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Abstract: This paper proposes a real-time human identification system 
using a pyroelectric infrared (PIR) detector array and hidden Markov 
models (HMMs). A PIR detector array with masked Fresnel lens arrays is 
used to generate digital sequential data that can represent a human motion 
feature. HMMs are trained to statistically model the motion features of 
individuals through an expectation-maximization (EM) learning process. 
Human subjects are recognized by evaluating a set of new feature data 
against the trained HMMs using the maximum-likelihood (ML) criterion. 
We have developed a prototype system to verify the proposed method. 
Sensor modules with different numbers of detectors and different sampling 
masks were tested to maximize the identification capability of the sensor 
system.  
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1. Introduction 
 

A biometric system is an intrinsic pattern recognition system that ensures personal 
identification by evaluating the authenticity of a specific physiological or behavioral 
characteristic possessed by the subject. In conventional biometric systems, the complex 
structure of certain body parts (e.g. a human iris, human fingerprints, face, or hand geometry) 
are measured optically, analyzed digitally, and a digital code is created for each person. 
Recent advances in optical and digital technologies, biometric sensors, and matching 
algorithms have led to the deployment of biometric recognition systems in a variety of 
security application [1].  

When a human walks, the motion of various components of the body, including the torso, 
arms, and legs, produces a characteristic signature. Human walking motion is a complex 
process and it is difficult to decouple the individual biomechanical contributions in a motion 
cycle for an analysis. From the thermal perspective, each person acts as a distributed IR 
source whose distribution function is determined by the shapes and the IR emissions of the 
components [2]. Combined with the various idiosyncrasies in how an individual carries 
himself, the human thermal signature will impact a surrounding sensor field in a unique way. 
The average human frame radiates about 100 W/m2 of power, which peaks at 9.55 mμ  [3, 4]. 
There is a constant heat exchange between a human body and the environment due to the 
difference in their temperatures.  

The Pyroelectric infrared (PIR) detector is sensitive in a range of 8~14 mμ  and is able to 
detect humans within a fairly reasonable distance (<15 m).  PIR detectors have been used in a 
wide variety of applications [6-8]. In our previous study, we used a PIR detector whose 
visibility was modulated by a Fresnel lens array to capture an analog feature of human 
walking motion [9, 10]. The spectra of the sensor response data generated by a human 
walking along a fixed-path were used to distinguish individuals.  In this paper, a PIR detector 
array with masked Fresnel lens arrays is utilized to generate digital sequential data that can 
represent a human motion feature. This digital feature based system using PIR detectors is 
insensitive to the velocity over the angular velocities between 1.1 rad/s and 3.1/s [8]. A 
feature model is based on the statistics of the on-off patterns of the sensor array for a walker 
who can walk at different speeds during the training stage.   

Although IR cameras with large numbers of pixels are also capable of advanced 
positioning and control, they are inevitably associated with high data-loads, computational 
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costs, and much higher system costs. Sensor systems based on the PIR detectors with coded 
masks, on the other hand, can achieve the desired identification capability at low data-loads, 
computational and system costs. These pyroelectric detectors are available in either single 
element or dual element versions. A single element detector responds to any temperature 
changes in the environment and therefore needs to be thermally compensated to remove 
sensitivity to ambient temperature. In this study, we used the dual element PIR sensors. Dual 
element detectors have the inherent advantage that the output voltage is the difference 
between the voltages obtained from each of the elements of the detector which subtracts out 
environmental effects [5]. Therefore, the performance of this human identification system is 
robust to the environmental temperature, and suitable for both indoor and outdoor working 
environments.  

Hidden Markov models (HMMs) are a widely used tool for sequential data modeling. 
Although the basic theory and inference tools were developed in the late 1960s [11, 12], 
HMMs have been extensively applied in the last decade to such applications: speech 
recognition [13], DNA and protein modeling [14-16], handwritten character recognition [17, 
18], gesture recognition [19], and behavior analysis and synthesis [20]. In this study, we use 
HMMs to model the digital features generated by a sensor module. An example sensor 
module with modulated visibilities is illustrated in Fig. 1. The sensor array is distributed 
vertically, in an expectation that each sensor can capture the thermal dynamics of a different 
part of a walker. The geometry is actually 1-D and the sensor is not sensitive to anything but 
entry and exit from the detection region. The sensor module can sample the IR fields 
produced by humans and convert the pyroelectric response signals into digital sequential data. 
For each registered subject, an HMM is built during the training phase. In the testing phase, 
the set of trained HMMs are then used to estimate the identity likelihoods of a newly 
generated signal, for either path-dependent or path-independent human identification. 

