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Abstract

Mining Web click streams is an important data mining problem with broad applications. However, it is also a difficult
problem since the streaming data possess some interesting characteristics, such as unknown or unbounded length, possibly
a very fast arrival rate, inability to backtrack over previously arrived click-sequences, and a lack of system control over the
order in which the data arrive. In this paper, we propose a projection-based, single-pass algorithm, called DSM-PLW
(Data Stream Mining for Path traversal patterns in a Landmark Window), for online incremental mining of path traversal
patterns over a continuous stream of maximal forward references generated at a rapid rate. According to the algorithm,
each maximal forward reference of the stream is projected into a set of reference-suffix maximal forward references, and
these reference-suffix maximal forward references are inserted into a new in-memory summary data structure, called SP-
forest (Summary Path traversal pattern forest), which is an extended prefix tree-based data structure for storing essential
information about frequent reference sequences of the stream so far. The set of all maximal reference sequences is deter-
mined from the SP-forest by a depth-first-search mechanism, called MRS-mining (Maximal Reference Sequence mining).
Theoretical analysis and experimental studies show that the proposed algorithm has gently growing memory requirements
and makes only one pass over the streaming data.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, database and knowledge discov-
ery communities have focused on a new data model,
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q Partial results [34] of this study appeared in the Proceedings of
the 13th World Wide Web Conference, 2004.
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where data arrive in the form of continuous streams.
It is often referred to as data streams or streaming

data. Many applications generate data streams in
real time, such as sensor data generated from sensor
networks, transaction flows in retail chains, Web
record and click streams in Web applications, per-
formance measurement in network monitoring and
traffic management, call records in telecommunica-
tions, and so on.

Mining of such data streams differs from the min-
ing of traditional datasets in the following aspects
.
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[5,27]: First, each data element in the streaming data
should be examined at most once. Second, the mem-
ory requirement for mining data streams should be
bounded even though new data elements are contin-
uously generated from the data stream. Third, each
data element in the stream should be processed as
fast as possible. Fourth, the analytical results gener-
ated by the online algorithms should be instantly
available when user requested. Finally, the fre-
quency of output errors generated by the online
algorithms should be constricted to be as small as
possible.

As described above, the continuous nature of
streaming data makes it essential to use algorithms
which require only one scan over the stream for
knowledge discovery. The unbounded characteristic
makes it impossible to store all the data in main mem-
ory or even secondary storage. This motivates the
design of summary data structure with small foot-
prints that can support both one-time and continu-
ous stream queries. In other words, one-pass

algorithms for mining data streams have to sacrifice
the correctness of their analytical results by allowing
some counting errors. Hence, traditional multiple-

pass techniques studied for mining static datasets
are not feasible to mine patterns over streaming data.

Recently, some interesting research results have
been reported for modeling and computing data
streams [31], monitoring statistics over streams
[17], and continuous queries over data steams [7].
Furthermore, conventional OLAP (Online Analyti-
cal Processing) and data mining models have been
extended to tackling data streams, such as multi-
dimensional analysis [12], clustering [28,37,1], and
classification [19,32]. Problems related to frequency
counting include approximate frequency moments
[4], L1 differences [23], synopsis data structure [26],
frequent itemsets [10,18,33,9], hot items in dynamic
data stream model [16], iceberg queries [22], change
mining [21,24,25,36,20], and top-k queries [6]. Algo-
rithms over data streams that pertain to aggregation
include approximate quantiles [30] and stream join-
ing [3]. In this paper, we consider a new application
of (Web) data stream mining, i.e., online, single-pass
mining path traversal patterns in streaming Web

click-sequences.
The problem of mining path traversal patterns

from a large static Web click dataset was proposed
by Chen et al. [11]. Two multiple-pass algorithms,
FS (Full Scan) and SS (Selective Scan), are pro-
posed. However, the FS and SS algorithms are not
feasible for mining the set of path traversal patterns
in a streaming environment. Hence, we modified the
path traversal pattern mining problem proposed by
Chen et al. [11] into a new problem of data stream
mining. An efficient, single-pass algorithm, called
DSM-PLW (Data Stream Mining for Path traversal
patterns in a Landmark Window), is proposed to
mine the set of path traversal patterns in the land-
mark window of an online, continuous stream of
Web click-sequences. The purpose of mining pat-
terns in a landmark window of data streams is to
discover patterns over the entire history of the data
streams [47]. An effective in-memory summary data
structure, called SP-forest (Summary Path traversal
pattern forest), is proposed for storing the essential
information about the frequent reference sequences
in the stream so far. Finally, the set of all maximal
reference sequences, i.e., path traversal patterns, is
determined from the SP-forest by a depth-first-
search mining mechanism, called MRS-mining
(Maximal Reference Sequence mining). To the best
of our knowledge, this is the first study for online,
single-pass mining path traversal patterns over
streaming Web click-sequences.

