)sin(my)

To simplify the numerical implementation, we shall assume that the square
domain € is uniformly partitioned into a set of 1/h? square subdomains Q! with
side-length h. Piecewise bilinear finite elements are used to approximate all com-
ponents of the exact solution. For the case of Poisson’s ratio v = 0.25 (¢ = 2.0)
and Young’s modulus E = 2.5, the results are collected in Table 6.1, where e
denotes the exact error U — U} and RelErr denotes the relative error. Since the
H'-norm is equivalent to the || - ||;-norm for the standard least squares case, Table
6.1 exhibits that the SLSFEM achieves optimal converegnce both in the L?-norm
and in the H'-norm for all the components.

The influence by the nonnegative parameter € for the behavior of convergence
is also examined. It is interesting to note that the SLSFEM for the elasticity
problem in the new formulation does not exhibit any significant numerical locking,
i.e., the results of Tables 6.2 and Table 6.3 do not deteriorate as ¢ — 0% (i.e.,
v — 0.57). The locking phenomenon is of major concern for the standard and
mixed finite element methods [2, 6, 7). With the numerical evidence shown in
Table 6.2 and Table 6.3, a theoretical verification about possible improvement in
regard to the locking problem by the present methods appears to be promising.
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