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SUMMARY

This work is to prove the Holder continuity of the solutions of the degenerate differential equations
describing two-phase, incompressible, immiscible flows in porous media. The differential equations
allow degeneracy at two end points and the assumption on mild degeneracy is not required in this
study. The regularity result is proved by an alternative argument. Uniqueness of the weak solutions of
the differential equations is a direct consequence from this Holder continuity. Copyright © 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Holder continuity of the solutions of the degenerate differential equations describing
two-phase, incompressible, immiscible flows in porous media is concerned. The existence of
weak solutions of the differential equations is well-known (see References [1-7]
and references therein). However, the regularity of the weak solutions has not been well-
established. In this work, we show Holder continuity of the weak solutions for the
differential equations. Uniqueness of the weak solutions is then a direct consequence from
this result. If QCRY (N =3 in reality) is a porous medium, equations for the two-phase
flows in porous media in global pressure formulation are (see References [2.4]),

*Correspondence to: Li-Ming Yeh, Department of Applied Mathematics, National Chiao Tung University, Hsinchu
30050, Taiwan, R.O.C.
TE-mail: liming@math.nctu.edu.tw

Contract/grant sponsor: National Science Council; contract/grant number: NSC 91-2115-M-009-003

Copyright © 2006 John Wiley & Sons, Ltd. Received 15 November 2004
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for t>0,
AwA,
®0,S — V- (KAW(S)V(P—EW)—K A VT(S)):O (1)
—V - (KA(S)VP — KA (S)VEy — KA(S)VE,) =0 2)

Here @ is porosity, K is absolute permeability field, S € [0, 1] is water saturation, A; (i =w,0)
is phase mobility of i-phase and is a nonnegative monotone function of S, A(=A,, + A,)
is the total mobility, P denotes global pressure, £; (i=w,0) is a function depending on
density, gravity, and position, and Y is capillary pressure and is a nonnegative decreasing
function of S. In practice, (AywAo/A)Y'(0)=(AwAo/A)Y'(1)=0 [1,2,4]. So Equation (1) is a
degenerate parabolic equation with degeneracy at two end points (that is, degeneracy appears
at §=0,1).

Boundary 092 of the porous medium §2 includes I'; and I', satisfying I'y N T, =( and
Ty UT,=09. The initial and boundary conditions are given by

K(Aw(S)V(P — Ey) — AV/VXA"VT(S))-n:O for x €T,
K(A(S)VP — Ay(S)VEs — A(S)VE,)-n=0 for xeT)
S=5 for xel', 3)
P=P, for xeI',
S(0,x) = Sinit(x) for x€Q

where n 1s the unit vector outward normal to I';.

Regularity results of the weak solutions for porous media problems in nondegenerate case
are well-known (see References [2,4,6] and reference therein). Continuity of saturation S
for (1)~(3) in interior region of Q7(=(0,T) x ) had been shown in Reference [1] if mild
degeneracy was assumed at one end point. Holder continuity of S with degeneracy only at
one end point was considered in Reference [5]. In this work, we prove Holder continuity of
S for the case where equations are degenerate at two end points and no mild degeneracy is
assumed. Though initial and boundary values of saturation are assumed to be away from the
two end points 0 and 1 (see A5 below), the saturation inside the domain Q7 still can reach
0 and 1. The process of proof is first to derive a uniform Holder estimate for the solutions
of regularized problems of (1)—(3). Then by compactness principle we get Holder continuity
of the solution of (1)—(3). Rest of the paper is organized as follows: Notation and main
result are stated in Section 2. In Sections 3-5, we shall derive a uniform Holder estimate
for the solutions of the regularized problems of (1)—(3) by an alternative argument [8]. More
precisely, in Section 3 we state some auxiliary results needed in Section 4. Holder estimate
of the solutions for the regularized equations in the interior region is given in Section 4.
Holder estimate of the solutions for the regularized equations on the parabolic boundary can
be proved by a similar argument as that for interior region and is sketched in Section 5. Proof
of main result is in Section 6.
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HOLDER CONTINUITY FOR TWO-PHASE FLOWS 1263

2. NOTATION AND MAIN RESULT

We shall use the following notation:

I'’'=,T)yxI;, i=1.2
U={{eH'(Q): U, =0}

1 (QT)=L1>(0,T; L*(2)) N L*(0, T; %)
dual X = dual space of X

L Q7)Y =L7(0,T; L1(Q))

22 o
¥k (k; is given in A4 below)

izmm{N+2 }

se)="2Mre), ze

04

4)

,@(z)z/o F(&)de, ze(0,1)

Zp is a characteristic function of D

Definition 2.1

Boundary 02 of the bounded domain €2 belongs to H”, m>1, if (1) in the neighbour-
hood U(x) of each boundary point x ¢ 'y N T, there exists a homeomorphic transformation
X(x)=(X1(x),%2(x),...,Xn(x)) e C™, |dX/dx|=c>0 (dX/dx is the Jacobian of the transforma-
tion) such that Xy (IQNU(x)) =0,Xx(Q2NU(x))>0, i.e. I';(i=1,2) can be locally straightened,
(2) in the neighbourhood of each point x € 'y N T, there exists a transformation £ = x(x) with
the same properties mapping it at the neighbourhood of the edge of a cube in variable x.

Next we make the following assumptions:

Al. 9QcH.,
A2. Ay (resp. A,) : [0,1]—10,1] is continuous and increasing (resp. decreasing), A (0)=
AO( 1) = O, AWAO(Z)|Z €(0,1) 75 O, il’lfze[(),l] A(Z) > O,
A3. T :(0,1]— %R, is onto, decreasing, and a locally Lipschitz continuous function, and
inf.e(o1y [T'(2)] >0, (AwAo/A)Y'(z) € L=((0, 1)),
A4 0<K e W'(Q), Ey,E, € L=(0,T; W'>°(Q)), P, € L>(0,T; W' (Q)), ki >N,
AS5. Sy, Sinit ELZ(O, T;HI(Q)) n CO’kZ(QT), 8/I“(Sb) ELI(QT), Sb, Sinit € (ka, 1 —k3), Sinit|F2 =
Solrr(t=0), @ € (ks,ks),
A6. max.cpo) |A(z) — 1| + |(ks/k3) — 1| <ks (ks is small and depends only on 2, K),
A7, AyAo(z) xz|l —z|\/ #(z) and #(z) x z™|1 —z|™ for z€(0,9)U (1 —I,1),
where k; (i=1,...,5),m,m; are positive constants, and ¥ € (0,1/8) is a number such that
J is increasing (resp. decreasing) in (0,7) (resp. (1 — 9, 1)).
Some remarks about the assumptions are given below: Al will be used to derive the
regularity of water saturation S and global pressure P around the edge T'y N T,. From A3,
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1264 L.-M. YEH

|Y’(z)| may tend to infinity as z— 0 or 1, a property for a capillary pressure function [2,4].
(AyAo/A)Y'(z) € L>°((0,1)) allows equation (1) to be a degenerate parabolic equation, a
characteristic of the porous medium equation (PME) [2,4]. A5 means initial and boundary
values of the saturation are away from the two end points 0 and 1. However, the saturation
inside the domain Q7 still can reach 0 and 1. The assumption Zrél[eOvl(] [A(z) — 1] < ks in A6

is used in Lemma 3.1 and |']§—§ — 1] < ks is used in Lemma 4.4. The explicit restriction of
ks can be found in Reference [2, p. 224, Theorem 4.2] and in the proof of Lemma 4.4.
A7 gives restrictions on water (resp. oil) mobility function and capillary pressure around the
neighbourhood of 0 (resp. 1). The assumptions on the two end points 0 and 1 are similar,
so one can expect water saturation in the neighbourhood of the two end points 0 and 1 has
similar properties. These properties are crucial in the regularity proof of saturation in this
work. Since we assume m,m; are positive constants in A7, no mild degeneracy is required.
Our main result is

Theorem 2.1 B
Under A1-A7, saturation S of (1)—(3) is Holder continuous in Q7.

