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Abstract: Proteins “work together” by actually binding to form multicomponent complexes that carry out specific
functions. Proteomic analyses based on the mass spectrum are now key methods to determine the components in protein
complexes. The protein–protein interaction or functional association may be known to exist among the extracted protein
spots while analyzing the proteins on the 2D gel. In this study, we develop an agent-based system, namely AgentMul-
tiProtIdent, which integrated two protein identification tools and a variety of databases storing relations among proteins
and used to discover protein–protein interactions and protein functional associations, and identify protein complexes and
proteins with multiple peptide mass fingerprints as input. The system takes Multiple Peptide Mass Fingerprints (PMFs)
as a whole in the protein complex or protein identification. With the relations among proteins, it may greatly improve
the accuracy of identification of protein complexes. Also, possible relationship of the multiple peptide mass fingerprints,
such as ontology relation, can be discovered by our system, especially in the identification of protein complexes. The
agent-based system is now available on the Web at http://dbms104.csie.ncu.edu.tw/�protein/NEW2/.
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Introduction

Proteomics is the study of all expressed proteins in an organism.1

Proteins are the ultimate performers of important biological func-
tions in every type of living organism.2 Proteins “work together”
by actually binding, to form multicomponent complexes that carry
out specific functions.3 Therefore, protein identification is funda-
mentally important to the study of proteomics. The principle of
protein identification, using peptide mass fingerprints,4 is based on
comparing the list of experimental masses, with a database con-
taining the theoretical peptide masses of known proteins.2

Protein Identification

Several proteomic experimental steps are involved in the identifi-
cation of a protein. Unidentified proteins are separated by one- or

two-dimensional (1D or 2D) gel electrophoresis, and some protein-
specific attributes, such as molecular weight (MW) or isotopic
points,5 are measured. The separated proteins are digested with an
enzyme and the proteolytic peptides are measured by mass spec-
trometry (MS), to obtain peptide mass fingerprints.4

A protein sequence database is then searched to identify the
protein matching the PMF, MW and pI. Mass spectrometry, such
as matrix-assisted laser desorption and ionization,6 and electros-
pray ionization (ESI), as well as the newer spectrometers that are
available, have made it possible to analyze proteins, in small
concentrations, in a short time.7

Peptide Mass Fingerprinting is a protein identification tech-
nique, in which mass spectrometry is used to measure the masses
of proteolytic peptide fragments. The protein is identified by
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matching the measured peptide masses, with the corresponding
peptide masses, from protein or nucleotide sequence databases.
The simplest and most obvious scoring method for peptide mass
fingerprinting is to count the number of measured peptide masses
that have a corresponding entry in a list of calculated peptide
masses, within the theoretical mass spectrum of each protein, in
the database. Several protein identification tools, available on the
Internet, use this method of ranking the proteins in a database,
according to the number of matching peptides. For example,
PeptIdent (http://us.expasy.org/tools/peptident.html),1 PepSea
(http://pepsea.protana.com/Pa_PepSeaForm.html),8 and PepFrag
(http://www.proteometrics.com/prow/PepFragch.html)9 calculate
a score for the proteins in the database, according to the number of
matching peptides.7

Several of the available peptide mass fingerprinting programs
have introduced more sophisticated scoring algorithms. These
algorithms correct for scoring bias due to protein size, in which
larger proteins give rise to a greater numbers of peptides, such as
Mowse and MS-Fit (http://prospector.ucsf.edu/ucsfhtmle.2/msfit.
htm).6 They also correct for the tendency of smaller peptides in
databases to have a greater number of matches with searched m/z
values. Finally, some of these algorithms also apply probability-
based statistics to better define the significance of protein identi-
fication, such as ProFound and Mascot.

