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The intrinsic spin Hall conductivity is obtained for a two-dimensional electronic gas �2DEG� in the
presence of strain, Rashba coupling, and an external in-plane applied magnetic field. The conduction
electrons of �001� oriented quantum well are used to model the 2DEG. The spin current value is
dependent on the stress applied in direction �111�. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2234742�
The spin current in the spin Hall effect means a flow of
spin angular momentum perpendicular to an applied electri-
cal field with a spin accumulation of opposite magnetization
at each edge of the sample and no net charge current. The
spin Hall conductivity �SHC� has both intrinsic �absence of
scattering� and extrinsic �induced by scattering� contribu-
tions. The intrinsic spin Hall effect was recently predicted as
being generated by the splitting of conduction or valence
bands, which is induced by intrinsic spin-orbit
interactions.1–3 The spin Hall effect has been detected in ex-
periments dealing with strain effect,4 and there are reports
which place the spin Hall current in the intrinsic regime.5–8 It
seems that a general agreement exists regarding the vanish-
ing of the dc SHC of two-dimensional electronic gas �2DEG�
with k-linear Rashba coupling and parabolic dispersion in
the absence of magnetic field and the presence of scattering,
even in the limit of weak disorder.9,10 On the other hand, in
clean samples �where the transport scattering rate �−1 is small
compared to the spin-orbit splitting � expressed in time
units� modeled by a Rashba �k-linear� spin-orbit coupling,
one finds an intrinsic dc SHC value of e /8�, independent of
details of the impurity scattering, for ac electric field of fre-
quency � in the range �−1����, in the usual case where
both spin-orbit split bands are occupied.7,10,11 Avoiding
speculation that the above intrinsic SHC value would gener-
ally be obtained for all k-linear coupling systems, we calcu-
late in this work the intrinsic SHC of a specific k-linear
coupling system, namely, a 2DEG in the presence of strain,
Rashba spin coupling, and in-plane magnetic field. Though a
more realistic model would involve the presence of impuri-
ties and consideration of finite-size effect and of electron-
electron interaction, clean samples are considered as experi-
encing prominently an intrinsic spin Hall effect7,8 and thus,
this theoretical work is motivated from experimental point of
view. The 2DEG is obtained using a simple quantum-well
�QW� model.12 We consider for discussion the case of �001�-
oriented QW and stress applied in �111� direction.

Firstly, the model of 2DEG is described. Secondly, the
intrinsic SHC is calculated with numerical data matching
InAs semiconductor. Thirdly, conclusions regarding the spin
current are drawn.
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For the electron Hamiltonian in the conduction band, we
consider the following Hamiltonian:

H =
P2

2mc
+ V�z� + HR + HP + HB, �1�

where the first two terms describe the orbital motion of the
electron confined in the z direction �perpendicular on the xy
QW plane� by the V�z� potential. In Eq. �1� e is the elemen-
tary charge, mc is the electron effective mass, P=p+eA, with
p=−i��� /�x ,� /�y ,� /�z , � the canonical electron momentum,
A=zB�sin � ,−cos � ,0� is the vector potential, B is the am-
plitude of magnetic field B, � is the angle between B and x,
and x is the direction of the electric field. HR=�� ·�R /2,
with �R=�R�P	n� /�, is the Rashba spin-orbit coupling,�R

is the Rashba coupling factor, n is the unit vector of the z
direction, and 
i with i=x ,y ,z are the Pauli matrices in the z
representation. HP=�� ·�P /2, with �Px= �a��xyPx−�xzPz�
+b�Px��yy −�zz��� /�, is the bulk Pikus interaction �responsible
for the strain effect� written for �001�-oriented QW, a and b
are constants which determine the magnitude of the
splitting,13 and �ij is the ij component of the strain tensor.
Strain applied in directions �001� and �110� does not yield a

z component of the strain Hamiltonian �an effective mag-
netic field in the z direction�. On the other hand, strain ap-
plied in �011�, �101�, or �111� direction induces such a com-
ponent. The strain Hamiltonian for �011� or �101� direction,
even for the simpler case B=0, introduces an additional pa-
rameter, e.g., exxzz=b��xx−�zz� /2 for �011� direction of the
applied stress �for this case the Hamiltonian reads HP=
−exxzzpy
y −eyzpy
z�. In the case of �111� direction of the
applied stress the only one necessary strain-dependent pa-
rameter exy facilitates discussion and interpretation of pos-
sible experimental results too. This case of �111� direction of
applied stress, where �xx=�yy =�zz and �xy =�yz=�xz �Ref.
14�, is considered by this work. HB=�x
x+�y
y with �x
=2−1
BgB cos �, �y =2−1
BgB sin � is the Zeeman term, g is
the effective g factor, and 
B=e� / �2m0� is the Bohr magne-
ton. For a less computational effort we consider a semipara-
bolic confinement potential shape in the z direction, namely,
V�z�=mc�E