Under A1-A7 as well as A € W'°(R) and Py, E.,E, € L>®(0,T;C*(Q)), we have
PeL>(0,T; Wh>=(£)) by Theorem 2.1 and Corollary 8.35 of Reference [9]. Therefore, by
Theorem 2.3 [7], we get uniqueness of weak solution of (1)—(3).

3. SOME AUXILIARY LEMMAS

We first derive regularized equations of (1)—(3). Let & be a small numb~er ~satisfying
0<e<ky/4. Extend A; (i=w,0) constantly and continuously to R and define A%, A® as

z—¢&

Kiz)= A, (0.5 (0'5 _'8>) . N@)=A2) + Ai2) (5)

By AS, there exist smooth functions S

init>

S¢ such that

k k : .
SSie (F1- %) Shulr =Sl =0) ©)
St St = Siniex Sy in L*(0, T; H'(R2)) N C™*+(Q7)
as ¢—0 (7)
0, Y(S¢)— 0, Y(Sy) in L'(Q7)
The regularized problem is: Find {S¢, P¢} satisfying
®0,5° € dual L*(0,T; %) (®)
e<S*<l —¢ )

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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A(S*) — R(SE), PP — P, L*(0,T;%) (10)
/ D0,S°C + / K(A:(S5)V(P° — Ey) + VR(S))VL=0 (11)
Jar or
KA(SHVPVE— S KANSHVENVE=0 (12)
or ic{w,o} JQT
S°(0,x) = Siyi (13)

for any {,E€L*(0,T;%). It is easy to see that for each fixed ¢ (11) is a nondegenerate
parabolic equation and (11)—(12) imply, if Si=1— 5%,

$0,S:¢ + / K(R:(1 = SHV(P* — Ey) — VR(1 — 52))VE=0 (14)
Qr Qr

By References [5,7,10,11], it is known

Lemma 3.1
Under A1-A6 and (6)—(7), (8)—(13) has a weak solution {S% P°} for each &. Moreover,
1P#]] o< 0,7m1% 0y 18 bounded by a constant which is independent of ¢, $* is Holder continuous
in Q7, and

as ¢—0

S¢—S pointwise and in L"(Q7),r <o
R(S?), P — R(S),P in L*(0,T; H'(Q))

where {S,P} is a weak solution of (1)—(3).

We shall prove that the Holder norm of S¢ is actually bounded by a constant which is
independent of e. If that is so, then by Lemma 3.1, we obtain S is Holder continuous and
complete the proof of Theorem 2.1. From now on, A1-A7 will be assumed throughout this
paper, and ¢ is fixed and dropped for convenience of presentation. Given any constant p >0,
define the cube

Ay = {xeé}%N D max |x,~|<p} (15)

For xe RV, ¥ + 4, denotes the cube of centre X. Also, for 6>0 a given number, define
2(0,p)=(—0,0) x A,. For (#,£) e RV 1, let (7,£)+2(0, p) be the cylinder congruent to 2(0, p);
ie. (£,8)+ 2(0,p)=({ — 0,) x {£ + A}. In (£,X) + 2(0, p), we introduce piecewise smooth
cut-off functions {(#,x) and &(x) such that both satisfy

{e[0,1], |V <oo, ltx)=0 forx¢i+ 4 (16)

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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For (€ L'(QF) and 0<h<T, introduce the Steklov average (; by

1 t+h

— {(tr,x)dr if0<t<T —h
Gi(t,x) = h/t

0 ift>T—h

(11) implies the following equation:

/.

P

0,8, ¢+ / K(VA(S) + A(S)V(P — Ex)) V=0 (17)
Hp

where #, is any compact subset of Q, 0<t<T —h, ¢ € H} (#,)NL2 (). Domain Q7 includes
three subregions:

QO ={(t,x) e Q" : S(t,x) <V}
o r U Y
sz (I,X)EQ . Z<S(t,x)<l—z (18)
A ={(t,x)e Q" : 1 —9<S(t,x)}
Next we derive energy and logarithmic estimates for the interior region Q7. For (£,£) € Q7

fixed, let 0 and p be small so that (7,%)+2(0, p) C Q. Define a set D@j’ip(r) as, for t€(f—0,1)
and for every level j,

ZiE (D)= {xet+ A (S —)+(r.x)>0} (19)
where
(S—j)+={Sj if $—j>0 o (S—j):{jS if §—j<0
0 otherwise 0 otherwise
Lemma 3.2

There is a constant d; (independent of &, 6, p,j) such that for every cylinder (7,X)+2(0,p) C QT
and every level j, we have

sup [ (SRl / FSILVES — ).

i—0<t<iJiva; (F)+2(0.)

<d, ( / PCRASGRE / F(S)S —D2IVEP
xX+7,

(£X)+2(0,p)
f
4 / (S —RLad + / |75 (1|17 de (20)
(£)+2(0,p) i—0 ’

where ( is a piecewise smooth cut-off function satisfying (16). Equation (20) also holds if
(£,X) + 2(0,p) is a subset of QI or QI. But for QI case, S in (20) should be replaced by
So=1-S.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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Proof
Without loss of generality, let (7,%)=(0,0). Take ¢ =(S, —j)+(* in (17) and integrate the
resulting equation over (—0,¢) for t €(—0,0) to obtain

/,o /l 205 g[’JF/0/%_(17<f(5)v3),,V</;
+ /, (KAW(S)V(P — Ey)) V=0 o

We now estimate each of the terms in (21). First, we integrate by parts in ¢, let #— 0", and
apply Lemma 3.2 of Chapter 1 [8] to see

. ' . o . ! O .
pim [ [ easisi-p.e= [ Je-per,- [ ] Je-pias
=0"J_g )y, % —0J%

Next, by Holder inequality,

h—0+

lim [ 0 /j KA (S)VSWV((Si — )+ )

1 /! t
25[0 IVEASHIES = Dlizp = [{) VK F(S)S =)+ VL)

Because 2(0,p)C Qf, by (5) and A7,

h—0+

lim [ 9 // KRSV = E)V(S~)-8)
1/ ) ! .
<3 | IVEASIS =Dl +er [ IVEFES =00 Vil

t
+C3/ / (|VP]> + |VEW)Z (s—i). >0}

where Z'((s_j), 0y 18 the characteristic function (see (4)). Now we combine the above results
with Holder inequality and Lemma 3.1 to obtain (20). If (7,X) + 2(6, p) C QF, Equation (21)
corresponds to a uniform (independent of &) parabolic equation. So we may repeat above
argument to obtain (20). If (7,X)+2(0,p) C QI, we use (14) and repeat above argument. Note
that Equation (11) around the end point 0 has similar properties as (14) around the other end
point 1. Therefore we can easily get the same inequality (20) as (7,X) + 2(6,p) C Q! case
except replacing S in (20) by S,. O

Let us define a function ¥ in (7,X) + 2(0,p) as
H;

U(H;, (S —j);,0)=1n"
( !5( ])+7 ) n 1{]_(S_j)++5

(22)

where Hj= sup ;) s, (S — 1)+ In" ¢ = max{0,In ¢}, 0 <0< min{1, H;}.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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Lemma 3.3
There is a constant d; (independent of &, 6, p,j) such that for every cylinder (7,X)+2(0,p) C QT
and every level j

sup q)‘llz(Hja(S - j)+75)(t3x)£2
f—0<t<tJi+H
< PU(H;, (S — )+, 0)f — 0,x)& + d; (/ S (YU (H;, (S — )1, 0)|VE?
A (£¥)+2(0,0)
+r7. f
_’_‘1 +1n52(1—11/5)‘ / |@j+p(f)|(12/k1)dr> (23)
-0 7

where ¢ is a piecewise smooth cut-off function satisfying (16). Equation (23) also holds if
(£,X) + 2(0,p) is a subset of QI or QI. But for QI case, S in (23) should be replaced by
So=1-3S8.