The contributions of this paper are described as
follows.

• We define a new challenging problem of online,
single-pass mining path traversal patterns over
streaming Web click-sequences.

• We propose a novel single-pass algorithm, DSM-
PLW, to solve this problem efficiently.

• An effective summary data structure, SP-forest, is
proposed to maintain the essential information of
the stream.

The remainder of the paper is organized as fol-
lows. The problem definition and related work are
discussed in Section 2. In Section 3, we describe
the design of our algorithm for mining path traversal
patterns over Web click-sequence streams. Theoret-
ical analysis and performance results are presented
in Section 4. Finally, we conclude our work and
discuss some future directions in Section 5.

2. Problem definition and related work

2.1. Problem definition

Let S be an infinite sequence of Web clicks,
where a Web click wc consists of a Web user
identifier (Uid) and a Web page reference r accessed
by the user, i.e., wc = (Uid, r). In a steaming
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environment, a segment of Web click stream arrived
at timestamp ti can be divided into a set of Web
click-sequences (or click-sequences in short). For
example, a fragment of stream, S = [ti, (100,a),
(100,b),(200,a),(100,c),(200,b),(200,c),(100,d),(100,e),
(200,a),(200,e)], arrived at timestamp ti, can be divided
into two click-sequences: h100,abcdei, and h200,abcaei,
where 100, 200 are user identifiers of Web users, and a,
b, c, d, e are references accessed by these users. A (Web)

click-sequence CS consists of a sequence of forward ref-
erences and backward references accessed by a Web
user. A backward reference means revisiting a previ-
ously visited reference by the same user. A maximal for-

ward reference (MFR) is a forward reference path
without any backward references. Hence, a click-
sequence with l backward references can be divided
into (l + 1) maximal forward references. For example,
a click-sequence habcaei can be divided into two
MFRs: habci and haei, because the second reference
a is a backward reference in this click-sequence. There-
fore, we can map the problem of mining path traversal
patterns into the one of finding frequent occurring con-
secutive sequences, called reference sequences (RSs),
among all maximal forward references. The estimated

support (esup) of a reference sequence RS, denoted as
RS.esup, is the number of maximal forward references
in the stream containing RS as a substring. A reference
sequence RS is called a frequent reference sequence if
RS.esup P s Æ N, where s is a user-defined minimum
support threshold in the range of [0,1], and N is the
current length of stream, i.e., the number of maximal
forward references so far. A reference sequence
s1,s2, . . . ,sn, is called a super-sequence of another refer-
ence sequence r1,r2, . . . ,rk if there exists an i such that
si+j = rj, for 16 j6 k. A frequent reference sequence
is called maximal frequent reference sequence (abbrevi-
ated as maximal reference sequence in the context of
the paper) if it is not a substring of any other frequent
reference sequences.

Consequently, the problem of online, single-pass
mining path traversal patterns in a landmark win-
dow over Web click-sequence streams is to mine
maximal reference sequences by one scan of a con-
tinuous stream of maximal forward references when
the value of minimum support threshold s is given.

2.2. Related work

Cooley et al. [15] and Srivastava et al. [44] have
surveyed the major technical advances and research
problems in Web data mining. In general, Web data
mining can be divided into three categories: Web
structure mining, Web content mining and Web
usage mining. The goal of Web structure mining is
to generate a structural summary about the Web site
or Web page. The goal of Web content mining is to
describe the automatic search of information
resource available online, and to discover Web data
content. Web usage mining is the process of auto-
matic discovery of user navigation patterns from
Web server logs. In this section, a brief review of
Web user navigation pattern mining is described
as follows.