In contrast to the mass spectra of peptide maps, which contain
a protein’s global information, peptide fragmentation mass spectra
contain rich information on a small section of a protein.2 The
information on the sequence of each peptide enables identification
of a protein from a single peptide. Tandem mass spectrometry
(MS/MS) can further discover the actual peptide sequence and
improve the success rate of protein identification. There are several
approaches to using peptide fragment information for protein
identification. For instance, SEQUEST (http://thompson.mbt.
washington.edu/sequest/) uses data from uninterpreted peptide
fragment mass spectra (i.e., information from the whole mass
spectrum is used). A crosscorrelation function is calculated, be-
tween the measured fragment mass spectrum and the protein
sequences in the database, and used to score the proteins in the
database. PepFrag9 uses peptide fragment mass information in
combination with other mass spectrometric information, such as
amino acid composition, to identify proteins. Mascot10 uses the
same probability-based scoring algorithm for fragment informa-
tion as for peptide maps. It also supports the use of information
from several fragment mass spectra in the database search.

Identifying the Components of Protein Complex

It is known that proteins “work together” by actually binding to
form multicomponent complexes that carry out specific functions.3

The association of proteins with each other in cellular systems has
come primarily from two types of experiments. The first involves
the immunoprecipitation of a protein interest, together with any
associated proteins. The second major approach is the yeast two-
hybrid system.3

Application of the MS-based proteomic analysis offers a new
way to identify the components of multiprotein complexes.11,12

There are two general approaches for MS analysis of protein–

protein interactions and complexes. One is to resolve proteins on
a 1D SDS-PAGE gel stain, and to select the protein bands, digest
them, and analyze them via MALDI-TOF. Another approach is to
digest them directly (without first separating them from each other)
and then to analyze the peptide–digest mixture by MALDI-TOF
MS or LC-MS-MS.3 Other techniques in large-scale protein anal-
ysis identifying mixtures and multiple protein complex can also
found in refs. 13–16. Our prototype system MultiProtIdent17 tries
to identified multiple protein simultaneously, but drawbacks in-
clude: single protein identification may not as well as other iden-
tification tool, performance issues, and lock of interaction due to
few interaction databases. To further assist the identification of
multiple proteins (ex: protein complex), we have developed a new
tool namely AgentMultiProtIdent that can identify multiple pro-
teins simultaneously with assistance of the protein–protein inter-
action information from DIP (http://dip.doe-mbi.ucla.edu),18

STRING (http://www.bork.embl-heidelberg.de/STRING/),19

BIND (http://www.blueprint.org/bind/bind.php),20 and MINT
(http://160.80.34.4/mint/)21 databases.

System and Methods

Data Warehousing

AgentMultiProtIdent integrated four databases, comprising pro-
tein relationships: DIP (http://dip.doe-mbi.ucla.edu),18

STRING (http://www.bork.embl-heidelberg.de/STRING/),19

BIND (http://www.blueprint.org/bind/bind.php),20 and MINT
(http://160.80.34.4/mint/).21 The information contained in pro-
tein–protein interaction databases was used by AgentMultiPro-
tIdent to analyze relationships among unknown proteins.

The DIP18 database documents experimentally determined pro-
tein–protein interactions; up to June 2004, 44,349 interactions had
been documented, among 17,048 proteins. STRING19 is a database
of known and predicted protein–protein interactions. STRING
currently contains 444,238 genes in 110 species. BIND20 contains
archived information about interactions, molecular complexes, and
pathways occurring among proteins, RNA, DNA, and genes; up to
June 2004, 77,732 interactions had been documented, among
32,551 proteins. MINT21 is a relational database, designed to store
interactions between biological molecules. Presently, MINT con-
tains 18,115 interactions among 42,481 proteins. Table 1 shows
statistics relating to these four databases. Entries describing inter-
actions among proteins from mammalian proteomes are fewer than
those from yeast and fruit flies.