Proof
Let (£,X)=(0,0). For convenience, set

5

V) =Wl () )= I | P

(24)

By (22) and (24), we have O<y(S,)<In"(H/d),0<y/(Sy)<1/5,0<5<1. Since
W2)"(Sp) =2(1 + Y)W P € L2 (QT) by (22), we take ¢ =¢&> (Y*)(Sy) in (17) and integrate
the resulting equation over (—0,¢) for € (—0,0) to see

/. [, wos e / | KT

t
[ KRV - BonT(@yE) =0 (25)
Each term of (25) is estimated similarly as that for (21). First

i t 2V 22 13 ! 220 ) ) .
lim /_0 %¢51Sh(¢ Yo' = JE{)E/_O/% QoY E = // DYA(S)E ()"

h—0*

Next

lim /_ 9 /%(Kf(S)VS)hV((tp y )= /_ 6 // KASSI ) E2)

h—0+

t 2 IN2£2 ' )
>/ /%Kf(S)IVSI A+ e —a [ // KASWIVE

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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Since 2(6,p)Cc Qf, by (5) and A7,

tim [ [ (AP - BT

h—0*

1 [ ‘
<< VS e s )
<3/, [ Krerwstarpwres [ kssmve

! 2 2 IN2 22
e /9/%(|VEW| + VPR + ) Pé

Then, combine above estimates with Holder inequality and Lemma 3.1 to get (23). If (7,%) +
2(0,p)Cc QF, (25) is in uniform (independent of &) parabolic equation case and we may
repeat above argument to obtain (23). If (7,X) + 2(0,p) C Qf, we use (14) and repeat above
argument to get (23) except that S in (23) should be replaced by S,. O

4. HOLDER ESTIMATE OF REGULARIZED EQUATIONS IN INTERIOR REGION

In this section, we give a Holder estimate for S in the interior region of Q7. Let O( C QT)
be a closure of @ and let y*,@w be two small positive numbers satisfying

7 < min{1, #(9/2), #(1 = 9/2)} (26)

as well as (7,£)+2(y*~7,2y) C Q7 for any (7,%) € € and y <y*. Define " = sup ;¢ o202, S
'LL_ = inf(f,f)+32(},2—m,27) S, and (UEM+ — /,L_. By (9),

wo=0 or O<w<¥/2 or V2<w<l (27)

If =0, S is constant in (£,X)+ 2(7>~,27). So S is Holder continuous in (£,%)+ 2(y*>~7,2y).
The other two cases of (27) are discussed in Sections 4.1, 4.2 separately.

4.1. For 0<w<9/2 case
Since w<¥/2, we have ut <@ or ¥/d<pu~ <ut <1 —(9/4) or 1 —d<pu~. By (18),
Qr if pt<w

. L0 9

QF if1—v<p

4.1.1. For p* <9 case. Set M to be a constant satisfying M/2<ut* <M <¢ and define
/= #(M). Then =y or f<y~®. The former (i.e. f=7~7) implies, by A7,
w<cy”m (29)

for a constant c. The latter (i.e. <y~7) means 2(f7%,7) C 2(y*>~7,2y) and is discussed below.
Note (7,%) + 2(y*~7,2y) C QF here.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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4.1.1.1. First alternative

Lemma 4.1
For any /; >2, there is a v; €(0,1) (depending on /; and data but independent of 7, £, &, u*, ™=, y)
so that if 2(fy%,7)C 2(y*~7,2y) and
A g 2 . — w 19 2
{exn) e @)+ 2827 Sx)<u™ + o b <nl2(Bry)
o (-2 (30)
5| s

then S(£,x)>p~ + (w/2/1*) for (t,x) € (£,X) + 2(B|y/2|%,7/2). See (4) for a.

Proof

After translation we assume (7,%) = (0,0). Define y, = (y/2)+(y/2""'),n=0,1,2,.... Construct
a family of nested cylinders 2(fy2,7,) and let {, be a piecewise smooth cut-off functions in
2(By3,7n) such that

0<Gu(tx)<1 for (t,x) € 2(Byz.71)
anl in Q(ﬁyﬁ+1:yn+l)
(=0 on the parabolic boundary of 2(8y2,7,)
211+2
Vi<
IViil<e . 31)
7(n+2) |2
|ACn‘<C
1 |20+ )2
0<0 Qs’
TR
Define in 2(y*~7,2y)
_ )
¢E max {S,M + W}
. ) ) B
h=u +W+W’ n=0,1,2,...
s
T — (& .
7)== [ (max (e + 57) i) _ae
Then
(S 1 AN Tw w Sy w
7( )_§|(¢_ln)*| T\ T ( —u _W>_
07 (S)= — (¢ —jn)-0:S
o 2 (32)
~
J’(S)SC‘F’
. . )
(¢ —Tn)-<(S —h)-<77

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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We now take (= — (¢ —j,)_% 2pryn 0 (11) and estimate each term as follows: By
(31)(32),

- / B( — §,)_L0,5 = / BF(5)(0) / BF(8)0,02
Q(ﬁy%’?’n ) '%n Q(ﬁ?ﬁﬂ?rt )

1 cl2"w|?
> [ 50l -in-Pao- 51520 [ e
/}{,n 2 ‘ ‘ ﬁ y2{] Q(ﬁ}%f/n) {(¢ " >0}
. KVAS)V((P —i)-C3)

2Brzon)

> / K (VG — i)
2By2,ym)

2"w
V2

. C
- / K($ — i) _VASIVE - &
2Py2.m)

2
X 1(hp—i)_ >0

B /ﬂ(/f"rﬁf/n) {(¢=in)- >0}

If pw=<ip®, then p*<2w. So F(M/2/*O)< g(ut/2/3)< #(Pp). If iut<pu~, then

J(M/4)< #(u*/2)< #(¢). Therefore, by A7, we have #(¢)=(1/)[1/2%[™ in 2(fy;,7n).
Note 0<2(S) — Z(u~)<(S — u~)#(S) for S€(u.in). By (31)~(32), (28);, and A7,

/ K(¢ — i) _VA(S)VE = / K($ — i)V (A(S) — (1 )V
2(By2m)

2By2,0m)
_ A )~ ANV i)
2(By2.pn

2"w

24

KISV — i) P+ 5

2
X {(p—i)- >0}
B /Q(ﬂvi,vn)

<
4 oz

/ KR (S)V(P — E))V((¢p —ju)-02)
2By2m)

1 .
<; | KISV -i)-PE
2PByvn)
2 0
c|2"w
=5 X - dt+d g (0)|0-2k0 g
+ﬁ 72" /zz(ﬂ;xﬁ,m (G-in->0 6T F l/ﬁyi ir (7 ’

where di =d (K, ||VP, VEy|| =74 ))- Combining above estimates, it is not difficult to see