Chen et al. [11] defined a problem of mining path
traversal patterns in a large Web-log dataset. Two
algorithms, FS (Full Scan) and SS (Selective Scan),
are proposed. These algorithms use level-by-level
methods, i.e., apriori-based approaches [1], to dis-
cover maximal reference sequences in a static Web
click dataset. Although FS and SS mine path tra-
versal patterns in a static Web-log dataset effi-
ciently, they are not feasible for mining streaming
Web click-sequences. This is because the FS and
SS algorithms need to scan the dataset at least twice.

Spiliopoulou et al. [43] proposed a navigation
pattern discovery miner, called WUM (Web Utiliza-
tion Miner), and proposed an algorithm for build-
ing an aggregating tree from static Web logs.
Then, WUM mines the Web access patterns by
using the MINT mining language. Borges and
Levene [8] proposed a model of hypertext that cap-
tures the user navigation behavior patterns. The set
of user navigation sessions is modeled as a HPG
(Hypertext Probabilistic Grammar), and the set of
strings which are generated with higher probability
correspond to the navigation trials preferred by
the user. Pei et al. [39] proposed a WAP-tree (Web
Access Pattern tree) to store the frequent Web
page-sequences of user navigation behavior, and
proposed an efficient pattern-growth WAP-mine
algorithm to mine the Web access patterns from
the WAP-tree. WAP-mine is a two-pass algorithm.
Shan and Li [42] proposed a two-pass algorithm,
Fast-Walk, to mine the Web traversal walks. A
Web traversal walk is a structural sequence of for-
ward and backward traversal paths. In the Fast-
Walk algorithm, an extended prefix-tree structure
is constructed in main memory from Web logs,
and the frequent Web traversal walks are generated
from the in-memory tree structure efficiently.

Pabarskaite [38] suggested several hypotheses
that could help improve a Web site’s retention and
proposed decision trees for Web user behavior anal-
ysis. The decision tree package C4.5 is used in [38],
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and showed reasonable computational performance
and accuracy. Xing and Shen [45] proposed two effi-
cient algorithms, UAM (User Access Matrix) and
PNT (Preferred Navigation Tree), based on the
selection and time preference concepts for mining
user-preferred navigation patterns. Considering the
Web site topology, the UAM algorithm can get user
access preferred paths by the page–page transition
statistics of all users’ behaviors. PNT is similar to
WAP-tree. However, each node of PNT records
the support, which is the frequency and the time
of a user’s visiting the node along the same route,
and the preference represents how users prefer visit-
ing this node from the previous nodes.

Web prefetching and prediction of HTTP
requests are important applications of Web usage
mining [13,41]. Chen and Chang [13] proposed a
popularity-based PPM (Prediction by Partial Match
model) for Web prefetching. The popularity-based
mode uses grades (grades 3, 2, 1 and 0) to rank
URL access patterns and builds these patterns into
a predictor tree to aid Web prefetching. The popu-
larity-based PPM uses only the most popular URLs
as root nodes and makes space optimizations to the
completed tree by removing non-root nodes and
those nodes accessed only once. Schechter et al.
[41] introduced the use of path profiles for describ-
ing HTTP request behavior and proposed an algo-
rithm for creating these path profiles efficiently.

Association rule and sequential pattern mining
algorithms are also common for mining Web visitors’
behavior [2,29,14,40,35]. Agrawal and Srikant [2]
proposed the well-known apriori property, i.e., all

