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Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential
energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic
transition �C. Zhu, J. Chem. Phys. 105, 4159 �1996�� with the certain symmetry transformation.
This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener
type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional
classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively
defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters
the analytical solution for general nonadiabatic tunneling. The certain two-state exponential
potential models are employed for numerical tests, and the calculations from the present general
nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact
quantum mechanical calculations. The present general nonadiabatic tunneling formula can be
incorporated with various mixed quantum-classical methods for modeling electronically
nonadiabatic processes in photochemistry. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2227399�
I. INTRODUCTION

A fully quantum mechanical solution for many-body
Schrödinger equation is generally investigated by two ap-
proaches. One of them is to reformulate the Schrödinger
equation into a formally solvable equation first and then to
do various approximations. The other is to start from the
certain classical and/or semiclassical approximation first and
then to bring all neglecting quantum effects back to this ap-
proximation. The time-dependent density function theory
�TDDFT� represents the former case in which solving elec-
tronic and nuclear motions simultaneously has been
proposed1 and the demonstration for the simple system has
been achieved.2 The Born-Oppenheimer approximation rep-
resents the latter case in which electronic and nuclear mo-
tions are treated separately first, and then the nonadiabatic
transitions are treated by various semiclassical approxima-
tions. The quantum-classical mean field or semiclassical
Ehrefect �SE� method,3,4 the trajectory surface hopping
�TSH� method,5 semiclasssical initial value representation
�IVR� method,6 the multiconfiguration time-dependent Har-
tree �MCTDH� method,7 and analytical semiclassical solu-
tion �ASS� method8,9 all deal with the nonadiabatic transi-
tions with some different schemes. Among the various
approximated methods, various combinations of the different
methods can improve accuracy for simulating nonadiabatic
molecular dynamics. For instance, the method of decay of
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mixing with coherent switching that combines SE with TSH
methods has been demonstrated to be more accurate than
both SE and TSH.10 The method of combining TSH with
DTDFT has been shown to be more accurate than the method
of combining SE with DTDFT.11 The method of combining
ASS with TSH has brought nonadiababtic tunneling back to
TSH and showed a significant contribution to the charge
transfer reaction even for high collision energy.12 An advan-
tage of the ASS method for the nonadiabatic dynamics is that
the analytical formula can be flexibly and accurately incor-
porated into all the other methods for the molecular dynami-
cal simulation based on the Born-Oppenheimer approxima-
tion. The analytical semiclassical solution can provide
intermediate nonadiabatic dynamic information that is very
useful to interpret the experimental results. The analytical
semiclassical solution bridges a visible semiclassical formula
to connect nonadiabatic dynamics through two or more adia-
batic potential energy surfaces and provides a quantitative
description for nonadiabatic transition as well as nonadia-
batic tunneling.

Nonadiabatic transitions can be classified into two cat-
egories from semiclassical point of views; one is classically
allowed transition that is pure nonadiabatic transition, as
shown in region E�E0 of Fig. 1 and the other is classically
forbidden transition that is nonadiabatic transition accompa-
nied with tunneling �it is also called as nonadiabatic tunnel-
ing�, as shown in region E�E0 of Fig. 1. The coordinate R

in Fig. 1 represents the certain curved one-dimensional space

© 2006 American Institute of Physics04-1
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along which nonadiabatic transition and tunneling take place.
Figure 1�a� shows Landau-Zener type of crossing, where
analytical formulas for pure nonadiabatic transition were ini-
tially found by Landau,13 Zener,14 and Stückelberg,15 and
analytical formulas for nonadiabatic tunneling were studied
by Barany,16 Nikitin,4 and Child.17 Zhu and Nakamura8 ap-
plied exact semiclassical method based on the Stokes con-
stant and established the most sophisticated analytical formu-
las for both nonadiabatic transition and tunneling. Figure
1�b� shows Rosen-Zener-Demkov type of noncrossing, and
analytical formulas for pure nonadiabatic transition were
studied by Rosen and Zener,18 Demkov,19 and Osherov and
Voronin.20 Figure 1�c� shows far-apart type of noncrossing,
where analytical formula for pure nonadiabatic transition
was studied by Nikitin and Umanskii.21 However, in both