. e .
sup / 2 i) det 2| / V(G — i )P
—pr2<t<0.J., B |201+6 ﬂ(ﬂ;’ﬁ,vn)‘ |
<C|2e 2/ x dv +d /0 7 (0)|(1-2%) dr (33)
SB 10| Sy, (OO AT

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289
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We claim

lim %{(S,jn)7 >0} dr=0

00 A(By2m)

If so, since j, \(joo =u~ + (w/2/17*), this would imply

H(tx)eﬂ(ﬂ‘z

and proves the lemma. Change variable z = ¢/ which transforms 2(f7y2,7,) into 2, = 2(2,7,)
= [_Vﬁa 0] X '%/"}n‘ Deﬁne ¢(Z7 ) = ¢(Zﬁa ')s gn(za ) = Cn(zﬁa ')’ @n(z) = {X € ’%/“n : ¢(Z,X) <jn}
and |Z,|= fg/z |2,(z)| dz. Equation (33) can be written as

: ) S(tx)y<p~ +2,]+4}’_0

18,08 —i)- 3o, <c2mr+® <| | 12+ 8 / 12,(0)] - ”"“dr) (34)

Since fn((]g — jn)— vanishes on the lateral boundary of 2,, by Corollary 3.1 of Chapter 1 [8]
we have, by (34),

|D i1 . A,
sy |57 | <l =it P12l <1 = 8- )

<16 — )12, <l = i) 130, 2

< cm(1+6) (‘ 2"w

> |j |(N+4)/(N+2)+ﬁ‘ |2/(N+2)/ |j (’E)|(1 2/k1)d,[> (35)
201 2

Define Y, =1|2,|/|2.|, Z Oyz|@n(r)|“_2/kl)dr)l/(”“), where o is defined in (4).
Divide (35) by |2,.1]| to obtain, by (30),,

Y’1+1 <sz(/1+6)42n(Ynl+(2/(N+2)) 4 YnZ/(NJrZ)Zr}Jra)’ n— 0’ 1’ 2, o (36)

Next by the embedding of Proposition 3.3 of Chapter 1 [8]

||C,,((,l') ]n) ”Lq'(,z)
%,

[ C I A R

Zn+l (]n - jn+1 )2 < |
nt1

where r=2(1 + a)€[2,0), g=r/(1 —2/k;)€[2,2N/(N — 2)]. Therefore
Zy <2™FO4(y, 4+ 71 n=0,1,2,... (37)
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By (36)—(37) and Lemma 4.2 of Chapter 1 [8], it follows that lim,_,, ¥, = lim,_ ., Z,=0,
provided

Yo + Zg”gvz ‘czm(/1+6)‘7(1+1)//1472(1+oc)/).2 (38)
See (4) for J. By (30); and Zy <Y, if we select v, satisfying v, + v} "4 =y, then (38)
holds. So we complete the proof of the lemma. O
Lemma 4.2

For any 7, >2, there exist numbers v; €(0,1),17; €(1/2,1) and ; > | (depending upon ¢,
and given data but independent of 7, X, &, u*, u=, ) so that if 2(By,y)C 2(y*~,2y) and

A A _ (03}
{exn e @+ 2827 Sx)<u™ + o b <nl2(Bry) (39)
then either
w<l, yNot/(2+m) (40)
OF €SS 0SC(; ¢y a(3/212/2) S M-
Proof
Assume (40) is violated. By A7 and Lemma 4.1,
w
inf S>u" + —— 41
Gorvaran S F T 20 “h)

From (41) and definition of u*, we get esso0sCie o212 S<(1 — (1/2179))w. So the
lemma follows with #; =1 — (1/2(1*9), O

4.1.1.2. Second alternative. In this subsection, we shall fix /; (so v; is fixed as well) and
assume that (39) of Lemma 4.2 is violated, i.e. for the subcylinder 2(By?,7)C 2(y>~7,2y)

w
20

Since u* — (/2" )=u~ + (w/2") for all /;>2, (42) implies

{mre@ +a829) : Sex)<um + -} > w2870 (42)

{exre@) + a8 s =ut = -} < —wlagry) (43)

In view of (43), we will study the behaviour of S near its supremum u* and work with the
truncated function (S — j), for the levels j=ut — (w/2/""),n>0.

Lemma 4.3
Under (43), there is a time level ¢* € [f — By, — By*v1/2] so that

er,%,:S(t*,J?er)Z;fr - %H < (ll_v:);2> | A5

See Lemma 4.2 for /;,v, and (15) for 4.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289



1274 L.-M. YEH

Proof
If not, for all ¢ € [f — By%,7 — By*vi/2],

1—v
. . ~ > + _ 2 71 g A
(e seitnzn — 5> (1_v1/2>%| 9
Equation (44) implies |{(t,x)e (£,%) + 2(By%7) : S=ut — (0/2)} > — v)|2(By% 7)),
contradicting (43). 0

The above lemma asserts that at some time level ¢*, the set where S is close to its supremum
occupies only a portion of the cube #;. The next lemma claim that this indeed occurs for all
time levels near the top of the cylinder (7,X) + 2(By%,7) C Q.

Lemma 4.4
Under assumptions of Lemma 4.3, there is a positive number n (depending only on the given
data) such that either

-2
pyV =1 (45)

w
‘ 2(/14n)

or, for all t€[f — By*vi/2,f],

er%fy:S(t,ijx);W_%H < (1 ~ ’%1 2)

where /,=/; +n.

Proof

For convenience, we set X =0. Because of (28);, we use (23) of Lemma 3.3 written over the
box (¢*,7) x A, for the function (S — j); with level j=u" — (w/27"). The number § in (22)
is taken to be 6 =w/2'*". Thus we have

H;

—In" !
V) =0 e S T i = (027 + (@2 ™)

(46)

where Hj= sup;g), o(p2,) (S — (u+ — (w/21)))+. Note ¥ =0 on {S<u™ — (w/2/1)} and

. N/1+n
O<\If<1n*%<nln2 (47)

The cut-off function x — £(x) is taken so that (16) holds, £=1 in the cube 4#(;_4),, 6<€(0,1)
and |V¢|<(ay)~!. With these choices, Lemma 3.3 gives

f
sup/ @\Ifz(t,x)dm/ SU(*,x)dx + d / w
7 <t<EJ Hi—oy, Az oS ())

H:2/i+n f
=y |@,-,t,(r)|<”/"'>dr> (48)
i

1+In

2‘

)
+la
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Using Lemma 4.3, (47), { — t* <fy?, and (45), we estimate the right-hand side of (48) and
get

l—vl
1—V1/2

k
sup / W x)dx < nin2f (49)
Hi—oy 3

t*<t<f

. c
|4+ —n

where ¢ is a constant depending on given data. Left-hand side of (49) is estimated below by
integrating over the smaller set {x € #(i_,), : S(t,x)>p" — (w/2/1")}. On this set,

/20

2 2

=|(n—1)In2J? (50)

Equations (49) and (50) imply that, for all ¢ € (¢*,7),

2
n 1—V1
n—l‘ ’1—\)]/2

. + w k4 ¢ )

Also note, for each fixed ¢ € (¢*,1),

15} . w
er,%f,:S>u+— 2/1+n}‘ < l{x€=%/(l—a)~,;:S>ﬂ+_ 2/1+n}’+N0

By A6 and letting ¢ small and n large (depending on the given data), above estimates imply
the lemma. n

Next we focus on the cylinder (7,X) + 2(f7%v1/2,7). Introduce following notation:
Br=v1p/2
Bi(t)={xet+ A, : S(t,x)=u" — w/2"} (51)
G ={(t,x) € (£,3) + 2(p17*/2,9) : S(tx) =t — 0/2'}

The information of Lemma 4.4 will be employed to deduce that the set where S is close to
its supremum p* within the cylinder (7,X) + 2(f17%/2,7) can be made arbitrary small.