non-empty subsets of a frequent itemset must also be

frequent, and developed three multiple-pass algo-
rithms based on the aprioir property for mining
frequent itemsets by using candidate-generation-
and-testing approaches. Han et al. [29] proposed a
prefix-tree structure FP-tree (Frequent Pattern tree)
and a two-pass pattern-growth algorithm FP-growth
to discover the set of frequent itemsets without gener-
ating candidate itemsets. Chenug and Zaı̈ane [14]
proposed a data structure called CATS Tree (Com-
pressed and Arranged Transaction Sequence Tree),
an extension of FP-tree, to discover the set of fre-
quent itemsets. The CATS tree is a prefix-tree struc-
ture and it contains all elements of the FP-tree
including the header, the item links, etc. Pei et al.
[40] proposed a two-pass, pattern-growth algorithm
PrefixSpan (Prefix-projected Sequential pattern min-
ing) to mine sequential patterns. PrefixSpan finds fre-
quent 1-sequences, i.e., length-1 sequential patterns,
after scanning the sequence database once. Then,
the database is projected onto smaller datasets
according to the frequent 1-sequences. Finally, the
set of sequential patterns is found recursively by
growing subsequence fragments in each projected
database. Although PrefixSpan discovers sequential
patterns efficiently, the cost of disk I/O might be high
due to the creation and processing of the projected
subdatabases. Hence, the two-pass algorithm Prefix-
Span is not practical for mining streaming data. Lin
and Lee [35] proposed a memory-indexing algorithm
MEMISP (MEMory Indexing for Sequential Pattern
mining) for fast discovery of sequential patterns.
MEMISP reads data sequences into memory in one
pass if the memory is large enough to store these
sequences. Then MEMISP discovers the sequential
patterns by using a recursive find-then-index tech-
nique. Although MEMISP is a single-pass algorithm,
it is still not feasible for mining patterns in a stream-
ing data. This is because the MEMISP is not an incre-
mental mining algorithm while the data stream is a
continuous sequence of data elements.

3. Online single-pass mining streaming Web click-

sequences for path traversal patterns: DSM-PLW

algorithm

The process of mining path traversal patterns in
Web click streams is shown in Fig. 1. Algorithm
DSM-PLW (Data Stream Mining for Path traversal
patterns in a Landmark Window) is composed of
four steps: read a basic window which consists of a
fixed sized maximal forward references from the
buffer in the main memory (step 1), construct an
in-memory summary data structure by processing
each incoming basic window (step 2), prune and
maintain the summary data structure (step 3), and
find the set of path traversal patterns from the cur-
rent summary data structure (step 4). Steps 1 and 2
are performed in sequence for a new basic window.
Steps 3 and 4 are usually performed periodically or
when it is needed. Since the step 1 is straightforward,
we shall henceforth focus on Steps 2–4, and devise
algorithms for the effective construction and mainte-
nance of summary data structure, and efficient deter-
mination of the set of path traversal patterns.

3.1. Construction of the in-memory summary data

structure

In this section, a new in-memory summary data
structure, called SP-forest (Summary Path traversal
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pattern forest), is proposed to store the essential
information about path traversal patterns of each
incoming basic window, and an efficient algorithm
is proposed to construct the summary data struc-
ture. Then, we use a running example to illustrate.

Definition 1. A Summary Path traversal pattern
forest (abbreviated as SP-forest) is a prefix tree-
based summary data structure defined below.

1. SP-forest consists of a list of frequent references

(denoted by FR-list), such as r1, r2, . . . , rk, where
ri.esup P s Æ N, and a set of Path traversal pattern

tree (abbreviated as Path-tree) of references ri,
denoted by ri.Path-tree, "i = 1,2, . . . ,k.

2. Each node in the ri.Path-tree, "i = 1,2, . . . ,k,
consists of four fields: fr_id, esup, mfr_id, and
node-link, where fr_id is the identifier of the
Fig. 2. Algorithm SP-fo
incoming forward reference, esup registers the
number of maximal forward references repre-
sented by a portion of the path reaching the node
with the fr_id, the value of mfr_id assigned to a
new node is the identifier of current maximal for-
ward reference, and node-link links up a node
with the next node with the same f_id in the
SP-forest or null id if there is none.

3. Each entry ri, "i = 1,2, . . . ,k, in the FR-list
consists of four fields: fr_id, esup, mfr_id, and
head-link, where fr_id registers which forward
reference identifier the entry represents, esup
records the number of maximal forward refer-
ences in the stream so far containing the refer-
ence with identifier fr_id, mfr_id assigned to a
new entry is the identifier of the current maximal
forward reference, and head-link is a pointer, and
points to the root node of the fr_id.Path-tree.