AgentMultiProtIdent also integrates gene and protein function
databases that offer more relationships among these unknown
proteins. The GO (http://www.geneontology.org/) database is used
by AgentMultiProtIdent, and is briefly described as follows. The
GO (Gene Ontology) database provides structured, controlled vo-
cabularies and classifications that cover several domains of mo-
lecular and cellular biology, which are freely available for com-
munity use in the annotation of genes, gene products, and
sequences. GOA (http://www.ebi.ac.uk/GOA) (Gene Ontology
Annotation) is an integrated resource of GO annotations to the
UniProt Knowledgebase. The GOA database uses the GO vocab-
ulary to provide high-quality electronic and manual annotations for
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gene products contained in UniProt (Swiss-Prot, TrEMBL, PIR-
PSD).5

Agent-Based System

Because each protein identification tool had a different user inter-
face, a program interface was created by integrating the summation
of the query options of several protein identification tools, acces-
sible on the Web, such as Mascot or PeptIdent. In this section, two
major technique issues are discussed. One is how to create an agent
to determine which parameters to search, in Mascot or PeptIdent;
another is how to obtain the result and save it.

First, we must determine how an agent sets the parameters to be
searched in Mascot or PeptIdent. An HTTP technique is used in
solving the method. The search script in Mascot and PeptIdent
Web server will only accept data in “HTTP MultipartPostMethod.”
Although most Internet packages such as the java.net package
provides basic functionality for accessing resources via HTTP, it
does not provide the full flexibility or functionality needed by our
agent application of multipart POST applications. Thus, we
adapted the freeware software package “Jakarta (http://jakarta.
apache.org/commons/httpclient/) Commons HttpClient compo-
nent” which provided an efficient, up-to-date, and feature-rich
package to implement the client aspect of the most recent HTTP
standards and recommendations. The MultipartPostMethod pack-
age in the HttpClient component accepted data in HTTP Multi-
partPostMethod, which solved this problem.

The second issue was how to obtain the result data from the
protein identification tools. Mascot saves the search results in a
“.dat” file; thus, a URL link could be created to link to the search
result or retrieve the results at stage 2 of AgentMultiProtIdent.
However, PeptIdent does not save search results. Thus, a direct
URL link was not available. To overcome this problem, Agent-
MultiProtIdent parsed the search results in PeptIdent and created a
URL link in AgentMultiProtIdent.

System Flow

We developed AgentMultiProtIdent, a proteomic tool, which iden-
tifies multiple proteins through the use of peptide mass fingerprints
and possible relationships among proteins. Processing the Agent-
MultiProtIdent data consists of two stages: stage 1 is an agent-
based system, which identifies PMFs into candidate proteins
though Internet; stage 2 is a mining system, which is capable of
mining relationships among candidate proteins, by using a data
warehouse of protein–protein interaction databases, and gene func-

tion databases. We discuss each section in detail, as follows. The
system flow, showing the two stages of AgentMultiProtIdent, can
be seen in Figure 1a.

In Stage 1, we developed an agent-based system that takes the
input of multiple PMFs and protein-specific attributes and initiates
a protein identification search agent for each PMF, to identify the
protein, through an Internet protein identification server, such as
PeptIdent or Mascot. Only one of PeptIdent or Mascot can be used
exclusively but not combine. The user can choose which identifi-
cation to use.

First, the agent-based system in Stage 1 creates an agent for
each PMF and protein-specific attribute and sends the information
to the protein identification server through the Internet. Next, each
agent receives the identification results from protein identification
Web server. The system collects each agent’s results and integrates
them into lists of candidate proteins, associated with scores that
match the input PMF in the protein sequence database.

An AgentMultiProtIdent Stage 1 example is shown in Figure
1b. Ten sets of peptide mass fingerprints (PMF1, PMF2, . . .,
PMF10) and related protein-specific attributes were submitted to
AgentMultiProtIdent Stage 1. AgentMultiProtIdent created an
agent for each pair of PMFs and the protein-specific attributes and
performed protein identification with an Internet protein identifi-
cation server, such as PeptIdent or Mascot. The identification
result was then returned to the agent, completing the identification
process. The identification scores of PeptIdent and Mascot were
different, because they had two different scoring schemes. In
PeptIdent, the scores represented the number of measured peptide
masses equal to the calculated peptide masses in the theoretical
mass spectrum of each protein in the database. However, in Mas-
cot, the candidate proteins were ranked with decreasing probability
of being a random match to the experimental data.