Lemma 4.5
Under assumptions of Lemma 4.4, for any v, €(0,1) there is a number /3 (depending on
vi,v2,71,¢> and given data but independent of 7,%, e, u*, u~,7) such that if

-2
pr¥<1 (52)

i)
|3
then |%,,| <v2|2(B17*/2,7)|.

Proof

Set (7,)=(0,0). Use (20) of Lemma 3.2 written over box 2(B;y%2y) for the functions
(S —§)+. The levels j are given by j=u* — (w/2"), where /,<i</; and /3 is to be chosen.
We take a cut-off function { such that (16) holds, equals 1 in 2((f:/2)y%,7), vanishes on
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the parabolic boundary of 2(f;7%,2y), and satisfies |V{|<1/7,0<0,{<2(B1y*)~". Neglect the
first term on the left-hand side of the energy estimate (20) to obtain

/ FS)IVES — )il
2((B1/2)9%)

1 0
= e RO (53)
Biv* Japiny) g

By (51); and (52), we estimate left- and right-hand sides of (53) to obtain

a2 (5) (54)

where ¢ above depends on given data only. Lemma 4.4 implies, for 7 € (—f7?,0),

/ VSP<e / SV — ). P <
2(B1/2)r%7)

(55)

2
7

{xes i sen < -2 =141 - 121> |5

See (51) for #,(t). Next we use (55) and Lemma 2.2 of Chapter 1 [8] applied to the function
S(t,-) for all time —(B;/2)y*<t<0 and for the levels k=pu" — (w/2)), I=pu* — (w/2),
[ —k=w/2"" to obtain

c Mt

w
ﬁ|93i+1(1)| S¥l VS| (56)

| Bi(O\Bis1 (1)

Integrate (56) over (—(f1/2)7%,0) to get

w cy cy
grltal < [ vsI<SGVEN Gy [ rose (57)
1 JY9\Yin 1 Yi

By (54), (57) gives

|gz+l|

o (Gra)io g (58)

Above inequalities are valid for all /,<i</5;. We add them for i=/75,/, + 1,...,/5 — 1.
The right-hand side of (58) can be majorized by a convergent series bounded above by
|2((B1/2)y%,7)|. Therefore (/5 — £2)|%s)> <(c/v])|2((B1/2)y*,7)*. To prove the lemma we
divide by /3 — /, and take /3 so large that ¢/vi\//5 — /2 <v,. O

Next we show that indeed S is strictly below its supremum u* in a smaller box coaxial
with (,X) + 2(B17%/2,7) and with the same vertex.
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Lemma 4.6
Under assumptions of Lemma 4.4, there is a number /4 (independent of 7,%, &, u*, u=,7) so
that if

-2
pir <1 (59)

(0]
-
then S(t,x)<pt — (w/2/%4) for (1,x) € (£,8) + 2((B1/2)[7/27,7/2).

Proof
Set (£,£)=(0,0). We use (20) of Lemma 3.2 written over the boxes 2(f17%/2,7,) to the
function (S —j,)., where

- Y Y .4 (0)] (6)]
Yn= 2 + on+1’ Ih= T 0htl T Dl

for n=0,1,2,...

The cut-off functions {, are taken to satisfy

0<u(t,x)<1 for (£,x)€ 2(B172/2,7,)
Cn: 1 in Q(ﬂl?i+l/zayn+l)
(=0 on the parabolic boundary of 2(B17%/2,7,)
n+2 (60)
Vi <c
(n+2) |2
0<0,(, < i ‘ 2
B b

With these choices, (20) of Lemma 3.2 gives

. 1 )
sup / 2GS - + / V(S — )
A, 3(ﬁ173/2f/n)

—piy2/2<t<0 ﬁl

«(

Next, in the cylinders 2(f17%/2,7,) we change variable z=2¢/f; which maps 2(B1y2/2,7,)
intO "Qn = [_’yi’o] X ‘%“}n' Settlng ¢(Z’ ) = S(Zﬂl/za ')7 Cn(za ) = Cn(zﬂl/za ')a 9}’l(z) = {x S ’%;’n
(;AS(z,x)>j,1}, and |2,|= fg/z |Z2,(2)| dz. Inequality (61) can be rewritten as, by (59),

Con

2"w
V2

2 0

1

*/ %{(Sfin>+>0}+/ 7, (O de (61)
B 2(B172/2,9n) -

2n

N w |2
18 = i)+ 1170, <€ ’274‘ ( o

Vn

2 0
EA +V_N“/ Qn(f)|(l_2/k])df> (62)

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1261-1289



1278 L.-M. YEH

Equation (62) and Corollary 3.1 of Chapter 1 [8] give

2 ~
|@n+l ‘ < ‘]n - jn+1 |2|9n+1 | < ||(¢ - ]n)+ HEZ(@H,)

1 w
22(n+2) ‘ 24

<G, (¢ — jn)+||22(;z,,) <cll(, (¢ — jn)+||i‘(9n) AR

w22 1+Q/(N+2 N 2/(N+2 0 1-2/k
<c‘274‘ 21 HAND) 4 =N g 21 +>/ 120 de

Tn

Define Y,=\2,|/|2.|, Z,=(1/|4;,
inequalities as Lemma 4.1,

) [°, |Z,(0)| 124D dr) () we have the recursive

Yn+l <c42n(Ynl+(2/(N+2)) + Yn2/(N+2)Zn1+oc)
for n=0,1,2,...
Zy <cA (Y, + Z,7)

It follows from these with the aid of Lemma 4.2 of Chapter 1 [8] that Y, and Z, tend to zero
as n— oo, provided Yy + Zl* <v=c(+0/24=2040/2 See (4) for 1. Then continuing as the
argument of the proof of Lemma 4.1 and using Lemma 4.5, one can choose /4 and complete
the proof of this lemma. ]

The results of the second alternative imply

Lemma 4.7
Under assumptions of Lemma 4.3, there are numbers 7, € (1/2,1) and I, > 1 (independent
of £,%,& pu", u~,7) such that either & <Ly ™™ or ess0SCy ¢y a2 ly21202) S <20

We combine Lemmas 4.2, 4.7 with (29) into

Lemma 4.8
If y<y*, 0<w<19/2, and put <49, there exist constants

n=max{n,n}€(1/2,1) and [=max{/;,5}

that are determined by given data and independent of 7,%, &, u*, u~, 7, such that either
o < min{fymin{N/ Mo} 9/9% o1 €8S 0SC )1 a((p/2) 21202 S SHO.

4.1.1.3. Hélder estimate. Using notations of Lemma 4.8, we define
My=ut>w
. ; 0,
®; = min {max{na},Iymm{N“/(Hm)’“’/m}}, 2} (63)
My = max{, SUp ). o /201212720 St
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Lemma 4.9
There is a constant d>1 (determined by given data) such that ¢(M,)<d_#(M;).

Proof

If oy =19/2, then #(My)<d #(M;) by A7. If w; <9/2, then w; =nw. Therefore if w, <19/2
and p~ <ipt, then My<2w<2w,/n<2M,/y. So #(My)<d #(M;). If vy <9/2 and ™~ >2,u ,
then My/2 =put/2 <u~ <M. Therefore, #(My)< #2M,)<d #(M)).