Fig. 2 gives the SP-forest construction algorithm.
First of all, the DSM-PLW algorithm simply reads a
maximal forward reference MFRi = hr1, r2, . . . ,
rj, . . . , rmi from the buffer to maintain the FR-list.
The maintenance process is described as follows.
For each reference rj in MFRi, if the reference rj

exists in the current FR-list, the estimated support
of the reference, i.e., rj.esup, is increased by one.
Otherwise, a new entry of form (rj, 1, i, !rj) is cre-
ated in the FR-list. Note that we use the notation
!rj to indicate the head-link of rj, and i is the cur-
rent MFR’s identifier. Next, MFRi is projected into
m reference-suffix maximal forward references
(denoted by rs-MFRs) according to the order of ref-
erences in the MFRi. The step is called a maximal

forward reference projection, and denoted by
rest construction.
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MFR-projection(MFRi) = {r1jMFRi, r2jMFRi, . . . , rjj
MFRi , . . . , rmjMFRi}, where rjjMFRi =h rjrj+1 � � �
rmi, "j = 1,2, . . . ,m. For example, a maximal for-
ward reference hacdefi is projected into five refer-
ence-suffix maximal forward references: hacdefi,
hcdefi, hdefi, hefi, and hfi. Note that the cost of max-
imal forward reference projection is (m2 + m)/2, i.e.,
m + (m � 1) + � � � + 1. Next, these rs-MFRs with
prefix ri, "i = 1,2, . . . ,m, are inserted into the
ri.Path-tree as branches, respectively. If a rs-MFR
shares a prefix with a MFR already in the Path-tree,
the new MFR will share a prefix of the branch rep-
resenting that MFR. In addition, an estimated
support counter is associated with each node in
the Path-tree. The counter is updated when a
reference-suffix maximal forward reference causes
the insertion of a new branch. Fig. 3 shows the
subroutines of SP-forest construction and mainte-
nance.

Example 1. Let the first six maximal forward ref-
erences in the stream of Web click-sequences be
hacdefi, habei, h cefi, hacdfi, hcefi, and hdfi, where
Fig. 3. Subroutines of SP-fores
a, b, c, d, e, and f are Web references. The SP-forest
with respect to the first two MFRs, hacdefi and
habei, constructed by DSM-PLW algorithm is
shown in Figs. 4 and 5, respectively. Note that the
dotted-line arrows, i.e., node-links, in Fig. 4 are used
to link up a node with the next node with the same
fr_id in the current SP-forest. However, in the
following steps, as demonstrated in Figs. 5–7, the
node-links are omitted for concise presentation.

First, the DSM-PLW algorithm reads the first
maximal forward reference hacdefi from the buffer,
and projects it into five reference-suffix maximal for-
ward references: hacdefi, hcdefi, hdefi, hefi, and hfi.
Next, the algorithm inserts hacdefi, hcdefi, hdefi,
hefi, and hfi into the empty trees, i.e., a.Path-tree,
c.Path-tree, d.Path-tree, e.Path-tree, and f.Path-tree,
respectively. The step results in a single path in
each Path-tree: root(a:1:1)! (a:1:1)! (c:1:1)!
(d:1:1)! (e:1:1)! (f:1:1), root(c:1:1)! (c:1:1)!
(d:1:1)! (e:1:1)! (f:1:1), root(d:1:1)! (d:1:1)!
(e:1:1)! (f:1:1), root(e:1:1)! (e:1:1)! (f:1:1), and
root(f:1:1)! (f:1:1). The result is shown in Fig. 4.
t construction algorithm.



Fig. 4. SP-forest after processing the first maximal forward
reference hacdefi.

Fig. 5. SP-forest after processing the second maximal forward
reference habei.

Fig. 6. SP-forest after processing the first six maximal forward
references.

Fig. 7. SP-forest after pruning the infrequent reference b.

1480 H.-F. Li et al. / Computer Networks 50 (2006) 1474–1487
Then, DSM-PLW inserts the result of MFR-projec-
tion (habei): habei, hbei, and hei into a.Path-tree,
b.Path-tree, and e.Path-tree, respectively. Hence,
habei leads to one path with a being the common
prefix: root(a:2:1)! (a:2:1)! (c:1:1)! (d:1:1)!
(e:1:1)! (f:1:1) and root(a:2:1)! (a:2:1)!
(b:1:2)! (e:1:2). Then, hbei results in a single path
in b.Path-tree: root(b:1:2)! (b:1:2)! (e:1:2).
Finally, DSM-PLW algorithm inserts hei into the
SP-forest. At this time, no new node is created,
but the first path of e.Path-tree is changed to:
root(e:2:1)! (e:2:1)! (f:1:1). The result is shown
in Fig. 5. After processing the six maximal forward
references, the SP-forest is given in Fig. 6.