Next, an agent-based system collected the search results from
each agent. The search results were transformed into a uniform
format; this comprised lists of candidate proteins associated with
scores calculated by the PeptIdent or Mascot scoring function. In
Figure 1b, the results represent 10 sets of candidate proteins and
scores denoted SPMF1, SPMF2, . . ., SPMF10, respectively. Each
candidate protein contained a score calculated by the protein
identification scoring algorithm. The candidate proteins in SPMF1

were denoted as A_1, A_2, . . . , A_10 with scores Sa_1,
Sa_2, . . . , Sa_10, respectively. Because the candidate protein
with the first ranking in each PMF set may not be the correct
protein corresponding to the PMF, the user can select some or

Table 1. The Statistics of DIP, STRING, BIND, and MINT.

Database DIP STRING BIND MINT

Source Known Known and Predict Known Known

Proteins Mammalian about 1200 N/A N/A 3039
Total 17,048 444,238 (genes) 32,551 18,115

Interactions Mammalian about 1800 N/A N/A 4367
Total 44,349 4,611,520 77,732 42,481
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Figure 1. (a) The system flow of AgentMultiProtIdent. (b) An example of Stage 1 in AgentMultiProtI-
dent. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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all candidate proteins to be analyzed in Stage 2 of AgentMul-
tiProtIdent.

Stage 2 of AgentMultiProtIdent analyzes the relationships
among the sets of candidate proteins by using a protein relation
knowledgebase. Relationships, such as protein–protein interac-
tions or functional associations, may exist among these candi-
date proteins, for example, in a protein complex. With the
integration and preprocessing of the information in the knowl-
edgebase, protein–protein interactions or functional associa-
tions, between each pair of the candidate proteins, can be found
if they exist. Figure 2a gives an example, showing the relation-
ships among SPMF1, SPMF2, . . . , SPMF10. SPMFn, containing a
set of candidate proteins, n � 1, . . . , 10.

Figure 2b shows a detailed presentation of relationships among
SPMF1, SPMF4, and SPMF7. The DIP, STRING, MINT, and GO are
represented by the black, red, blue, and green lines, respectively.
The protein–protein interactions or functional associations are
visualized as an undirected graph G � (V, E), where x, y � V and
(x, y) � E. Let x and y represent proteins and (x, y) � E represent
an interaction or association between proteins x and y.22 In Agent-
MultiProtIdent, V refers to all proteins in Swiss-Prot, and E refers
to all relationships in knowledgebase. To make the relationship
search possible, we first found the subgraph of G, defined as
follows,

Let x�, y� � V� represent the proteins in candidate protein sets
and (x�, y�) � E� represent a protein–protein interaction or func-
tional association between proteins x� and y�. The graph G� � (V�,
E�), is a subgraph of G, where V� � V and E� � E. In this example,
the 10 sets of candidate proteins SPMF1, SPMF2, . . ., SPMF10 were
subsets of V�, that is, SPMF1 � SPMF2 &cur; . . . � SPMF10 � V�.
All the edges (x�, y�) � E� among candidate proteins V� were
searched from knowledgebase E.

In addition to offering additional information among these
unknown proteins, this information can help improve the accuracy
of protein identification. Considering the relationships among
SPMF1, SPMF4, and SPMF7, vertexes A_5, G_4, D_2, and edges
(A_5, G_4), (G_4, D_2) form a connected subgraph of G�. In
general, A_1, D_1, and G_1 were the first ranking, with the highest
score in each candidate protein set. Because false positives do
occur in traditional protein identification, due to the quality of MS
spectra, parameters, and crosscontamination Keratins,4 A_1, D_1,
and G_1 may not be the correct protein. However, A_5, G_4, and
D_2 are more likely to be the correct proteins responding to the
PMFs, and protein–protein interactions may exist among them. We
say that A_5, G_4, and D_2 are associated proteins, because there
are relationships between A_5 and G_4, as well as between G_4
and D_2.