 

 
 

 
 
 
 
 
 

Fig. 1. A sensor module (Model 4M) and its visibilities that associate detection regions and the 
four sensors. 

Lens Array      Visibility 
1     [1 1 1 0 0 0 1 1 1 0] 
2     [0 0 0 1 1 1 0 0 0 1] 
3     [1 1 1 0 0 0 1 1 1 0] 
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2. Hidden Markov models and multiple hypothesis testing for human identification  
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Fig. 2. The diagram of the identification process. 

 

Figure 2 outlines the identification process. It has two phases: training and testing. In the 
training phase, we construct an HMM for each registered subject. In the testing phase, the 
association likelihoods of an unknown sequence with a set of trained HMMs are estimated 
and the identity of the subject is then obtained by choosing a model with the maximum 
likelihood value.  

2.1 Hidden Markov Models (HMMs) 

Hidden Markov models (HMMs) can be characterized by a set of output distributions and a 
finite-state Markov chain. A first order HMM is defined by the following elements: 

M: the number of observation symbols; 
N: the number of states; 
T: the length of the observation sequence; 
 

1 2{ , ,..., }TS s s s= : the set of hidden states; 

1 2{ , ,..., }MV v v v= : the set of discrete observation symbols; 

{ }ijA a= : the state transition probability distribution, where 1( | )ij t ta P s j s i+= = = , 

1 ,i j N≤ ≤ ,  1 t T≤ ≤ , and  
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{ }iπΠ = : the initial state probability distribution, where 1( )i P s iπ = = , 1 i N≤ ≤ , and 
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For convenience, we can compactly denote the model parameter set by ( , , )A Bλ = Π . Then, 
an HMM can be completely specified by λ . 

 For the observation evaluation, let 1 2, ,..., TO o o o= be an observation sequence where 

to V∈ is the observation symbol at time t. Given a model λ  and an observation sequence O, 

the observation evaluation problem ( | )P O λ  can be solved using forward-backward 
procedure in terms of forward and backward variables which are defined as follows: 
 
Forward procedure: 
 
Forward variable: 1 2( ) ( ... , | )t t ti P o o o s iα λ= =  
 

( )t iα can be solved inductively: 
1. Initialization: 
 

1 1( ) ( )i ii b oα π= ,  1 i N≤ ≤ .                                                  (4) 
 
2. Induction: 
 

1 1
1

( ) [ ( ) ] ( )
N

t t ij j t
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j i a b oα α+ +
=

= ∑ , 1 1t T≤ ≤ − , 1 j N≤ ≤ .                         (5) 

 
Backward procedure: 
 
Backward variable: 1 2( ) ( ... | , )t t t T ti P o o o s iβ λ+ += =  
 

( )t iβ can be solved inductively: 
 
1. Initialization: 
 

( ) 1T iβ = ,  1 i N≤ ≤ .                                                    (6) 
 
2. Induction: 
 

1 1
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Finally, the observation evaluation can be written as 
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2.2 Model training 

In the training phase, the task is to find the model parameters that can fit best a set of training 
data. In our study, we use the expectation-maximization (EM) algorithm to find the 
maximum-likelihood (ML) estimate of the parameters of a HMM, given a set of observed 
feature sequences. This process is also known as the Baum-Welch algorithm. It can be 
described as follows: 
 
(i)    given an initial guess of ( , , )A Bλ = Π ; 

(ii)  the re-estimated algorithm and O are used to derive a new model ( , , )A Bλ = Π  with the 

property that ( | ) ( | )P O P Oλ λ≥ ; 

(iii)  replace λ  by λ  and repeat the re-estimation. 
 