3.2. Pruning mechanism of the summary data
structure

According to the apriori principle [2], only the
frequent references are used to construct candidate
k-RSs (k-reference-sequences) in the next pass,
where k > 1. Thus, the set of candidates containing
the infrequent references stored in SP-forest is
pruned. The pruning is usually performed periodi-
cally or when it is needed.

Let the user-defined minimum support threshold
be s in the range of [0, 1], and the length of Web
click-sequence stream be N, i.e., N maximal forward
references. The pruning mechanism of SP-forest is
that a reference sequence X and it super-sequences
are deleted from SP-forest if X.esup < s Æ N. For
each entry of form (fr_id, esup, mfr_id! fr_id) in
the FR-list, if its fr_id.esup is less than s Æ (N-
mfr_id + 1), it can be regarded as an infrequent ref-
erence. At this time, three operations are preformed
in sequence. First, DSM-PLW deletes the fr_id.
Path-tree. Second, it deletes the reference with id
fr_id from the FR-list. Finally, DSM-PLW deletes
the infrequent reference with id fr_id and its suffix
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paths from other Path-trees by node-links. After
pruning all infrequent references from SP-forest,
SP-forest contains the set of all frequent path
traversal patterns of the stream so far.

Example 2. Let the user-specified minimum sup-
port threshold be 0.3. Hence, a reference sequence X

is called infrequent in Fig. 6 if X.esup < 0.3 Æ 6 = 1.8.
At this time, only reference b (b.esup = 1) is infre-
quent by searching the current FR-list. Now, in
order to maintain the frequent patterns in the SP-
forest, DSM-PLW deletes b.Path-tree, b’s suffix
paths from a.Path-tree, and b from the FR-list. The
result is shown in Fig. 7.

The next step of DSM-PLW algorithm is to
determine the set of all path traversal patterns from
SP-forest constructed so far. The step is performed
only when the analytical results of the stream is
requested.

3.3. Determination of path traversal patterns from
the summary data structure

Assume that there are k frequent references,
namely r1, r2, . . . , rk, in the current FR-list. Let the
minimum support threshold be s in the range of
[0,1], and the current length of stream be N. For
each entry ri, "i = 1,2, . . . ,k, in the FR-list, DSM-
PLW traverses the ri.Path-tree to find the reference
sequences with prefix ri whose estimated support is
greater than s Æ N in depth-first-search (DFS) man-
ner. Then, DSM-PLW stores the maximal reference
sequences in a temporal list, MRS-list. Finally,
DSM-PLW outputs the set of path traversal pat-
terns stored in the temporal list. Fig. 8 gives the
path traversal pattern mining algorithm, called
Fig. 8. Algorithm of
MRS-mining (Maximal Reference Sequence
mining).

Example 3. The example illustrates the mining of
the path traversal patterns from the current SP-
forest shown in Fig. 7. Let the minimum support s

be 0.3.

First, the MRS-mining algorithm starts the path
traversal pattern mining scheme from the first refer-
ence a in the FP-list, and generates a frequent refer-
ence sequence hacdi by DFS. MRS-mining adds
hacdi into MRS-list because hacdi is not a substring
of any other patterns stored in the current MRS-list.
Next, on the second entry c, MRS-mining algorithm
finds two frequent reference sequences: hcdi and
hcefi. However, only hcefi is added into the MRS-
list. This is because hcdi is a substring of a generated
maximal reference sequence hacdi. On the third
entry d, only one frequent reference sequence hdfi
is generated by MRS-mining, and stored into the
MRS-list. On the fourth entry e, only one frequent
reference sequence hefi is generated, but it is not a
maximal reference sequence. This is because hefi is
a substring of hcefi. On the last entry f, only one fre-
quent reference sequence hfi is obtained, but hfi is
not a maximal reference sequence. This is because
hfi is a substring of hcefi. Finally, the MRS-list con-
tains the set of maximal reference sequences, i.e.,
path traversal patterns: hacdi, hcefi, and hdfi.

4. Theoretical analysis and performance evaluation

In this section, we discuss the theoretical analysis
of space requirements of a prefix tree-based sum-
mary data structure, the generation of synthetic
path traversal data, and the experimental results
MRS-mining.
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of DSM-PLW algorithm on synthetic datasets and
real datasets.

