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Abstract

A t-packing is an ordered pair (V , P) where V is a v-set and P is a collection of k-subsets (blocks) of V such that each t-subset
of V occurs in at most one block of P. If each t-subset of V occurs in exactly one block of P, then (V , P) is known as a Steiner
(t, k, v)-design. In this paper, we explore a novel use of t-packings to construct d-disjunct matrices.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many DNA experiments, we want to know whether a clone (or a gene) contains a specific subsequence. If it does,
we call the clone positive, otherwise, it is negative. Group testing is often used to identify the positive clones. A group
test applies to an arbitrary subset of the clones and yields a positive outcome if and only if that subset contains a positive
clone (the test does not reveal which or how many); otherwise, the outcome is negative. The goal is to use a minimum
number of such tests to identify all positive clones. In biological applications, more important than the number of tests
is the number of rounds in which these tests can be performed (all tests in the same round are performed parallelly).
A 1-round test scheme is referred to as a “pooling design” in biological literature.

A major tool for the construction of pooling designs is the d-disjunct matrix. Let M = (mij ) be a binary matrix.
A column cj of M can be viewed as a subset {i : mij = 1} of the row index set {1, . . . , v}. M is d-disjunct if no column
of M is contained in the union of any other d columns. Kautz and Singleton [4] proved that a d-disjunct matrix can
identify all positive clones if their number does not exceed d. Further, there exists a simple decoding algorithm for
positive clones.

A t-packing [1] is an ordered pair (V , P) where V is a v-set and P is a collection of k-subsets (blocks) of V such that
each t-subset of V occurs in at most one block of P. If each t-subset of V occurs in exactly one block of P, then (V , P)

is known as a Steiner (t, k, v)-design or a Steiner t-design denoted by S(t, k, v).
t-packings (including Steiner t-designs) have been proposed [3,7] to construct d-disjunct matrices by using the blocks

as columns and the elements as rows. For example, a block {x, y, z} yields a column which has 1 in rows x, y, z and 0
in other rows. We say that two columns intersect at k rows if their inner product is k. By the definition of a t-packing,
two columns intersect at at most t − 1 rows. Hence it takes the union of at least q = �k/(t − 1)� columns, where k is
the block size, to cover another column C. Thus the matrix is (q − 1)-disjunct.

E-mail address: hlfu@math.nctu.edu.tw (H.-L. Fu).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.03.009

http://www.elsevier.com/locate/dam
mailto:hlfu@math.nctu.edu.tw


1760 H.-L. Fu, F.K. Hwang / Discrete Applied Mathematics 154 (2006) 1759–1762

In this paper, we propose a novel use of t-packings to construct d-disjunct matrices.

2. A new construction

Let P(t, k, v) denote a t-packing with v elements and block size k. We show that we can use P(t, k, v) to construct
d-disjunct matrices for various d.

For each positive integer r, let Mr be a
(

v
r

) × n binary matrix where the columns correspond to arbitrary n blocks
from P(t, k, v), the rows to all the

(
v
r

)
r-subsets, and cell (i, j) is 1 if the r-subset corresponding to row i is a subset

of the block corresponding to column j, otherwise cell (i, j) is 0.

Theorem 1. Mr is a d-disjunct matrix with d = �
(

k
r

)
/
(

t−1
r

)
� − 1 for 1�r � t − 1.

Proof. Each column of Mr has
(

k
r

)
r-subsets, i.e.

(
k
r

)
rows with 1. Since any pair of blocks in P(t, k, v) can take at

most t − 1 common elements, the corresponding pair of columns in Mr can intersect at at most
(

t−1
r

)
rows. Thus in

order to cover one column, at least �
(

k
r

)
/
(

t−1
r

)
� other columns are needed. This concludes the proof. �

Note that the classical use of P(t, k, v) corresponds to the special case r = 1. Since k� t in P(t, k, v), it is easily
verified:

Corollary 2. d is maximized at r = t − 1 where d = (
k

t−1 ) − 1.

It should be noted that larger r also implies more rows (tests). Macula [5] proposed the subset-containment construc-
tion of d-disjunct matrices, which is similar to our construction except that the columns of the matrix M are labelled
by an arbitrary selection of n k-subsets of a set with v elements. Macula proved that M is r-disjunct. Our construction
can be viewed as a modification of his construction when the column labels are judiciously selected, not arbitrarily. In
our particular case, each column is labelled by a distinct block of P(t, k, v), hence n�(

v
t
)/(

k
t
), the number of blocks

in S(t, k, v). Note that our construction uses the same number
(

v
r

)
of rows as Macula’s, but increases d dramatically.

The price paid is a smaller upper bound for n.
Note that a subset-containment design can be transformed to a classical pooling design where rows are indexed by

numbers (or 1-subset) by simply matching the
(

v
r

)
r-subsets to the set {1, . . . ,

(
v
r

)}. Therefore the subset-containment
construction (including ours) should simply be viewed as a new way to construct classical pooling designs.

3. An explicit construction

In this section, we shall use Steiner 3-designs to construct d-disjunct matrices Mm×n such that d is arbitrarily large
and m�n. By Corollary 2, d is maximized at r = t − 1 = 2, the number of rows m = (

v
2 ) and the number of columns

n = (
v
3 )/(

k
3 ). Therefore, n�m if and only if 2(v − 2)/k(k − 1)(k − 2) is not less than 1.