In order to describe the procedure for estimation of HMM parameters, we first define 
( , )t i jζ : the probability of being in state i at time t and state j at t+1, given the observation 

sequence O and the model λ , is defined by 
 

1

1 1
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t ij j t t
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=
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We also define ( )t iγ  as the probability of being in state i at time t, given the observation 

sequence O and the model λ ; thus we can relate ( )t iγ  to ( , )t i jζ  by summing over j by the 
following equation: 
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Using  ( )t iγ  and ( , )t i jζ , the re-estimation formulas for A, B and Π are 
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1( )i iπ γ= , 1 i N≤ ≤ .                                                   (13) 

The re-estimation process iterates until the increase in ( | )P O λ  is small enough. The 

Baum-Welch algorithm is guaranteed to increase ( | )P O λ  with the re-estimated A, B and Π  
until the optimal point is reached [21].  
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2.3 Multiple Hypothesis Testing 

After the model training process, we will obtain K HMMs if there are K registered subjects. 
Therefore, for an unknown observation sequence X, we will have K hypothesis { 1 2, ,..., kλ λ λ } 
to test. Our HMM-based identification approach adopts the ML criterion, where an unknown 
sequence X is assigned to the model with the highest testing likelihood. The decision rule is  
 

, arg max{ ( | )}i i
i

X i p Xλ λ∈ = , 1 i K≤ ≤ ,                               (14) 

 
where iλ  is the HMM corresponding to the ith registered object. 

3. Experimental Results  

3.1 Feature Generation 

The most important aspect of a human identification system is to choose an appropriate 
feature that can distinguish individuals. In our study, we select the fixed length binary event 
index sequence generated by a pyroelectric sensor array as the digital human motion feature. 
Here, an event is defined as the thermal flux collect by a pyroelectric detector which exceeds a 
threshold, and can be associated with some specific motions of human subjects, such as 
moving across one or several adjacent detection regions. The event signals are generated by 
pyroelectric infrared detectors with periodic sampling masks on Fresnel lens arrays.  

Figure 3 shows the experiment setup. A sensor module, which contains 8 PIR detectors, 
is mounted on a pillar at a height of 80cm to sample the IR radiation from a subject. The 
sensory data were collected when different persons walked in the field of view (FOV) of 
sensors. The detector signal is converted to an event signal by signal processing techniques: 
matched filtering, threshold testing, and low-pass filtering. A threshold value has to be chosen 
for each detector, proportional to the noise level of that signal channel. If a processed signal’s 
absolute value is larger than the threshold value, the signal value is set to ‘1’, otherwise to ‘0’. 
The process of event signal generation is shown in Fig. 4.       

 
Fig. 3. The experiment setup. 
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Fig. 4. Event signal generation. (a) The response signals of a PIR detector. (b) Filtered signals. 
(c) Digitized signals. (d) Binary signals. (e) Event signals.  
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Fig. 5. Two 4-bit digital features (event index sequences) generated by two subjects walking 
along the same path. 
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Fig. 6. The corresponding decimal sequential signals of Fig. 5. 
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Fig. 7. The flow-chart diagram of digital feature extraction. 

 
This system was implemented using the TI’s micro-controller (MSP430149) and RF 

transceiver (TRF6901) module. The sensory data are processed on the embedded micro-
controller and the event index sequences are transmitted to the host computer via a wireless 
channel. Fig. 5 illustrates two 4-bit digital features (event index sequences) generated by two 
persons. Fig. 6 shows the corresponding decimal sequential signals of Fig. 5. It can be seen 
that the digital features generated by the two persons are distinctive.  

Figure 7 summarizes the procedure of digital feature extraction for the real-time human 
identification systems. The length of a feature sequence for real-time identification is fixed. 
When it reaches the preset length, the system resets itself and awaits the next batch of event 
sequences. These digital sequential data can be modeled in HMMs. The HMM characterizes 
the statistics of a finite-state sequence of training. The model parameters are initialized by a 
random guess and updated by the EM algorithm described in the previous section. There are 
two important parameters for HMM training: one is the number of states; another is the length 
of training sequences. The model with more states can describe more characteristics of the 
digital feature of an individual. However, when the number of states is increased, the 
computation cost will be much higher and an over-fitting problem may occur [22]. We choose 
the state number of an HMM for each individual after testing the identification capabilities 
with respect to different state numbers. When we increase the length of the training sequences, 
the identification rate can be improved at the expense of more training time. The selection of 
length of testing sequences requires a compromise between the identification rate and 
identification time. In the path-dependent case, we set the length to 2000 for the training 
sequences, and 200 for the testing sequence. In the path-independent case, we set the length to 
3000 for the training sequences, and 500 for the testing sequence. 