4.1. Space upper bound of a prefix tree-based
summary data structure

In this section, we discuss the space upper bound
of any single-pass algorithm for constructing a pre-
fix tree-based summary data structure.

Theorem 1. A prefix tree-based summary data struc-

ture has at most 2k nodes for storing the set of all

frequent reference sequences of data streams.

Proof. Let k be the number of frequent references in
the stream generated so far. Hence, the number of
potential frequent reference sequences is C(k, 1)
regarding one reference, C(k, 2) regarding two refer-
ences, . . . , C(k, i) regarding i references, . . . , and
C(k,k) regarding k references according to the
apriori heuristic. In a prefix tree-based summary
data structure, a reference sequence is represented
by a path and its appearance support is maintained
in the last node of the path. Thus, there are C(k, 1)
nodes in the first level, C(k, 2) nodes in the second
level, . . ., C(k, i) nodes in the ith level, . . . , and
C(k,k) nodes in the kth level. There are totally
C(k, 1) + C(k, 2) + � � � + C(k, i) + � � � + C(k,k) nodes
in the prefix tree-based summary data structure.
Consequently, the space upper bound of a prefix
tree-based summary data structure is O(2k). h
4.2. Generation of synthetic traversal paths

To evaluate the performance of DSM-PLW algo-
rithm, two experiments are performed. The experi-
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Fig. 9. Performance comparisons of total execution t
ments were carried out on the synthetic Web
traversal path data generator proposed by Chen
et al. [11]. We describe it briefly as follows. A tra-
versal tree is constructed to mimic a Web site struc-
ture whose starting position is a root node of the
tree. The traversal tree is composed of internal
nodes and leaf nodes. A traversal path consists of
nodes accessed by a Web user. The size of each tra-
versal path is picked from a Poisson distribution
with mean equal to jPj, where jPj is the average size
of reference paths. With the first node being the root
node, a traversal path is generated probabilistically
within the traversal tree as follows. Each edge con-
necting to an internal node is assigned a weight. The
weight corresponds to the probability that each edge
will be next accessed by the Web user. The weight to
its parent node is assigned, p0, which is generally 1/
(n + 1) where n is the number of child nodes. The
probability of traveling to each child node, pi, is
determined from an exponential distribution with
unit mean. Moreover, the probability is normalized
such that the sum of the weights for all child nodes
is equal to 1 � p0. When the path arrives at a leaf
node, the next move would be either to its parent
node in backward (with a default probability 0.25)
or to any internal node (with an aggregate probabil-
ity 0.75). More detail about the generation of syn-
thetic traversal paths can be found in [11].

Three synthetic data streams, H10P5.D200K,
H10P10.D200K, and H10P15.D200K, of size
200,000 reference paths are studied. HxPy means
that x is the height of a traversal tree, and y is the
average size of the reference paths. D200K means
that the number of reference paths is 200,000. A tra-
versal tree for H10 was obtained when the height of
the tree is 10, and the fanout at each internal node is
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Fig. 10. Performance comparisons of memory usage over various minimum support thresholds: (a) without MRS-mining and (b) with
MRS-mining.
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between 4 and 7. The root node consists of seven
child nodes. Moreover, the number of internal
nodes is 16,200 and the number of leaf nodes is
73,006. In all experiments, the click-sequences of
each dataset are looked up in sequence to simulate
the environment of a data stream. All the experi-
ments are performed on a 1.80 GHz Pentium 4 pro-
cessor with 512 megabytes main memory, running
on Microsoft Windows 2000. In addition, all the
programs are written in Microsoft/Visual C++ 6.0.

4.3. Experimental results of synthetic data

We first evaluated the effect of various minimum
support thresholds s for synthetic data streams hav-
ing a typical value of 200,000 (200K) reference
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paths. In Fig. 9, we plot total execution time taken
by our algorithm for values of minimum support
threshold s ranging from 0.2% to 1%. The figure
shows how decreasing s leads to an increase in run-
ning time. Fig. 10 shows how decreasing s leads to
an increase in memory usage. The memory usage
BMS-Web

2.2
2.21
2.22

2.23
2.24

2.25

2.26
2.27

2.28
2.29

2.3

0.07 0.067 0.063 0

Minimum suppor

T
ot

al
 m

em
or

y 
us

ag
e 

(M
B

)