FIG. 1. E�E0 corresponds to pure nonadiabatic transition zone and E
�E0 corresponds to nonadiabatic tunneling zone. �a� Landau-Zener type of
the crossing at R0, where d �R0��2. �b� Rosen-Zener-Demkov type of the
noncrossing at R0, where d �R0��2. �c� Far-apart type of noncrossing at R0,
where d �R0��1.
Rosen-Zener-Demkov and far-apart noncrossing types there
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are no analytical formulas for nonadiabatic tunneling. This is
the motivation of the present study. Three types of crossing
and noncrossing nonadiabatic transitions in Fig. 1 were uni-
fied into a single analytical formula9 in which the type of
nonadiabatic transition can be quantitatively described by the
rotation angle of adiabatic-to-diabatic transformation �see
Eq. �1� below�. However, this unified semiclassical formula
can only deal with pure nonadiabatic transition. In this work,
we will develop unified semiclassical formula in terms of the
rotation angle for general nonadiabatic tunneling including
three types in Fig. 1. Unified semiclassical formula for pure
nonadiabatic transition was expressed in terms of the follow-
ing quantity:9

d = d�R0� = 1 + tan2�2��R0�� , �1�

where R0 is the real part of the complex crossing point be-
tween two adiabatic potential energy surfaces and ��R� is the
rotation angle which defines a transformation between adia-
batic and diabatic representations,

tan�2��R�� =
2V12�R�

V2�R� − V1�R�
, �2�

where V1�R� and V2�R� are diabatic potential energy surfaces
in Fig. 1 and V12�R� is diabatic coupling.

Section II explores symmetry relation of the reduced
scattering matrix between pure nonadiabatic transition and
nonadiabatic tunneling in Landau-Zener type of crossing.
This symmetry relation is extended to general nonadiabatic
transition and tunneling in Sec. III where analytical semiclas-
sical solution for general nonadiabatic tunneling is newly
developed. Section IV demonstrates numerical examples in
which the present general nonadiabatic tunneling formula
well reproduces exact quantum nonadiabatic tunneling prob-
ability. Section V presents conclusions.

II. SYMMETRY PROPERTY BETWEEN PURE
NONADIABATIC TRANSITION AND NONADIABATIC
TUNNELING IN LANDAU-ZENER CASE

The ordinary tunneling through the potential energy bar-
rier can be described by the Wentzle-Kramers-Brillouin
�WKB� semiclassical formula with phase integral between
two classical turning points. As collision energy rises above
potential energy barrier, two real classical turning points be-
come two complex turning points and the phase integral
through two complex turning points can be still utilized for
calculating barrier top reflection probability. Even in multi-
dimensional tunneling case, the instanton theory can run
classical trajectory on the upside-down potential energy sur-
face around the potential barrier zone.22 Such symmetry con-
nection in ordinary tunneling should also exist in nonadia-
batic tunneling case.

Nonadiabatic tunneling differs from ordinary tunneling.
The nonadiabatic tunneling is generally through two adia-
batic potential energy surfaces along the path in the direction
of nonadiabatic coupling vector, while the ordinary tunneling
is usually through a single adiabatic potential energy surface
from the reactant to product region along the minimum po-

tential energy path. The nonadiabatic tunneling through two
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coupled adiabatic potential energy surfaces is in general re-
lated to the four complex turning points described by the
semiclassical method associated with Stokes phenomenon.23

Within two-state linear curve crossing model, there are sym-
metry relations among these four complex turning points and
their geometry structures in complex plane were well ana-
lyzed in Ref. 23. We start with the fundamental differential
equation for determining the reduced scattering matrix in Eq.
�2.1� of Ref. 24,

d2B�t�
dt2 + q�t�B�t� = 0, �3�

where

q�t� = 1
4 − ia2t + 1

4 �a2t2 − b2�2, �4�

in which the unitless parameter a2 represents an effective
nonadiabatic coupling constant and the b2 represents an ef-
fective collision energy �roughly speaking, b2�0 corre-
sponds to pure nonadiabatic transition, i.e., E�E0 in Fig.
1�a�, while b2�0 corresponds to nonadiabatic tunneling, i.e.,
E�E0 in Fig. 1�a��. The reduced scattering matrix can be
expressed in terms of a single Stokes constant U1 that is a
function of two parameters a2 and b2 �or � and ��,

SR�U1�a2,b2�� = SR�U1��,��� , �5�

where the two sets of parameters are connected by the fol-
lowing relations in the case of pure nonadiabatic transition
under condition b2�1:24