The associated proteins among candidate proteins, such as A_5,
G_4, and D_2 in Figure 2b, can be seen as a connected subgraph
problem, given n candidate protein sets as SPMF1, SPMF2, . . .,
SPMFn and � SPMFi � V� for i � 1 to n. Our goal was to find all
subgraphs of G� denoted as G� � (V�, E�), which satisfy the
following conditions:

1. G� is a subgraph of G� V� � V�, E� � E�
2. Every vertex has an edge connected. Given xk � V�, k � 1 to

n, there exists y� � V� � xk, such that (xk, y�) � E�
3. There are no two vertexes from the same candidate proteins set.

For every l �1 to n, given xl � SPMFw, for some w � n and w �
0 (see lemma 1). For every y� � V� � xl, y� � SPMFw,

4. The number of vertex is not more than the number of candidate
proteins set. N(V�) � n.

The third condition uses a small obvious lemma as follows:
Lemma 1. Because

V� � �
i�1

n SPMFi,

For every x� � V�, there exist SPMFj such that x� � SPMFj , for some
j � n and j � 0.

In Figure 2b, vertices A_5, G_4, D_2, and edges (A_5, G_4),
(G_4, D_2) form a connected subgraph of G�, which matched the
condition. Vertices D_1, D_5, G_1, and edges (D_1, D_5), (D_5,
G_1) did not match the condition because D_1 and D_5 were from
the same candidate proteins set SPMF4. A weighted score of the
edge (Relationship) between each pair of proteins was calculated
by summing up the ranking scores of the two proteins. The score
of each candidate protein is shown in Figure 1b, the weighted score
of edge (A_5, G_4) was 2(Sa_5�Sg_4), because there were two
relationships from DIP and GO. However, (D_5, G_1) was Sd_5 �
Sg_1. The total score of the connected subgraph “vertices A_5,
G_4, D_2, and edges (A_5, G_4), (G_4, D_2)” was 2(Sa_5� Sg_4)
� 2(Sg_4 � Sd_2). The score of the connected subgraph is defined
as follows:

S � � We (1)

where S is the score of the connected subgraph; and We is a
weighted score of edge e. The score of the connected subgraph is
the sum of all the weighted edge scores for all edges e in the
connected subgraph.

Results

AgentMultiProtIdent is a Web-based system. A unified interface
was designed so that the user could input more than one set of
PMFs and protein specific attributes. Below, we present two
groups of results to show how the AgentMultiProtIdent analyzed
relationships among candidate proteins. One group shows the
results after using the system with the MS spectra from mamma-
lian and Pseudomonas Aeruginosa proteomes. The other group
used simulated PMFs of the known components of cellular yeast
complex from the MIPS database.

MS Spectra from Mammalian and Pseudomonas
aeruginosa

One set of MS spectra was offered by Prof. Juan and another by
Prof. Huang. The MS spectra TestSet_1 offered by Prof. Juan
came from mammals, and the MS spectra TestSet_2 offered by
Prof. Huang came from Pseudomonas aeruginosa. We had no prior
knowledge of the test set, except for the source organism and the
MS spectra. A description of TestSet_1 follows, in which the
relationship among unidentified proteins was analyzed.
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Figure 2. (a) An example to show the result from Stage 2 of AgentMultiProtIdent. (b) A detailed
representation of relationships among sets of candidate proteins.
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There were 10 PMFs from Human liver in TestSet_1. The
identification parameters of the 10 PMFs were given equally, as
follows: the protein search identification tool used was Mascot; the
searched database was Swiss-Prot; the selected species was Homo
sapiens (human); the digested enzyme was Trypsin; the posttrans-
lational modification was Oxidation of Methionine (M); the max-
imal tolerance for masses was within 1 dalton; and at most, one
missed cleavage was allowed, with the maximum number to list
the results being set to 30.23 By default, AgentMultiProtIdent was
set to pick the first ranking of candidate proteins in each result list,
in order to analyze the relationship among them, as shown in
Figure 3. User could choose more candidate proteins in each result,
from the identification protein list. In this experiment, we only
used the first ranking of candidate proteins.