3.2 Path-dependent Recognition 

For the path-dependent recognition problem, the sensory data was collected while different 
persons walked back and forth along a prescribed straight path, 2.5 m away from and 
perpendicular to the sensor. The experiment setup is shown in Fig. 3. A sensor module, which 
contains 4 or 8 PIR detectors and Fresnel lens arrays, is mounted on a pillar at a height of 80 
cm to sample the IR radiation from the human target. The range of vertical field of view of the 
sensor module (8 PIR detectors) is 53~136 cm from the ground. Within this range, the sensor 
module can detect IR radiation from torsos, arms, and legs of normal-height humans at the 
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same time. A more detailed discussion on the sensor module location can be found in our 
previous paper [9].  

If the walker belongs to a predefined set of known walkers, it is referred to as closed-set 
identification. Adding a “none-of-the-above” option to closed-set identification gives open-set 
identification [23]. Fig. 8 (a) shows the experimental results of the verification (open-set 
identification). The digital features of five walkers were tested against one person’s HMM. It 
turns out that the person’s features can not achieve the maximum log-likelihood all the time. 
However, when we use the digital features of that person to check against all five persons’ 
HMMs (closed-set identification), the maximum likelihoods can always be achieved for that 
person’s HMM, that is, correct identification, shown in Fig. 8 (b). Therefore, it suggests that 
the proposed HMM approach is only suitable for the closed-set identification case.  

The poor performance of HMM approach in the verification case might be caused by the 
intrinsic statistical instability of the digital feature. The short testing sequences contain less 
statistical information and more uncertainty, whereas the HMMs, derived from much longer 
training sequences, contain enough statistical information to make reliable statistical 
inferences. Longer testing sequences might improve the system performance in verification 
and open-set identification. However, from the practical point of view it is not realistic to 
collect a long digital sequence to recognize a person. Therefore, in this paper we only 
investigate the case of using the digital feature for closed-set identification.   
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(b) 
Fig. 8. Log-likelihoods of (a) five walkers’ testing data against one walker’s HMM; (b) one 
walker’s testing data against five walkers’ HMMs.  
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(a)                                                                                (b) 
 

Fig. 9. Two sensor modules and their visibility matrices that define the detection regions of the 
four sensors. (a) Model 4L; (b) Model 4H. 
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Fig. 10. Average path-dependent identification rates as a function of the number of persons for 
the three types of sensor modules. 
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(a)                                                                                 (b) 
 
 

 
(c) 

 
Fig. 11. Three sensor modules with 8 sensor units and their visibility matrices that define the 
detection regions of the eight sensors. (a) Model 8L; (b) Model 8M; (c) Model 8H. 
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6     [0 0 0 1 1 1 0 0 0 1] 
7     [1 1 1 0 0 0 1 1 1 0] 
8     [0 0 0 1 1 1 0 0 0 1] 

 

Lens Array      Visibility 
1     [1 0 1 0 1 0 1 0 1 0] 
2     [0 1 0 1 0 1 0 1 0 1] 
3     [1 0 1 0 1 0 1 0 1 0] 
4     [0 1 0 1 0 1 0 1 0 1] 
5     [1 0 1 0 1 0 1 0 1 0] 
6     [0 1 0 1 0 1 0 1 0 1] 
7     [1 0 1 0 1 0 1 0 1 0] 
8     [0 1 0 1 0 1 0 1 0 1] 
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Fig. 12. Average path-dependent identification rates as a function of the number of persons for 
the three types of sensor modules. 

 
We assume that the mask with high spatial sampling can capture more detailed IR 

information generated by human motions. Fig. 9 shows two sensor modules with different 
sampling masks. Including the sensor module shown in Fig. 1, we have 3 types of sensor 
modules containing 4 detectors for path-dependent identification. These sensor modules with 
different spatial sampling masks are used to create detection regions of different sizes within 
the sensor FOVs. In the training stage, we constructed 10 HMMs for 10 persons. In the testing 
stage, each person was tested 20 times. The number of walkers along a fixed path to be 
identified is increased from 2 to 10 for each type of the sensor module, tested against 10 
feature models obtained from the training stage. The average path-dependent identification 
rates of the three different sensor modules with respect to the group size are shown in Fig. 10. 
We can see that the sensor module with high spatial sampling frequency has the best 
identification performance and the average identification rates decrease when the group size 
grows from 2 to 10. 

To improve the identification capability, we increased the number of PIR detectors in the 
sensor modules to sample more information in the IR field. Fig. 11 shows three different 
sensor modules with 8 detectors using different periodic sampling masks. With more detectors, 
we can obtain binary digital features in a higher dimension. The dynamic range of the 
observation for the HMM becomes 0~255 (8-bits). Fig. 12 shows the average identification 
rates of the three different sensor modules with respect to the person number. We can see that 
the model 8H has the best performance. It can achieve an average identification rate above 
90% for a small group of 10 persons. 