Let us estimate from below the length of the cylinder 2((f1/2)|y/2|?,7/2) for which the
conclusion of Lemma 4.8 holds. We have, by (51),

2

B
] 4/(Mo)‘2‘ /4df(M1)‘2’ f(Ml)

Pujvp?
2

where ;1 =+/(vi/16d)y=./y. So 2(y}/ #(M1),71) C 2(B1/2)]7/2%,7/2).

Lemma 4.10
There are constants a,.«/ € (0,1),n€(1/2,1) and / (depending on given data but independent
of £,%,e,u",u=,7) and it is possible to construct a sequence, for n=0,

72
wy=w, My=u", =7y, & =2 (/(Mo) Vo) (64)

and, for ne N,

2
A yn
Wy, Ep—1, M, = max q w,, sup S}, Vo= A Yp—1, éanBZ( ,Vn)
{ (ER)+En1 S (M)

such that, for all €N,

€SS 0SCir ). 4, | S <, = min{max{nw,_,Iy;_},9/2}
(65)
EnCEn 1 CEY

Proof

This is proved by induction. Let (7,£)=(0,0). Take a= min{N«/(2 +m),w/m}, .o/ is the
one defined in the remark after Lemma 4.9, and 5,/ are the ones in Lemma 4.8. For
i=0 case, wg,My,7,8¢ are given in (64). By (63), Lemma 4.9, and remark after Lemma
4.9, we get wl,é"o,Ml,yl,ofl and it is easy to see that they satisfy (65). Assume that the
sequence is obtained up to i=n. We reset u*=sup; S,u”=inf; So=pu" — pu".
By (65), o< w,.
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(1) If M,=w, and sup;  S<M,/2, we pick
Wy = min{max{nw,, [y2},9/2}
é’;]n = @@n

M, 1= max{a)nﬂ,supgcn S}t (66)

Vn+1 = %yn

2
— g Vi1
=2 (ﬂMM)’V"“)

Since essosc; S<w,/2<nw,<w,i1, (65)1 holds. Also note if w,;1=1/2, then

J M) < J(My11), and if Wp+1 <9/2, then J(M,)= #(®,)< J(0p1/0) <A J(My11).
Therefore, we have &, C &,. So we prove (65),.
(2) If M,=w, and M,/2<sup; S<M,, we repeat the proofs of Lemmas 4.1-4.8 to

see that if w,;; = min{max{nw,,[y2},9/2}, (o%,,z:2((v1/4j(M,,))|yn/2\2,y,,/Z) then, by

(63),
essosc; S< min{max{nw,y;},9/2} <wpi
N ’)}2
E,C2 Ly, | =&
' (J(Mn) ”") '
Define M, 1, yns1,Ens1 as (66) and argue as Lemma 4.9 to get &, C é},,. So we prove
(65).
(3) If M,,=sup; S, one repeats the proofs of Lemmas 4.1-4.9 as case (2), and it is
easy to get (65). 0
Lemma 4.11

There exist constants a,.o/,d €(0,1), n€(1/2,1), and / (depending on given data but inde-
pendent of 7,%, &, u*, u~, y) such that if n<.o/?, then

_ €esso0sC S<c(n,a, o, 1)|wo+ yhl
(£3)+0(p*/ # (Mo).p)

r
Yo
for all cylinders Q(p?/ #(My),p) and 0<p <75 <o (see (64) for wy, My, 7). Here 7 depends
on Yy, y, and given data only.

Proof
Let (£,X)=(0,0). By (65), w,,1 <nw, + Iy*. By iteration,

n—1 .
Wy <" + 15 3 o /X0
i=0

Since n<.o7?,
W, <o + nl |po.of™|* (67)
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For any p € (0,70+/), there exists an integer n, (depending on p) such that
Yo" < p <ot (68)

Equation (68) implies

ny<—— ! 1;<np+l

In .o/
m 1 (69)
np< —1 p h EAIBL
0" <n " where 01 =1 —
We take y§ <7yo so small that, for p<y;,
a/2
‘ln p o
Yo p (70)
QMV$HD0

Here y§ depends on yy,y, and given data. Equations (68), (69);, and (70), imply that if
P<75s
pa

I|yod™ P <ol ™2
np|y0 ‘ |1 Jf|

n 2 ‘ <c(a, o, 1)) p*? (71)

Therefore, (67), (69),, and (71) imply o, <c(n,a,./,1)|wo + 3||p/p0]” where o=
min{a,,a/2}. Note 2(p*/#(My),p)C &, by (68), (70);, and the construction of &, in
Lemma 4.10. So we prove the lemma. O

4.1.2. For ¥/d<p <ut<l—9/4 and 1 —9<yu~ cases. For 9/4d<u <pu" <1 —9/4 case,
(1,%)+ 2(y*77,27) C QI by (28),. Equation (11) corresponds to a uniform (independent of ¢)
parabolic equation in (7,£)+ 2(7>~,27). So we may repeat above argument to obtain Lemma
4.11. For 1 —9<pu~ case, (/,%) + 2(y*77,2y) CQF by (28);. Since Equation (11) around
the end point 0 has similar properties as (14) around the other end point 1 (see remark in
Section 2), we use (14) and repeat above argument to get the same conclusion as Lemma
4.11. In summary, Lemma 4.11 holds for 0 <w <1/2 case.

4.2. For 9/2<w<1 case

In this section, we shall prove that if ¥/2<w<1 and if y is small enough, lower (resp. upper)
bound of saturation S is greater than O (resp. less than 1), and the lower and upper bounds
are independent of ¢. If this is the case, we are in case (28), again and Lemma 4.11 can
be shown by following the argument in Section 4.1. Define f~'= = Sup,- <e<,r F(&). Since
w=1/2, by (26),

"7 < min{ 7 (9/2), #(1 = 9/2)} <B7'< sup 7(&)

0<éxl
So 2(y*,7) C 2(y*~7,2y) for all y<y*.
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Lemma 4.12
Under y<y* and w>7/2, there is a v; €(0,1) (depending on given data but independent of
£,X,e,u*, u~,y) such that (1) if

) w
l5=2, 275 <90, o PN <1

{xre@d +2879) 80 <5 | <vsl287)

then S(¢,x)>w/2/5** a.e. in (£,%) + 2(B|y/2|%,7/2), and (2) if

w 72
et yNa < 1

—/s
/5 = 2, 2 < 19’ 2/5

{ane@o + 287 : S0 >1- 21| <vl2ry)

then S(£,x)<1 — (w/25%*) ae. in (£,%) + 2(Bly/2%,7/2).

Proof
Proof is almost same as that of Lemma 4.1. O

Lemma 4.13
If ©(<T), /(=2+/y=4)eN, and k,/2/0 <4, solutions of Lemma 3.1 satisfy

co|cot|/ =%
sup{xeQ:S(tx)<wor 1 —w<S(t,x)}| < (72)

1<t (¢ — L) —10f
where lim/_,, fy=1, w=k,/2’ and ¢, is a constant independent of 7,7, .