(a) 

BMS-Web

6

6.5

7

7.5

8

8.5

9

0.1 0.085 0.065 0

Minimum suppo

T
ot

al
 m

em
or

y 
us

ag
e 

(M
B

)

(b)

Fig. 13. Memory usage of DSM-PLW on (a) BMS-WebView-1 and (
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Fig. 12. Linear scalability of
shown in Fig. 10(a) is the memory requirement
in Steps 2 and 3 of DSM-PLW algorithm, and
Fig. 10(b) is the total memory requirement of
DSM-PLW algorithm in Steps 2–4.

To measure the relative accuracy of DSM-PLW
algorithm, the average support error ASE proposed
View-1
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in [9] is used. Fig. 11 shows the average support
error of the mining results of the proposed algo-
rithm with respect to that of the FS algorithm [11]
performed on the synthetic streaming data by vary-
ing the user-specified minimum support threshold s.
Generally, the average support error is increased as
the value of s is increased in Fig. 11.

To assess the scalability of our algorithm, scale-
up experiments were conducted. Fig. 12 shows that
the execution time of DSM-PLW increases linearly
as the streaming data size increases, ranging from
200K to 1000K. Different minimum support thresh-
olds s yield similar and consistent results. The result
of s = 0.2% is shown in Fig. 12, and it exhibits good
linearity in scale-up.

4.4. Experimental results of real data

Two real click-stream datasets, BMS-WebView-1
and BMS-WebView-2, which contain several
months worth of click-stream data from two e-com-
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Fig. 14. Execution time of DSM-PLW on (a) BMS-WebView-1 and (
merce Web sites, are used to evaluate the perfor-
mance of the DSM-PLW algorithm. The real data
was provided by Blue Martini Software [46], and is
available from the KDD Cup 2000 home page [48].
The BMS-WebView-1 dataset consists of 497 items
and 59,602 transactions. The maximum transaction
size of BMS-WebView-1 is 267 distinct items and
the average transaction size is 2.5 items. The BMS-
WebView-2 dataset consists of 3340 distinct items
and 77,512 transactions. The maximum transaction
size of BMS-WebView-2 is 161 items and the average
transaction size is five items. Note that an item is
regarded as a reference and a transaction is regarded
as a maximal forward reference in these experiments.

In the experiments, two major factors, memory

and execution time, are examined in the online, sin-
gle-pass mining path traversal patterns of streaming
Web click-sequences, since both should be bounded
online as time advances. As shown in Fig. 13, the
memory usage of DSM-PLW algorithm is relatively
insensitive to the minimum support thresholds. As
w-1

06 0.057 0.053 0.05
rt thresholds (%)

ew-2
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b) BMS-WebView-2 over various minimum support thresholds.
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the support decreases, the memory consumption of
DSM-PLW increases stablely, indicating the feasi-
bility of the proposed algorithm. In Fig. 14, the exe-
cution time of DSM-PLW grows smoothly as the
support decreases for both real datasets. Hence,
the experiments show that DSM-PLW algorithm
is a practical method to mine the set of path tra-
versal patterns in real data.

5. Conclusions

This study has presented a new problem of Web
data mining, namely, online single-pass mining path

traversal patterns in streaming Web click-sequences.
A new single-pass algorithm the DSM-PLW (Data
Stream Mining for Path traversal patterns in a
Landmark Window) is proposed to discover the
set of all path traversal patterns over the entire his-
tory of continuous stream of Web click-sequences.
In the DSM-PLW algorithm, an effective in-mem-
ory summary data structure SP-forest (Summary
Path traversal pattern forest) is developed to main-
tain the essential information of all maximal refer-
ence sequences in the stream so far. The set of all
maximal reference sequences, i.e., path traversal
patterns, is determined from the SP-forest by a
depth-first-search mechanism, called MRS-mining
(Maximal Reference Sequence mining). Theoretical
analysis and experimental results show that the
DSM-PLW algorithm can meet the performance
requirements of data stream mining, namely, sin-

gle-pass, bounded space, and real time. Future work
includes single-pass mining top-k path traversal pat-
terns and mining path traversal patterns in a tuple-
based or time-based sliding window that contains
the most recent N maximal forward references.
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