2z2 /2 for z�0 and V�z�=� for z�0; the
Schrödinger equation for the orbital motion in the z direction
yields wave functions of harmonic oscillator, confined by
V�z�, having a displaced origin of the z axis.15 Noticing that

momenta px and py are constants of the motion for H given
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by Eq. �1�, the effective Hamiltonian H̄ is obtained by a
quantum average over the wave function of the ground state
of the orbital motion in the z direction �1�z� and of the free
motion in the xy plane. The effective Hamiltonian reads

H̄ = �2�kx
2 + ky

2�/2mc + 3��0/2 + �x
x + �y
y + �z
z,

where �x=�x+�R��1+rf�ky, �y =�y −�R��1+rf�kx, �z

=�Rrf���kx−ky�+ ��s−�c�z̄� with �x=�x+�R�1+rf��cz̄, �y

=�y −�R�1+rf��sz̄, �c=eB cos �, �s=eB sin �, rf

���xy /2�R, and �0
2=�E

2 +�c
2, with �c=eB /mc. The magni-

tude of rf may be modified by adjusting the values of stress.
The electron spin precession around the momentum-
dependent effective magnetic field is a useful tool for a men-
tal visualization of the spin Hall effect. In our discussion the
effective magnetic field in the z direction changes the explicit
form of Bloch equations �as proposed by Ref. 2� used to find
the SHC. A supplementary tilt of the precession axes �absent
in the case of strain applied in �001� or �110�� has an impact
on the value of spin Hall current.

The present analysis of the spin Hall effect of electrons
in QW structures is based on the Kubo formalism for a spa-
tially homogenous electric field.16 Next, we provide an ex-

pression of the spin Hall conductivity for the Hamiltonian H̄
in the narrow QW limit, z̄→0. The narrow QW limit case
can capture the physics of the problem17 and the amount of
algebra necessary to solve this case is moderate. The corre-
sponding Hamiltonian, which models the present problem,
reads

H̄ =
�2�kx

2 + ky
2�

2mc
+

3��0

2
+ ��x + �R��1 + rf�ky�
x + ��y

− �R��1 + rf�kx�
y + �Rrf��kx − ky�
z. �2�

For zero temperature and noninteracting conduction-band
electrons the spin Hall conductivity is given by


xy
Sz��� =

e�

A
�

k,
�
�

�f
,k − f
�,k�

	
Im��k,
�jx

S,z�t��
�,k	�k,
��vy�
�,k	�
�E
�k� − E
��k���E
��k� − E
�k� − �� − i��

.

�3�

where f
,k is the T=0 K Fermi distribution function for en-
ergy E
�k� at wave vector k in a dispersion surface labeled
by 
=±, and A the xy area. The velocity operators are given
by v= i��H	 ,r� /�, where r is the position operator and �¯	
means a quantum average over �1�z�. The spin current op-
erator for the spin moment polarized along the z direction
and flowing in the y direction when an electric field is ap-
plied in the x direction is given by the generally accepted
expression jxy

S,z=4−1�
zvx+vx
z�. The eigenvalues E±�k� and
eigenvectors �k , ± 	 of Hamiltonian H are as follows:

E±�k� =
�2k2

2mc
+

3��0

2
± 
�1 + �2, �4a�

where �1= ��R��1+rf��2�kx−ky�2, �2= ��R��1+rf��2k2

−1 2ticle is copyrighted as indicated in the article. Reuse of AIP content is 
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�k, ± 	 =
1


1 + �±
2��± exp�i�±�

1
� , �4b�

where �±= ��R��1+rf��kx−ky��
�1+�2 /
�2� and sin �±=
−��R��1+rf��kx−ky��
�1+�2���R��1+rf�kx−�x� /
�2�±.

A general analytical expression of the spin Hall conduc-
tivity may be obtained in the framework of the above 2DEG
model. The presence of stress in �111� direction makes the
two surfaces E±�k� crossing only for particular orientations
of the magnetic field, namely, �=3� /4 or �=−� /4 at k0
= �k0x ,k0y�. These magnetic field orientations are obtained by
imposing �1�k0�=�2�k0�=0 in Eq. �4a�.18 For the following
discussion, we will consider this crossing surface case. With
the translation of the origin defined by k=K+k0, the cross-
ing of the surfaces E±�K� in the K frame by the Fermi energy
EF yields contours which are found with

KF±
± =

− AF± ± 
AF±
2 − 4BF

2
, �5�

where AF±=
2k0�cos �+sin ��±2�−1mc�R�1
+rf�
rf

2�1+rf�−2�1−sin 2��+1, BF=−2�−2me�EF−3��0 /2�
+k0

2, and � is the polar angle in the K frame and k0= �k0�
=
BgB / �2��R�1+rf��. As KF±

± must be positive real, condi-
tion AF±

2 −4BF�0 must be fulfilled. For the simplest case,
BF�0ÛEF��2k0

2 /2mc, with Eq. �5� one finds the integral
contour defined by K� �min KF±

+ , max KF±
+ �. The intrinsic dc

SHC obtained with Eq. �3�, within the limits, �→0, and then
�→0 is


xy
Sz =

e�3�R�1 + rf�
Amc

	 �
k

�f+k

− f−k�
kx��+�1 + �−

2�sin �+ − �−�1 + �+
2�sin �−�

�E+�k� − E−�k��2�1 + �+
2��1 + �−

2�
. �6�

The integral form of Eq. �6� in the K variable for the cross-
ing surfaces case reads


xy
Sz =

e�

16�2mc�R�1 + rf�

	