Proof 5
Define Ly, L.w, Zw as

0 for 2w<z
Lw(z)=<z—2w for w<z<2w

—W for z<w

0 for ¢(2w)<z
ZLew(z)= 42 —c(2w) for ¢(w)<z<c(2w)

c(w) —¢(2w) for z<g(w)

. 1 for w<z<2w
Aw(z)=

0 otherwise
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where
_ [P A,
>(Z)=/O.5 A(i)d&f, ze(0,1) (73)

Then Z(z)=Z)(z)= Z.(c(2)), (d/dz)e(z)=(A./A)z). By 2w<k,/2 and (10), both
Lo(S), Lw((S)) ELXO, T ). Take { = L(S),E= L.w(c(S)) in (11)~(12) to obtain, by A4,

/ DL w(5)0,S — / KAy(S)Zw(S)VY(S)VS <ci / KAWZw(S)|VS] (74)
(9 Qr O

where constant ¢; is independent of w,e. If er DLw(5)0,S =0, (74) implies

/ KAZ (S)|VS<02\// K|dT/dS|(S) \//QTKAWEZ‘W(S)WS (75)

where constant ¢, is independent of w,¢. Equations (74)—(75) imply

/@gw(S)aS\q/ K‘dT/dS‘(S) (76)

Define Zy = fzsw Zw(z)dz. Equation (76) implies

OO, = dZL, <
/r 0, / (8)o,S< 63/ K|dT/dS|(S) (77)
Equation (77) and A7 yield that, if 0<t, <6, <T,

%) [5)
/ / DO, 7y <cs / / Z (78)
4 Q 41 Q

where ¢4 is independent of #,%,w,e. Define 97(W,T)E(1/w2)supt<T fQ Zw(t,-). A5 and (78)
imply that, for 0<t, <, <T,

F(W, ) — F(W,t1)<cs(t — 1) F (2w, 1) (79)

where ¢s is independent of #,,%,,w,¢. By induction and (5), one obtains, for jeN, jA<T,

k, . - - k, .
7 <2§,Jh> <(C = Lo+ 1Y esh|! =T <2/20,]h) (80)
If j=(/—/0)/log(/ — /o) and T=jh in (80), then
k, lest|/ =/ k2
y(z/f) ST —towi? \ 2T (81)

where f; —1 as /— oo. Define Z(¢t)={xcQ: S(t,x)<w=Kk,/2’}. Equation (81) implies

k, celest|/ 70 kz
a p 772 _= _—
s [ Fa<cs (2”) STty T \aat

where ¢¢ is independent of 7,7, w,&. So proof for one end point of (72) is completed. Proof
of the other end point of (72) can be proceeded in the same manner, so we skip it. O
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By Lemmas 4.12 and 4.13, one can conclude:

Corollary 4.1 B
There is a /¢ (depending on given data and @ but independent of &) such that if 7>/,
y=1[9/2!* |2+ and 9¥/2 <, then

)

S(tx)<1 — ——

— <
2/+5 2/+5

for any (t,x) € (£,X) + 2(B|y/2|>,7/2) and (,%) € O

Similar to the case where 0 <w<1/2 and ¥/4 <u~ <p™ <1 —(9/4) hold (i.e. (28), case),
Corollary 4.1 implies that Equation (11) corresponds to a uniform (independent of ¢) parabolic
equation in (7,X)+ 2(B|y/2[?,y/2) for (i,X) € O. So we may repeat the argument in Section 4.1
to get the same conclusion as Lemma 4.11 for w>1/2 case. Combining (27), Lemma 4.11,
remark in Section 4.1.2, Corollary 4.1 with a standard covering argument, we get uniformly
Holder continuous for S over any compact subset @ of Q7.

5. HOLDER ESTIMATE OF REGULARIZED EQUATIONS
ON PARABOLIC BOUNDARY

In this section, we give a Holder estimate for S on parabolic boundary of Q7. Basically, the
estimate can be shown by following the proof for the interior region. Therefore we only give
a sketch of the proof. The idea to treat parabolic boundary can also be found in Reference [8].
The boundary consists of Dirichlet boundary (I'}), Neumann boundary (I'), edge (I'7 NT7),
and initial boundary (7' =0). They are discussed below:

5.1. Dirichlet boundary, Neumann boundary, and edge

We first derive a result similar to Lemmas 3.2 and 3.3 for Dirichlet boundary. Fix (7,£) €T}
and consider the cylinder (7,X) + 2(0,p), where 0 and p are so small that 7 — 0>0 and
{(4,%) + 2(0,p)} N 0QT cT'T. Then we modify the interior quantities in (19), (22) as

@ji(t)z{xe{)@—f—%}ﬁg (S = +(t,x)>0} (82)

i

U(HE,(S —j)s,0)=In"
(H{,(S = §)+,9) AF (5 1)s 0

(83)

HE ‘

where I-AI!jE = SUP{(i0)+ 2000 (S—1)+ and 0<0 < min{l,I:Iij}. In (£,£)+2(0, p), we introduce
a piecewise smooth cut-off function (¢,x)— {(t,x) satisfying (16). We observe that for all
te(t — 0,f),x— {(t,x) vanishes on the boundary of ¥ + #, and not on the boundary of
{X+ 4,3 NQ. Local energy estimate for S near (7,X) are obtained by taking ¢ = & (S, —j)+ (>
in (17), integrating over (7 — 0,7) and letting #— 0. Such a choice of testing function is
admissible if for a.e. € (f — 0,7),

(S, 1) = D+ C(t ) e Hy({£ + A} N Q) (84)
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Since x — {(#,x) vanishing on the boundary of {X + .#;} and not on the boundary of
{X+ #,} N Q, condition (84) needs to be verified whether for a.e. 1€ (7 — 0,7),

(S5 — i)+ =0 in the sense of the trace on boundary of {X + 2,} N Q
This can be realized for the function (S, —j). if j is chosen to satisfy

iz sup Sh (85)
{(X)+2(6,p)}NT%

Analogously, the function —(S, —j)— can be taken as testing function in (17) if

i< inf S (86)
{{E5)+2(0,p)}NTT

With these choices of j, we may repeat calculation in all analogous to those of Lemma 3.2

and derive energy inequality for S near I']. Analogous considerations hold for a version of

the logarithmic estimates along the lines of Lemma 3.3. We summarize

Lemma 5.1

There is a constant d (independent of ¢, 0, p,j) such that for every (7,%) € T'l, every cylinder
{(£,%) + 2(0,p)} N QT C QT satisfying 7 — 0>0 and {(7,X) + 2(0,p)} N QT cT'I, and every
level j satisfying

§= SUp((; ¢ a0ppnrr So - for the function (S, — )+ )
i<infy; e a0pynrr So for the function (S, — j)-
the following inequalities hold:
swp [ sepiee [ VS — )l
(—0<t<iJ{f+A,}NQ {(6)+2(0,p)}NQT
i
<d ( / (S —DAC(E - 0,x) + / |, ()20 de
{#+2,3N0 -0
+f (SS)S —PRIVEP +(5 - i)ica,o) (88)
{(i6)+2(0.,0)} N7
sup VXHE(S = )2, 6)(8,x)E(x)
—0<t<iJ {3+4,}NQ
207+ . 2 2
<d (/ WH(H; (S — )+, 0)(f — 0,x)8(x)
{F+,}NQ
+ SSYUHF (S ~)2.0)|VEP
{(B6)+2(6,0)}n07
1 + ﬁsi C o (1—2/ky)
+§ 1 +1In = /{_9 |2;,(7)] drz (89)
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where (,¢ are piecewise smooth cut-off functions satisfying (16). Equations (88)—(89) also
hold if {(£,X) + 2(0,p)} N QT is a subset of QI and Q. But for QO case, S in (88)—(89)
should be replaced by S, and proofs of those results are required to use Equation (14).

