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Abstract

Let U be the set of cubic planar hamiltonian graphs, A the set of graphs G in U such that G − v is hamiltonian for any vertex v of
G, B the set of graphs G in U such that G − e is hamiltonian for any edge e of G, and C the set of graphs G in U such that there is a
hamiltonian path between any two different vertices of G. With the inclusion and/or exclusion of the sets A, B, and C, U is divided
into eight subsets. In this paper, we prove that there is an infinite number of graphs in each of the eight subsets.
© 2006 Elsevier B.V. All rights reserved.
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1. Definitions and notations

In this paper, for the graph definitions and notations we follow [2]. G = (V , E) is a graph if V is a finite set and
E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set of G.
Two vertices u and v are adjacent if (u, v) ∈ E. We use N(x) to denote the set of vertices in G that are adjacent to x.
Sometimes, we use NG(x) to emphasize that the underlying graph is G. A path P is represented by 〈v0, v1, v2, . . . , vk〉.
We use P −1 to denote 〈vk, vk−1, . . . , v1, v0〉. A path is a hamiltonian path if its vertices are distinct and span V. A
cycle is a path with at least three vertices such that its first vertex is the same as the last vertex. A cycle is a hamiltonian
cycle if it traverses every vertex of G exactly once. A graph is hamiltonian if it has a hamiltonian cycle. A graph G is
hamiltonian connected if there exists a hamiltonian path joining any two vertices of G.

The architecture of an interconnection network is usually represented by a graph. There are a lot of mutually
conflicting requirements in designing the topology of interconnection networks. It is almost impossible to design a
network which is optimum for all conditions. One has to design a suitable network according to the requirements of
their properties. The hamiltonian property is one of the major requirements in designing the topology of networks.
Fault tolerance is also desirable in massive parallel systems that have a relatively high probability of failure.
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Since vertex faults and edge faults may happen when a network is used, it is practically meaningful to consider faulty
networks. A graph G is k-hamiltonian if G − F is hamiltonian for any F ⊆ V ∪ E and |F | = k. It is easy to see that
the degree of any vertex in a k-hamiltonian graph is at least k + 2. A k-hamiltonian graph is optimal if it contains the
least number of edges among all k-hamiltonian graphs with the same number of vertices. Thus, an n-regular graph G
is optimal fault-tolerant hamiltonian if it is (n − 2)-hamiltonian. There are some interconnection networks proved to
be optimal fault-tolerant hamiltonian, such as twisted-cubes, crossed-cubes, pancake graphs, etc. [6–13].

In these paper, the concept of fault-tolerant hamiltonian connected graphs is introduced. A graph G is k-hamiltonian
connected if G − F is hamiltonian connected for any F ⊆ V ∪ E and |F | = k. A k-hamiltonian connected graph is
optimal if it contains the least number of edges among all k-hamiltonian connected graphs having the same number of
vertices.

Suppose that G is a k-hamiltonian connected graph with at least k + 4 vertices, then the degree of any vertex of G
is at least k + 3. For otherwise, let x ∈ V (G) be any vertex of degree at most k + 2 and N(x) = {x1, x2, . . . , xr} with
r �k + 2. Let F = {xi | 3� i�r}, then |F |�k and G − F has at least four vertices. Let P be any path between x1 and
x2. Obviously, either x /∈ P or P = 〈x1, x, x2〉. Thus, G − F is not hamiltonian connected. Thus, an n-regular graph G
is optimal fault-tolerant hamiltonian connected if it is (n − 3)-hamiltonian connected.

We observed the aforementioned interconnection networks are recursively constructed. Based on the recursive
structure, we use induction to prove that such networks are not only optimal fault-tolerant hamiltonian but also optimal
fault-tolerant hamiltonian connected. However, we cannot prove such networks are optimal fault-tolerant hamiltonian
without the optimal fault-tolerant hamiltonian connected property. For this reason, we are wondering if any optimal
k-hamiltonian graph is optimal (k − 1)-hamiltonian connected. In this paper, we will concentrate on the special case
with k = 1.

A hamiltonian graph G is 1-vertex hamiltonian if G− v is hamiltonian for any v ∈ V (G). (A non-hamiltonian graph
such that G − v is hamiltonian for any v ∈ V (G) is called a hypohamiltonian graph. There are numerous studies
on hypohamiltonian graphs. Readers can refer to [5] for a survey of hypohamiltonian graphs.) A graph G is 1-edge
hamiltonian if G − e is hamiltonian for any e ∈ E(G). Obviously, any 1-edge hamiltonian graph is hamiltonian. A
graph G = (V , E) is 1-hamiltonian if it is 1-vertex hamiltonian and 1-edge hamiltonian. A 1-hamiltonian graph G is
optimal if it contains the least number of edges among all 1-hamiltonian graphs with the same number of vertices. It
is proved in [3,4] that the degree of any vertex in any optimal 1-hamiltonian graph is at least 3. Moreover, all optimal
1-hamiltonian graphs with an even number of vertices are cubic, i.e., the degree of any vertex is 3.