In Figure 4a, several relationships can be seen among the 10
sets of candidate proteins; the proteins in PMF sets 2, 4, 7, and 10
seem to be isolated from the others, however. The user is able to
view the detailed relationship information and the source of these
relationships, as shown in Figure 4b.

By pressing the PMF1 in Figure 4a, possible relations as Figure
4b are shown to demonstrate the relationship of proteins in PMF 3,
8, and 9 to the protein in PMF1 (ATPB_HUMAN). The left part of
Figure 4b shows the basic protein information such as protein ID,
protein accession number, and protein name. The right part shows
the possible interaction between these proteins. Figure 4b indicates
that all the relationships in this experiment came from the GO

database. This means that although there were no known physical
relationships (known protein–protein interactions) among these
selected candidate proteins, functional relationships did exist
among these proteins, based on the relationship information in the
GO database. For example, the candidate protein ATPB_HUMAN
of PMF1 had a similar protein function (GO:0005215) to the
candidate protein FABL_HUMAN of PMF3. GO:0005215 had a
transporter activity of molecular function; the annotated descrip-
tion of the relationship is “enables the directed movement of
substances (such as macromolecules, small molecules, ions) into,
out of, within or between cells.”

MS Spectra from Known Cellular Complex

To validate our approach, protein complexes were used for testing
the analysis of multiple PMFs, which had protein–protein interac-
tions or functional associations among them. In Table 2, we show
five sets of test data, including cellular complexes from MIPS
(http://mips.gsf.de/)24 and some proteins, randomly chosen from
Saccharomyces cerevisiae. Parameter given to AgentMultiProtI-
dent is identical to the Parameter of TestSet_1 and TestSet_2
except species. Here we adapted a simulation of the peptide mass
fingerprint.

In Figure 5, we show that computer simulations have been
performed to generate PMFs of component proteins in the cellular
complex.16 For example, the cellular complex cAMP-dependent

Figure 3. Result list of candidate proteins. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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protein kinase was composed of four entries: YIL033c,
YJL164c, YKL166c, and YPL203w. Corresponding Swiss-Prot
protein ID KAPA_YEAST, KAPB_YEAST, KAPC_YEAST,

and KAPR_YEAST were retrieved in step 1 of the simulation.
These protein sequences were submitted to theoretical tryptic
digestion by PeptideMass (http://us.expasy.org/tools/peptide-

Figure 4. (a)The relationships among the 10 sets of candidate proteins. (b) By pressing the PMF1 in (a),
possible relations are shown to demonstrate relationship of proteins in PMF 3, 8, and 9 to the protein in
PMF1 (ATPB_HUMAN). There are five GO relations between ATPB_HUMAN, FABL_HUMAN,FA-
BL_HUMAN, and CYB5_HUMAN shown in the right of the page. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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mass.html)18 with parameters allowing two missed cleavages
and with some posttranslational modifications in Step 2. To
simulate a low coverage of 30%, three peptide masses with
missed cleavages �1 and no posttranslational modification
were randomly selected from the theoretical digested peptide
masses in Step 3. Each of the randomly selected three peptide
masses was added to a random value between �1 to �1 daltons
in Step 4. Similar mass error tolerance can be found in prior
studies.23 On the other hand, seven peptide masses were ran-
domly selected with missed cleavages � 2 or with posttransla-
tional modifications (PTMs) from the theoretical digested pep-
tide masses in Step 5. Finally, the total 10 peptide masses were

treated as simulated PMFs for each protein. The simulated
PMFs were then submitted to AgentMultiProtIdent for multiple
PMF analysis. Each test data was executed five times, in our
simulation.

The second test data was a cellular complex cAMP-depen-
dent protein kinase composed of four entries: YIL033c,
YJL164c, YKL166c, and YPL203w, whose corresponding
Swiss-Prot protein IDs were KAPA_YEAST, KAPB_YEAST,
KAPC_YEAST, and KAPR_YEAST, respectively. These four
proteins were mixed with six other proteins, randomly selected
from Swiss-Prot. A total of 10 simulated PMFs were generated
by the previous simulation process. PMF1, PMF3, PMF6, and

Table 2. Five Test Data Sets Include Cellular Complexes from the MIPS Database.