� =
2a2x0

3

3
+ � ln� x0

2

�2� − � , �6�

� =
1

8	a2b2
, �7�

and

x0
2 =

b2

a2 . �8�

In order to find good semiclassical approximation for the
Stokes constant U1 in Eq. �5�, for pure nonadiabatic transi-
tion �b2�1� we derived it from the connection matrix that
connects asymptotic wave functions between B��� and
B�−�� in Eq. �3�, and for nonadiabatic tunneling �b2�−1�
we derived it from the connection matrix between B�i�� and
B�−i�� in Eq. �3�. This suggests that we can make transfor-
mation t= it�, and then Eq. �3� becomes

d2B�t��
dt�2 + q1�t��B�t�� = 0, �9�

where

q1�t�� = − 1
4 − a2t� − 1

4 �a2t�2 − �− b2��2

= − 1
4 − i�− ia2�t� + 1

4 ��− ia2�t�2 − �− i
b2
��2. �10�

It should be noted that the Stokes constant for nonadiabatic
tunneling is in the region b2�−1 with the connection matrix
equivalently for Eq. �9� at t�= ±�. Comparing Eq. �10� with

Eq. �4�, an essential difference is only in the sign of the first
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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term of 1/4 �this effect is negligible under condition 
b2

�1�. Thus, we can write the reduced scattering matrix for
nonadiabatic tunneling from Eq. �5� as

SR�b2 � − 1� � SR�U1�− ia2,− i
b2
�� = SR�U1�− i�,− i��� ,

�11�

in which Eqs. �6�–�8� are employed for the last equality. In
the nonadiabatic tunneling case, notations of � and � are just
interchanged �see Eqs. �5.4�, �5.5�, �5.15�, and �5.16� of Ref.
24�. This means that the following replacement:

� → − i� and � → − i� , �12�

can be applied to the following expression of Stokes constant
for pure nonadiabatic transition:24

U1��,�� =	1

p
− 1 exp�i	� , �13�

where

p = e−2� �14�

and

	 = � −
�



+

�



ln� �



� − arg ��i

�



� −




4
. �15�

Under the replacement of Eq. �12�, we can easily show that
the phase part in Eq. �15� turns out to be

exp�i	� → exp�� −
�



+

�



ln��



� − i

�

2
− i




4
�

�



i���/
�	� sin �
, �16�

and that the amplitude part in Eq. �14� turns to be

	1

p
− 1 → 	e−i2� − 1 = 	− 2ie−i� sin � . �17�

Finally, Eq. �13� turns out to be

U1 = U0 exp�− i�� , �18�

where

U0 = exp�� −
�



+

�



ln��



�� 	2


	����/
�
. �19�

Equations �18� and �19� exactly coincide with the expression
of the Stokes constant for nonadiabatic tunneling that can be
directly derived from Eq. �3�, as it should be the case from
general analysis of symmetry relation discussed above.

The two-state linear curve crossing model can be gener-
alized to treat general two-state curve crossing problems by
computing parameters � and � in the expression of Stokes
constant for both pure nonadiabatic transition and nonadia-
batic tunneling from the following complex integral:

� + i� = 

T−

R*

K−�R�dR − 

T+

R*

K+�R�dR , �20�

where T−�T+� is a classical turning point on the lower �upper�
*
adiabatic potential energy surface, R is the complex cross-
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ing point between two surfaces, and the explicit expressions
of K±�R� in Eq. �20� is given by

K±�R� = 	2
�E − W±�R��/� , �21�

which is basically the classical wave number on the upper
and lower adiabatic potential energy surfaces, respectively.
Two adiabatic potential energy surfaces in Eq. �21� can be
expressed in terms of diabatic potential and coupling energy
surfaces,

W±�R� = �V1�R� + V2�R��/2

± 	�V1�R� − V2�R��2 + 4V12�R�/2. �22�

Finally, the overall nonadiabatic transition probability for
both pure nonadiabatic transition and nonadiabatic tunneling
can be expressed in terms of the Stokes constant U1,8,24

P12 = � 2 Im U1


U1
2 + 1
�2

. �23�

Before going to the next section, we comment on the
symmetry relation of the reduced scattering matrix derived
from Eqs. �4� and �10�. This symmetry is approximated sym-
metry and it is good only under the condition 
b2
�1. Since
b2�1 corresponds to very high collision energy and b2�
−1 corresponds to very low collision energy, this means that
the symmetry is for the region in which pure nonadiabatic
transition and deep nonadiabatic tunneling can be well sepa-
rated from each other. As the collision energy is close to E0

in Fig. 1�a� where 
b2
�1, nonadiabatic transition and tun-
neling are well mixed from the semiclassical method point of
view. Nevertheless, in practice, Stokes constant for nonadia-
batic tunneling in Eq. �18� derived from the condition b2�
−1 still works at b2�−1. A more sophisticated Stokes con-
stant �see Eqs. �28� and �29� below� derived from b2�−1
still works at b2�0. All numerical calculations with detailed
analysis are discussed in Ref. 24.