The following result is essential to our explicit construction.

Theorem 3 (Collbourn and Dinitz [2]). Let q be a prime power and s�2. Then an S(3, q + 1, qs + 1) exists.

The above Steiner designs are also known as spherical geometries.
By Theorem 1 and Corollary 2, we can use an S(3, k, v) to construct a ((

k
2 ) − 1)-disjunct matrix Mm×n, where

m = (
v
2 ) and n = (

v
3 )/(

k
3 ). Then the following corollary can readily be stated from Theorem 3.

Corollary 4. Let q be a prime power. For d = (
q+1

2 ) − 1 and s�2, there exists a d-disjunct matrix Mm×n where
n/m = 2(qs − 1)/(q + 1)q(q − 1).

Remark. Clearly n/m is getting larger when s is increasing, in other words, lims→∞ n/m = ∞.
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For k�4, the existence and construction of S(4, k, v) have been scattering in the literature. However, Rödl [6] proved
that for v large, the number of columns in a t-packing can reach (1 − o(1))(

v
t
)/(

k
t
). Thus even if a suitable S(t, k, v)

does not exist, for v large, using a t-packing can achieve almost as good a result.

4. Maximizing the number of columns

From Rödl’s result, the number of blocks in a maximum t-packing is very close to (
v
t
)/(

k
t
). In this section, our goal

is to maximize the number of columns in a pooling design with fixed d and fixed number of rows. We will use the upper
bound (

v
t
)/(

k
t
) to represent the number of columns in a maximum t-packing and optimize over t. By our comments at

the end of Section 2, we can transform our construction back to a classical (1-subset) design. Thus we have

Lemma 5. The incidence matrix of a P(t, k, v) such that k = (t − 1)d + 1 is a d-disjunct matrix.

Proof. Since the rows of the matrix are indexed by V and any two blocks (columns) have at most t − 1 elements in
common, the proof follows from Theorem 1. �

In the remaining part of this section, we consider P(t, k, v) with k = (t − 1)d + 1 only.

Theorem 6. For fixed v and d, the P(t, k, v) which maximizes f (t) = (
v
t
)/(

k
t
) occurs approximately when t ≈

(vc − 1)/(c + d) where c = ((d − 1)/d)d−1.

Proof. It is easily verified that f (x) is concave on [1, v]. Thus f (x) is maximized at f ′(x) = 0, or approximately,
(

v
x+1 )/(

dx+1
x+1 ) = (

v
x
)/(

dx−d+1
x

).

v!(dx − x)!
(dx + 1)!(v − x − 1)! = v!(dx − x − d + 1)!

(v − x)!(dx − d + 1)!
(v − x)(dx − d + 1)!(dx − x)!

(dx + 1)!(dx − d − x + 1)! = 1

(v − x)(dx − x)(dx − x − 1) · · · (dx − d − x)

(dx + 1)(dx) · · · (dx − d)
= 1

v − x

dx + 1
· dx − x

dx
· ((d − 1)x − 1)

dx − 1
· · · (d − 1)x − d

dx − d
= 1

v − x

dx + 1
· d − 1

d
· d − 1

d
· · · d − 1

d
> 1

v − x

dx + 1
·
(

d − 1

d

)d−1

> 1

c(v − x)

dx + 1
> 1, cv − cx > dx + 1

x <
cv − 1

c + d
. �

As an example, if v = 100 and d = 5, then x < (( 4
5 )4 · 100 − 1)/( 4

5 )4 + 5 = 39.96/5.4096 ≈ 7.38. Therefore, x = 7
may be the best choice for t to obtain as many columns as possible.

Not much is known about explicit t-packing when t is larger than 3. Hence, even if we know which is the best choice
of t, construction of the corresponding t-packing is far from being settled. This observation also points out that the
study of t-packing is an important topic in constructing d-disjunct matrices.
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5. Conclusion

Using t-packings and using the containment method to construct d-disjunct matrices are both not new ideas. What we
proposed is a hybridization of these two ideas to produce a dramatic increase of the value d. Using the same S(v, k, t),

the classical construction yields d=�k/(t−1)�−1, while ours offers a spectrum of choices with d=�
(

k
r

)
/
(

t−1
r

)
�−1,

1�r � t−1, and number of tests = (
v
r

)
. Using the same number

(
v
r

)
of tests, Macula’s subset-containment construction

yields d = r while ours yields d = �
(

k
r

)
/
(

t−1
r

)
� − 1, paying a price of limiting the number of columns to (

v
t
)/(

k
t
)

instead of (
v
k
). We also compare various choices of t to maximize the number of columns for fixed d and number of

rows.
A referee suggested to us another type of comparison by fixing d and comparing the ratio of column number vs.

row number. In particular, consider Macula’s construction with n = (
v
t
), k = (

k
t−1 ) and r = (

k
t−1 ) − 1, which yields

a d-disjunct matrix with d = (
k

t−1 ) − 1 with the column/row ratio =(n − k + 1)/k = ((
v
t
) − (

k
t−1 ) + 1)/(

k
t−1 ). On

the other hand, by setting r = t − 1, then the construction in this paper also yields a d-disjunct matrix with the same
d = (

k
t−1 ) − 1 and the ratio (

v
t
)/(

k
t−1 )(

v
t−1 ), which is smaller than the first ratio in general.

Thus the comparison of the two constructions may depend on the particular need of each situation.
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