Test data Swiss-Prot ID of each Entries

1 2-oxoglutarate dehydrogenase (YDR148c, YFL018c, YIL125w) ODO1_YEAST, ODO2_YEAST, DLDH_YEAST
2 cAMP-dependent protein kinase (YIL033c, YJL164c,

YKL166c, YPL203w)
KAPA_YEAST, KAPB_YEAST, KAPC_YEAST, KAPR_YEAST

3 2-oxoglutarate dehydrogenase (YIL125w, YDR148c, YFL018c)
and YMR105c

ODO1_YEAST, ODO2_YEAST, DLDH_YEAST, PGM2_YEAST

4 Anthranilate synthase (YER090w, YKL211c) and YDR256C TRPE_YEAST, TRPG_YEAST, CATA_YEAST
5 Anthranilate synthase (YER090w, YKL211c) � Fatty acid

synthetase cytoplasmic (YKL182w, YPL231w)
TRPE_YEAST, TRPG_YEAST, FAS1_YEAST, FAS2_YEAST

Figure 5. The flow of generating simulated PMFs. The processes pointed by the dotted line are repeated
five times.
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PMF9 were represented by KAPA_YEAST, KAPB_YEAST,
KAPC_YEAST, and KAPR_YEAST, respectively.

By default, the first ranking candidate protein in each result set
was selected to analyze the relationships among them. Assuming it
was not known which one was correct, the user could select the top
five ranking candidate proteins for analysis. Figure 6a shows the

relationships among these candidate protein sets. In Figure 6b, the
cellular complex cAMP-dependent protein kinase, composed of
KAPA_YEAST, KAPB_YEAST, KAPC_YEAST, and KAPR_Y-
EAST, were successfully identified. KAPA_YEAST, KAPB-
_YEAST, KAPC_YEAST, and KAPR_YEAST were not the first
ranking candidate proteins in each result set. Looking at the

Figure 6. (a) A graph shows the relationship among these sets of candidate proteins. (b) Detailed
information about relationships among these candidate proteins (KAPA_YEAST of PMF1 with DIP:
244E and MINT: P04244 is in the bottom of the Web page, which is now shown). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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relationship information from DIP, STRING, and MINT, the four
candidate proteins KAPA_YEAST, KAPB_YEAST, KAPC_Y-
EAST, and KAPR_YEAST, may be the correct proteins corre-
sponding to PMF1, PMF3, PMF6, and PMF9, respectively.

The third test data was a cellular complex 2-oxoglutarate
dehydrogenase composed of three entries: YIL125w,
YDR148c, and YFL018c, corresponding to Swiss-Prot protein
ID of ODO1_YEAST, ODO2_YEAST, and DLDH_YEAST,

Figure 7. (a) A graph shows the relationships among these sets of candidate proteins. (b) Detailed
information about relationships among these candidate proteins. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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respectively. These three proteins were mixed with seven other
proteins, randomly selected from Swiss-Prot. A total of 10
simulated PMFs were generated by the previous simulation
process. PMF1, PMF3, and PMF4, were represented by
ODO1_YEAST, ODO2_YEAST, and DLDH_YEAST, respec-
tively.

Here, we also selected the top five ranking candidate pro-
teins in each result set to analyze the relationships among these
candidate proteins. Figure 7a shows the graphical representa-
tion of relationships among these candidate protein sets. There
were many edges among PMF1, PMF3, and PMF4, which
corresponded to ODO1_YEAST, ODO2_YEAST, and DLDH-
_YEAST, respectively. By clicking on the block chart of PMF1
in Figure 7a, the user was able to observe the detailed infor-
mation of the candidate protein relationships of PMF1, as
shown in Figure 7b. There was information of several relation-
ships from DIP, STRING, and MINT, so the three candidate
proteins ODO1_YEAST, ODO2_YEAST, and DLDH_YEAST
may be the correct proteins corresponding to PMF1, PMF3, and
PMF4, respectively.