III. ANALYTICAL SEMICLASSICAL SOLUTION
FOR GENERAL NONADIABATIC TUNNELING

Exact quantum simulation requires all the values of R
along the certain nonadiabatic transition path in Fig. 1, while
the semiclassical method based on the complex phase
integral24–26 indicates that nonadiabatic transitions occur lo-
cally around the complex crossing points between the two
adiabatic potential energy surfaces. This is similar to the tun-
neling on a single adiabatic potential energy surface, where
the tunneling occurs around the classical turning points. The
complex crossing points for nonadiabatic tunneling are sort
of extension of such classical turning points to the complex
plane. Detailed analysis of those complex crossing points
associated with the Stokes phenomenon can lead to the semi-
classical solution for nonadiabatic transition and tunneling
probability. This was done for two-state Landau-Zener type
of crossing for both pure nonadiabatic transition and nona-
diabatic tunneling. However, for general two-state system
with 1�d�R��� in Eq. �1� the analytical formula is found
only for pure nonadiabatic transition case.9 We would like to
reformulate the reduced scattering matrix for general two-

state system in terms of Stokes constants U1 �� ,� ,d�R0��, in
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which there is one more parameter d�R0� compared to
Landau-Zener type of crossing �actually d�R0�=� for
Landau-Zener case�. For all three cases of E�E0 in Fig. 1
we define the expression of Stokes constant in Eq. �13� with
the following expressions for p and 	:9

p =
sinh��d − 1���

sinh�d��
e−� �24�

and

	 = � + arg ��i�d − 1�
�



� − arg ��i

�



�

− �d − 1�
�



ln�d − 1� − �d − 2�

�



�ln� �



� − 1� . �25�

It should be noted that the overall nonadiabatic transition
probability is still given by Eq. �23�, and parameters � and �
are also evaluated from Eq. �20�. The most important quan-
tity d in Eqs. �24� and �25� is defined by Eq. �1� which
represents a type of nonadiabatic transition. If d→�, Eqs.
�24� and �25� turn to be Eqs. �14� and �15� in the Landau-
Zener case, respectively.

In order to derive the expression of the Stokes constant
for general nonadiabatic tunneling case, we assume that the
reduced scattering matrix has the same symmetry relation as
it has in Sec. II of Landau-Zener case, namely, we can em-
ploy replacement of Eq. �12� to Eqs. �24� and �25�. After
some tedious derivation, we finally find the Stokes constant
for general nonadiabatic tunneling case,

U1 = U0 exp�− i�� , �26�

where

U0 =
���d − 1��/
�

���/
�
	d − 1 exp�� − �d − 1�

�



ln�d − 1�

− �d − 2�
�



�ln��



� − 1�� . �27�

It is easy to confirm that Eq. �27� becomes Eq. �19� at
d→�. The Stokes constant in Eq. �19� for the Landau-Zener
case includes contribution only from dominant part of the
semiclassical phase integral. By adding contribution from the
subdominant part of the semiclassical phase integral, Zhu-
Nakamura finally found the most sophisticated formula for
nonadiabatic tunneling,24

Re U1 = cos ��U0 − sin2 �/U0� , �28�

Im U1 = − sin �	U0
2 − sin2 � cos2 �/U0

2 + cos�2�� , �29�

where U0 is defined in Eq. �19� for the Landau-Zener case.
We can directly generalize Eqs. �28� and �29� to general
nonadiabatic tunneling case by replacing U0 with Eq. �27�.

IV. NUMERICAL COMPARISONS

In order to demonstrate and test the newly developed
unified semiclassical nonadiabatic tunneling formula in Eq.

�27� with Eqs. �28� and �29�, without losing generality, we
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present numerical calculation with the two-state exponential
potential model given in the diabatic representation by the
following potential energy surfaces:

V11�x� = 1.1 exp�− a1x� − 0.12, �30�

V22�x� = exp�− a2x� , �31�

with the diabatic coupling function

V21�x� = V0 exp�− 1.5x� , �32�

in which a1, a2, and V0 are to be selected to determine a type
of nonadiabatic transition like the crossing or noncrossing
case in which a quantitative description of nonadiabatic type
is given by Eq. �1�. All calculations are carried out in a.u.
�the reduced mass of system is 1000 a.u.�. Exact results
shown in Fig. 2 are calculated from a quantal close-coupling
method. Two semiclassical results of nonadiabatic tunneling
probability are calculated from Eq. �23� with expressions of
Stokes constant given by Eqs. �28� and �29�, but the Zhu-
Nakamura �ZN� formula uses Eq. �19� and the present new
semiclassical formula employs Eq. �27� for U0. Table I sum-
marizes three cases with d=7.76, 2.28, and 1.21. Case 1 is
the Landau-Zener case in Fig. 1�a� with large d so that both
the ZN and the present semiclassical formulas work well for
overall nonadiabatic tunneling probability, as shown in Fig.
2�a�. As d gets smaller in case 2 that corresponds to two
nearly parallel diabatic potential energy surfaces around
nonadiabatic transition zone which is similar to the Rosen-
Zener-Demkov case in Fig. 1�b�, the ZN formula starts to
deviate from the exact calculation and gets worse as collision
energy becomes close to E0 �see Table I�, as shown in Fig.
2�b�. Case 3 is the most dramatic case because d=1.21 that is
close to unity, as shown in Fig. 1�c�, for far-apart noncross-
ing case, the ZN formula shows very bad results in Fig. 2�c�,
while the present new formula still works very well. This can
be well understood from the fact that there is no nonadiabatic
tunneling if d=1. It is easy to check that the present new
formula shows this correct limit. As d goes to unity, U0 in
Eq. �27� turns to be infinity and thus the nonadiabatic tun-
neling probability in Eq. �23� turns to be zero, while the ZN
formula completely fails because the ZN formula is a special
case of the new formula with d=�. The quantity d in Eq. �1�
can be considered as an effective nonadiabatic coupling
strength, and it gets weaker as d gets smaller. Although the
crossing type of nonadiabatic transition is generally more
localized than the noncrossing type, an essential mechanism
of nonadiabatic transition is the same that is governed by the
complex crossing points between two adiabatic potential en-
ergy surfaces. Those complex crossings will be all localized
in the certain region of complex plane. This is the reason
why we can develop the present unified semiclassical for-
mula based on an extension of the symmetry relation in Sec.
II that is held in Landau-Zener type of crossing.

V. CONCLUSIONS

Unified semiclassical formula for general nonadiabatic
tunneling with Stokes constant in Eqs. �27�–�29� is devel-

oped, combining the formula for pure nonadiabatic transition
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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with Stokes constant in Eqs. �13�–�15� we have finally com-
pleted unified semiclassical formula for both classically al-
lowed and forbidden nonadiabatic transition. Application of
the unified semiclassical theory to photochemical processes
associated with various types of conical intersections will be

FIG. 2. Nonadiabatic tunneling probability against total energy E�E0

shown in Fig. 1 for three crossing and noncrossing types. �a� Case 1 corre-
sponds to Fig. 1�a� �note the real crossing point at R=−0.127 differs from
the real part of complex crossing point at R0=0.0383�. �b� Case 2 corre-
sponds to Fig. 1�b�. �c� Case 3 corresponds to Fig. 1�c�.
studied in the near future. The conical intersections in real
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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photochemistry can form very complicated structures around
the nonadiabatic transition zone,27 in which the type of nona-
diabatic transition can be any value of 1�d��. Even in the
case that the low-lying electronically excited states may not
be energetically accessible, the nonadiabatic tunneling can
still contribute to the overall reaction. By applying analytical
semiclassical formula derived here, we do not have to calcu-
late large region of the configuration space of electronically
excited states and we only need to calculate the small region
near nonadiabatic tunneling zone. The present calculations
with the certain model potential energy surfaces have shown
very good agreement between the present nonadiabatic semi-
classical formula and exactly quantum mechanical method. It
should be noted that the present analytical nonadiabatic tun-
neling formula would work well for general two-state prob-
lems, and the model here is very general in the sense that it
covers various configuration structure near the nonadiabatic
tunneling zone. It is an advantage that analytical semiclassi-
cal solution grasps an essential feature of nonadiabatic tran-
sition and nonadiabatic tunneling. A general application of
the present semiclassical solutions to multidimensional nona-
diabatic dynamics requires the certain manipulation of one-
dimensional reduction. A natural one-dimensional reduction
takes place in the direction of the nonadiabatic coupling vec-
tor. For instance, incorporating with the trajectory surface
hopping method5,12 to deal with nonadiabatic reaction, we
can compute nonadiabatic transition and tunneling probabil-
ity along the hopping direction that is curved one-
dimensional potential energy surface profiles. The present
sophisticated semiclassical analytical solution will be a pow-
erful analytical tool for dealing with nonadiabatic tunneling
induced by various conical intersections in photochemistry.
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