3.3 Path-independent recognition 

For the path-independent case, we used the same sensor setup as in the path-independent case. 
Each person in a group of 10 walked randomly inside a 9m× 9m room. We used the mask 
model 8H to capture the digital features for the path-independent identification case. Because 
of the randomness in paths, longer training sequences and testing sequences are needed. Fig. 
13 illustrates the impact of the length of training sequences and testing sequences on the 
identification rate. We can see little improvement in average identification rates for lengths of 
training data beyond 3000. For HMMs derived from training data of length 3000, testing 
sequences beyond 500 in length does not increase the identification rate. Therefore, for path-
independent recognition we chose the length of 3000 for the training sequences, and 500 for 
the testing sequences. Table 1 shows the closed-set path-independent identification results for 
10 walkers. It can be seen that in identification among 10 walkers the lowest identification 
rate is 60%, the highest is 95%, and the average is 78.5%. Fig. 14 shows the average 
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identification rates we obtained. Like in the path-dependent case, the identification rate drops 
as the size of the group increased in number of people. When the group size grows from 2 to 
10, the average identification rate decreased from 92.5% to 78.5%. This human recognition 
system is based on the IR radiation from the human bodies. Among all the factors that affect 
the human heat radiation, the cloth that walkers wear is the most important one. From the 
initial experiment results, the system recognition capability is invariant to the clothes with 
similar fabric. However, a person wearing clothes with different kind of fabrics (e.g., cotton 
one for training and then polyester one for testing) will degrade the recognition rate.  
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Fig. 13. Average identification rates for a group of 10 as a function of the (a) training 
sequences in different length; (b) testing sequences in different length. 

 
 

 
 
 
 
 

 

Sequence length of training data 

Sequence length of testing data 

Id
en

ti
fi

ca
ti

on
 r

at
e 

Id
en

ti
fi

ca
ti

on
 r

at
e 

#70893 - $15.00 USD Received 12 May 2006; revised 10 July 2006; accepted 10 July 2006

(C) 2006 OSA 24 July 2006 / Vol. 14,  No. 15 / OPTICS EXPRESS  6656



Table 1. Closed-set path-independent identification results for 10 walkers. 
 

Results Eve Jason Pai Bob Scott John Evan Arnak Mohan Yu 

Eve 

95% 

  

5% 

  

 

   

Jason 

 

90% 

   

20% 

  

10% 

 

Pai 
  

75% 10% 15% 

  

 

 

20% 

Bob 

5% 

 

10% 85% 

   

5% 

  

Scott 
    

70% 

  

15% 

  

John 

 

5% 

   

60% 10% 

 

15% 

 

Evan 

     

5% 85% 

   

Arnak 

 

5% 5% 

 

15% 

 

5% 80% 

  

Mohan 

     

15% 

  

65% 
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Fig. 14. Average path-independent identification rates as a function of the number of persons. 
 

4. Conclusion 
 

In our previous paper [9], the spectrum of a single PIR sensor’s temporal signal (analog 
feature) is used to represent the human motion features. This system is only suitable for path-
dependent human identification. In this paper, we proposed a digital feature based system for 
closed-set human identification. PIR detector arrays are used for generating digital sequential 
data to represent human motion features. The digital feature’s advantages are in its less rigid 
training process, decreased sensitivity to walking speeds, effectiveness in the path-
independent identification mode, and high data compression ratio for wireless data 
transmission. 

An HMM is constructed for each person by an EM learning process and used as a 
statistical feature model. A person is identified by testing an unknown digital feature against 
all the HMMs and selection based on the Maximum-likelihood criterion. Different number of 
detectors and different sampling masks in the sensor module were also studied to improve 
identification rates. The identification performance can be improved by increasing the number 
of detectors and the spatial sampling frequency of the masks. Among all the tested sensor 
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modules, the one containing 8 detector units and a high spatial sampling mask demonstrated 
the best performance. Its average identification rates for 10 persons are 91% and 78.5%, in 
path-dependent and path-independent cases, respectively.  

Our future work will include better selection of features and algorithms for the open-set, 
less cloth sensitive human identification and simultaneous multiple people recognition by 
using multiple sensor modules.  
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