Another finding showed that the identification processes of
the sets of five cellular complexes, from MIPS, were identified
correctly. The results of multiple PMF analysis, using interac-
tion data from DIP, MINT, and BIND databases, performed
better than interaction results from GO and STRING databases.
Because of the quantity and quality of the predicted functional
associations of STRING and GO, there are still false positives
in the identification of protein complexes. On the other hand,
most of the protein–protein interactions of the DIP database
focused, mainly, on Drosophila melanogaster and Saccharomy-
ces cerevisiae (baker’s yeast), as the protein–protein interac-
tions of other organisms were lesser than these two.

Table 3 shows a comparison of the AgentMultiProtIdent and
other popular protein identification tools. CombSearch (http://

us.expasy.org/tools/CombSearch/) is capable of querying sev-
eral protein identification tools, simultaneously, through the
Web, including PeptIdent, MultiIdent, MS-Fit, Mowse, and
ProFound. The major feature of the AgentMultiProtIdent is the
ability to identify multiple proteins though Internet, with the
assistance of protein–protein interaction. Instead of a small
interaction network, slow performance, and proprietary identi-
fication engine of our prototype MultiProtIdent,17 AgenttMul-
tiProtIdent is a smart agent system that takes advantage of other
high accuracy identification tools and variety of interaction
databases.

Discussion and Conclusion

AgentMultiProtIdent is the first protein identification tool able to
identify multiple proteins simultaneously, and combine the infor-
mation of protein–protein interactions or functional associations in
protein identification. Relationships such as protein–protein inter-
actions or functional associations may exist among proteins ex-
cised from the same 1D/2D gel or when comparing two 2D gels.
The results show that multiple PMF analysis has high precision,
when applied to the identification of a protein complex. The results
also show that an ontology relationship may be discovered via the
AgentMultiProtIdent. Especially in the identification of protein
complexes, the advantage of the existing protein–protein interac-
tion databases can improve identification accuracy.

We plan to add more protein–protein interaction databases,
such as MIPS and KEGG (http://www.genome.ad.jp/kegg/)25 in
the further works. The KEGG pathway database will be added as
a first priority; this will offer a detailed biological process for
identifying multiple proteins sharing undirected interactions. There
are several aspects to be considered for future study. For multi-
plicity, the sequence tags of proteins can be submitted to the

Table 3. A Comparative Table of AgentMultiProtIdent and Other Popular Protein Identification Tools.7

Name MS type Other input PTM Note

PeptIdent MS None Cys blocking and Met oxidation making extensive use of database annotations
MultiIdent MS AA � sequence tag Cys blocking and Met oxidation None
MS-Fit MS AA Predefine partial and complete None
MOWSE MS AA � sequence tag None None
Mascot MS and MS/MS None Predefine partial and complete Probability based scoring function
CombSearch MS AA � sequence tag Predefine partial and complete Provide a unified interface to query several

protein identification tools accessible on
the Web

MultiProtIdent MS and MS/MS AA � sequence tag Predefine partial and complete 1. Allow user to input more than one PMF
and MS/MS spectra

2. Find relations among DIP and STRING
AgentMultiProtIdent MS and MS/MS AA � sequence tag Predefine partial and complete 1. Agent base takes advantage of other

identification tool
2. Allow user to input more than one PMF

and MS/MS spectra
3. Find relations among candidate proteins

on various databases

AA represents amino acid composition and MS/MS represents tandem mass spectrometry.
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system for identification of multiple proteins. For accuracy, the
scoring function of our protein identification, and the weighting
function of the interaction between proteins, will be refined; post-
translational modification will also be considered. A visualization
interface, showing the interaction, is also being considered, as well
as a graph layout algorithm, to be used to draw the relationships of
the multiple PMF analysis result.26

We are thankful for the two sets of MS spectra, one offered by
Prof. Juan and another offered by Prof. Huang.
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