Now take a cylinder (7,%) + 2(y*~7,2y), where >0 is so small that 7 — >~ >0
and {(£,%) + 2(y*77,29)} N Q" CT]. Assume (7,X)=(0,0). Set u* = sup,..-oynar S,
p=inf (20 2,)n0r S, @ = pu" —u~. The Dirichlet boundary problem is studied by considering
the following four cases:

. k2 ) . k2 )
— < < <] — —
min { , } S sSU s 1 min { , }

(90)

Not above three cases

For (90), case, we define f~' = sup,- .. (&) and let 2(f)%,7) C 2(y*~7,2y) for all y<y*.
Set uf = SUP 5,2 e Sbs My = I0f (g2 yerr S, @p = W — 1y - If the two inequalities

+
b

)
+
H _FSM

>

" 122 (91)
Wt 5 >ty

are both true, subtracting the second from the first gives w<2wy. If (91); is violated, then
the levels j=u™ — (w/2"), i=/, satisfy (87);, and we may derive an energy estimate for
(S —1J).. Since (S —j), vanishes on 2(By%,7)N 0T, we may extend it to the whole 2(fy%,7)
by setting it to be zero outside Q7 within the box 2(fy2,7). Thus conclusion of Lemma 4.4 is
satisfied by (S —j),. We then use Lemma 5.1 and argue as Lemma 4.5 to deduce that for all
v, €(0,1), there are positive numbers 7,73 that are dependent on given data and independent
of #,%,&,u, u=,7 such that either o <Iy*? or

{xre 2872 80> = -} <val2Br?/2.9)

An application of Lemma 4.6 now gives

Lemma 5.2
There exist constants />1 and n€(1/2,1), dependent on given data and independent of
f,%,& 1", u=,y, such that either ess 0sca(pa)p2p2,2) S < max{nw,2wm,} or o <IN,

If (91), is violated, one can use Equation (14) and repeat the above argument to get the
same conclusion as Lemma 5.2, and then argue as Lemmas 4.9-4.11 to show the locally
Hoélder continuity of S.
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For cases (90),3, local Holder continuity can be proved by following the arguments in
Section 4.1. If (90),,5 are violated, then we first show S is bounded away from the two end
points by using the arguments in Section 4.2, and then follow the argument for (90), case to
show the local Holder continuity of S.

Proof of Holder continuity of S on Neumann boundary I'7 and edge T'T NT7 is a straight-
forward modification of that for Dirichlet boundary.

5.2. Initial boundary

Again we first derive a result similar to Lemmas 3.2 and 3.3. Fix (£,X) € Q" and consider
the cylinder (7,%) + 2(,p). Therefore (7,%) + 2(7,p) lies on the bottom of the cylindrical
domain Q7. Consider the cutoff function ¢ satisfying (16) and independent of ¢. Local energy
estimates for S near =0 are derived by taking ¢ = & (S, — j)+&* in (17), integrating over
(0,2),£€(0,7), and letting & — 0*. The first term in (17) gives

1 . 1 .
[ s Ren2i- g [ e - R0
[e4y) o)

If j is chosen so that j> sup e} Sinit, then we have

l/ (S, — D2(0,x)Edx—0 as h—0*
2 Jg+m

By (83), it follows that
UXHF,(Sh =)+, 0)(,x) =0 whenever (S, —j)+ =0

Thus if j= sup e} Sinit, then
[ WS- 900080 50 as o0t
{4}

Analogous considerations hold for (S, —j)_&2. We summarize

Lemma 5.3
There is a constant d (independent of ¢, 0, p,j) such that for every cylinder (Z,X)+2(0,p) C QT
satisfying 7 — 0 =0, and every level j satisfying

i=supge, oy S for the function (S, —j)+
’ (92)

i<inf ety S for the function (S, —j)_

the following inequalities hold:

) 2
sup /{M}m(s PDRE + / FS)EV(S — sl

f=0<t<i {(FH)+2(0.0)} 07
i
<d (/ f(S)(S—i)i|Vf|2+/ Ipr(f)l(l_z/kl)dT) (93)
{ER)+2(0.p)} QT —0
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sup VA(HF,(S = §)2. 6)(6,x)E(x)
—0<t<iJ {f+H,}NQ

<d (/ S(S)U(H,(S—i)+,0)|VEP
{(E0)+2(0.0)}NQ7

1 HF| .
+5 1+ln+7’/ |@fp(r)|“—2/kl>dr> (94)
i—0

where ¢ is a piecewise smooth cut-off function satisfying (16). Equations (93)—(94) hold if
{(£,%) + 2(0,p)} N QT is a subset of QF and Q. But for QI case, S in (93)—(94) should be
replaced by S, and proofs need to use Equation (14).

Fix (0,%) € {0} x © and construct the cylinder (0,%)+2(y>~7,27) = (0,%)+(0,7>~7) x A3, C
Qr. We assume £=0. Set 4" = SUpj 20y S, =i 500, S, @=p" —u~. We consider
the following four cases:

. k2 ) _ . k2 )
m < 2\ < <ut<l—m <
m{4’4}\'u <<l ln{4’4}

ﬂ+<min{k2,ﬁ}
2°2 (95)
l—mln{kzz,g} <p-

Not above three cases

For (95); case, we define f~'= Sup,- ce<, F(E) and construct the box R E
(0, %) % A5 C (P77, 29). Set = Sup,;. Sinits iy = inf; Sints Oinit = i, — iy and con-
sider the two inequalities

w
W= 5 <M

o (=2 (96)
#7 + F >:ui;jp

If both of (96) hold, subtract the second from the first to obtain w <2wj,;. If (96); is violated,
then the level j=u" — (®/2"), i=¢; satisfies (92);. By Lemma 5.3, we have energy and
logarithmic estimates for the truncated functions (S — j);. Using the logarithmic estimate
(94) and proceeding as Lemma 4.4, one can show that for any v, €(0,1), there are positive
numbers /,,/ (depending on given data and independent of ¢) such that either

o<y (97)

or, for all 7€ (0, $y?), [{x € # : S(t,x) = p" — (0/2"2)}| < 2| #;|. By the energy inequality (93)
and the procedure of Lemma 4.6, we conclude that if (97) does not hold, then it is easy to
derive €ss0SC; 5, 012,0) S S120. If (96); is violated, we use Equation (14) and still proceed
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as above. To summarize, going down from 2(y>~7,2y) to the smaller box 2(f|y/2|% 7/2), the
essential oscillation of S decreases by a factor of #, unless either <2wjy or o <IyN*2.

Lemma 5.4
There exist constants n<(1/2,1), I (depending on given data and independent of 7,x,e¢,
wh,u~,y) such that either ess 0SC g1y 2p2.92) S S max{nw, 2wy} or o <IyN*2,

Then we argue as Lemmas 4.9-4.11 to show locally Holder continuity of S.

For cases (95),3, one can follow above arguments to prove locally Holder continuity. If
(95)125 are violated, then we first show S is bounded away from the two end points by using
the arguments in Section 4.2, and then follow the argument for (95), case to show the local
Holder continuity of S.

The regularity of S on the boundary 02 at =0 can be proved by Al and a straightforward
modification of above argument, so it is skipped.

6. HOLDER CONTINUITY IN WHOLE REGION

From results of Sections 4, 5 and standard covering argument, one can see that S are Holder
continuous in Q7 for all &. Moreover, their Holder bounds are independent of ¢. By Lemma 3.1,
the limit function S in Lemma 3.1 is also Holder continuous in 7. So we prove Theorem 2.1.
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