0

2�

d�

min KF±

+

max KF±
+ dK

K

cos ��k0x + K cos ��
rg

2�1 − sin 2�� + 1

	� rg�sin � − cos �� − 
rg
2�1 − sin 2�� + 1

1 + �−
2

−
rg�sin � − cos �� + 
rg

2�1 − sin 2�� + 1

1 + �+
2 � , �7�

where rg�rf�1+rf�−1. In the limits B→0 and rf →0, the
model Hamiltonian from Eq. �2� describes the 2DEG with
k-linear Rashba coupling and parabolic dispersion, and the
expression of intrinsic dc SHC from Ref. 15 is recovered.

The plane of Fermi energy, which determines the inte-
gration contour in Eq. �7�, is chosen as being situated above
the crossing point of the branches �in this case integration is
independent of EF, see Ref. 19�. An energy description of the
problem can be found in Ref. 15. Figure 1 shows the intrinsic
dc SHC obtained by integration of Eq. �7�. We find that the
intrinsic dc SHC is practically independent of the in-plane
magnetic field for usual values of the magnetic field, B
ct to the terms at: http://scitation.aip.org/termsconditions. Downloade
� �0,10� T. As shown in Fig. 1 the intrinsic dc SHC may be
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changed by applying stress in direction �111�. Thus, the spin
current ranges between 0, for 
xy

Sz =0, and maximum value,
for 
xy

Sz =e /8�. From experimental point of view, an impor-
tant conclusion is that by variation of rf �induced by varia-
tion of stress� in the interval �−1,0� the spin current is modi-
fied from zero to the maximum value in clean QW samples.
On the other hand, for values of rf out of the interval
�−1,0� the variation of the intrinsic dc SHC decreases with
the applied stress. Consequently, the accuracy of controlling
the spin Hall current also decreases with the applied stress.
The model described by the Hamiltonian of Eq. �2� predicts
�by an analytical integration of Eq. �7�� that 
xy

Sz�rf → ±��
=e / �
38��.

Interesting is the fact that the anisotropy itself of the
dispersion branches is not sufficient to induce a strain-
dependent spin Hall current. In Ref. 20, for a similar model
excepting stress presence, but considering scattering effect,
increasing electron density �corresponding to increasing
Fermi energy� yields a less pronounced variation of the dc
SHC �intrinsic plus extrinsic component� with the in-plane
magnetic field. This is not in contradiction with the indepen-
dency of the intrinsic dc SHC of k-linear Hamiltonian with-
out effective magnetic field in the z direction, when the
Fermi energy level is situated above the crossing point.15,19

The z component of the effective magnetic is necessary to
obtain a strain-dependent value of intrinsic SHC. On the
other hand, a remarkable analogy between the effect of strain
on SHC of 2DEG and strain-induced spin relaxation of the
electrons of conduction band for the bulk case may be ob-
served: a stress applied in �001� direction has an effect on

FIG. 1. Variation of intrinsic dc SHC with the parameter rf. The Fermi
energy EF=2.7�2k0

2 / �2mc�+3h�0
2 /2 is situated above the crossing point of

the two branches E±�K�. The following numerical values are used: B=5 T,
g=15, mc=0.024m0 �m0 is the electron mass�, �R=91 156 m/s, rf =0.5, B
=10 T, and �=3� /4.
neither intrinsic dc SHC nor spin relaxation time �as calcu-

ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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lated in Ref. 13�, but the stress applied in direction �111�
affects both quantities. As the two phenomena, the spin Hall
effect and spin relaxation are considered for QW and bulk,
respectively, this analogy does not hold for the directions
�011�, �101�, and �110�. The three directions are equivalent
for the bulk treatment of spin relaxation, but not for the QW
case involved by our discussion on the spin Hall effect. Only
directions �011� and �101� induce an effective magnetic field
in the z direction and consequently can generate a strain-
dependent intrinsic dc SHC.

In conclusion, for a 2DEG, in the presence of Rashba
coupling and the absence of Dresselhaus coupling, we pre-
dict that the intrinsic dc SHC is dependent on both the in-
plane magnetic field and applied stress. For �001� direction
of QW generating the 2DEG, the intrinsic dc SHC changes
between 0 and the universal constant, 
xy

S,z=e /8� as a func-
tion of the magnitude of stress applied in �111� direction,
when the in-plane magnetic field is oriented at angles �
=3� /4 and −� /4 from the dc electric field direction. Con-
sequently, the magnitude of the intrinsic spin Hall current
may be controlled by applying stress in direction �111�.

The authors are grateful to M. C. Chang and A. G.
Mal’shukov for numerous helpful discussions. This work is
supported by the National Science Council of Taiwan under
Contract No. NSC 0940033709.
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