Let U be the set of cubic planar hamiltonian graphs, A the set of hyper hamiltonian graphs in U, B the set of 1-edge
hamiltonian graphs in U, and C the set of hamiltonian connected graphs in U. With the inclusion and/or exclusion of
the sets A, B, and C, the set U is divided into eight subsets, namely, Ā ∩ B̄ ∩ C̄, Ā ∩ B̄ ∩ C, Ā ∩ B ∩ C, A ∩ B̄ ∩ C,
A ∩ B̄ ∩ C̄, Ā ∩ B ∩ C̄, A ∩ B ∩ C̄, and A ∩ B ∩ C. We will prove that there is an infinite number of elements in each
of the eight subsets.

2. Preliminaries

We will use a graph operator, 3-join, to construct graphs in each of the eight subsets of U. Let G1 and G2 be two graphs
with V (G1)∩V (G2)=∅. Let x ∈ V (G1) with degG1

(x)=3 and y ∈ V (G2) with degG2
(y)=3. Let N(x)={x1, x2, x3}

be an ordered set of the neighbors of x and N(y) = {y1, y2, y3} be an oredered set of the neighbors of y. 3-join of
G1 and G2 at x and y, denoted by J (G1, N(x); G2, N(y)), is the graph with V (J (G1, N(x); G2, N(y)) = (V (G1) −
{x})∪(V (G2)−{y}) and E(J (G1, N(x); G2, N(y))=(E(G1)−{(x, xi) | 1� i�3})∪(E(G2)−{(y, yi) | 1� i�3})∪
{(xi, yi) | 1� i�3}.A graph is called a 3-join of G1 and G2 if G=J (G1, N(x); G2, N(y)) for some vertices x ∈ V (G1)

and y ∈ V (G2)with degG1
(x)=degG2

(y)=3. We note that a different ordering of N(x) and N(y) generates a different
3-join of G1 and G2 at x and y.

In this section, we always assume that G1 is a graph with a vertex x of degree 3 and G2 is a graph with a vertex
y of degree 3. Let G = J (G1, N(x); G2, N(y)), where N(x) = {x1, x2, x3} and N(y) = {y1, y2, y3}. Depending on
the hamiltonian properties of G1 and G2, i.e., whether they are 1-vertex hamiltonian, 1-edge hamiltonian and/or
hamiltonian connected, and some local properties at x and y, we may have various hamiltonian properties of G, as
stated in the following lemmas.

Lemma 1. G is 1-edge hamiltonian if and only if both G1 and G2 are 1-edge hamiltonian.
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Proof. Assume that G is 1-edge hamiltonian. We claim that both G1 and G2 are 1-edge hamiltonian. By symmetry, it
is sufficient to prove that G1 is 1-edge hamiltonian.

Let e be any edge of G1. Then e is either incident with x or not. Suppose that e is not incident with x. Then e is an edge
of G. Since G is 1-edge hamiltonian, there exists a hamiltonian cycle C of G− e. Because there are exactly three edges
of G joining V (G1)−{x} to V (G2)−{y}, C can be written as 〈xi, P, xj , yj , Q, yi, xi〉 for some {i, j} ⊂ {1, 2, 3} with
i 
= j , where P is a hamiltonian path of G1 − x joining xi to xj . Thus, 〈x, xi, P , xj , x〉 forms a hamiltonian cycle of
G1 − e. Suppose that e is an edge incident with x. Without loss of generality, we may assume that e = (x, x1). Since G
is 1-edge hamiltonian, there exists a hamiltonian cycle C of G− (x1, y1). Because there are exactly three edges joining
V (G1) − {x} to V (G2) − {y}, C can be written as 〈x2, P , x3, y3, Q, y2, x2〉, where P is a hamiltonian path of G1 − x.
Thus, 〈x, x2, P , x3, x〉 forms a hamiltonian cycle of G1 − (x, x1). Then G1 is 1-edge hamiltonian.

Suppose that both G1 and G2 are 1-edge hamiltonian. Let e be any edge of G. Suppose that e /∈ {(xi, yi) | i =1, 2, 3}.
Then e is either in E(G1) or in E(G2). Without loss of generality, we assume that e is in E(G1). Since G1 is 1-
edge hamiltonian, there exists a hamiltonian cycle C1 in G1 − e. Obviously, C1 can be written as 〈x, xi, P , xj , x〉
for some i, j ∈ {1, 2, 3} with i 
= j . Let k be the only element in {1, 2, 3} − {i, j}. Since G2 is 1-edge hamiltonian,
there exists a hamiltonian cycle C2 of G2 − (y, yk). Obviously, C2 can be written as 〈y, yj , Q, yi, y〉. Obviously,
〈xi, P, xj , yj , Q, yi, xi〉 forms a hamiltonian cycle of G − e.

Suppose that e ∈ {(xi, yi) | i = 1, 2, 3}. Without loss of generality, we assume that e = (x1, y1). Since G1 is 1-edge
hamiltonian, there exists a hamiltonian cycle C1 in G1 − (x, x1). Obviously, C1 can be written as 〈x, x2, P , x3, x〉.
Since G2 is 1-edge hamiltonian, there exists a hamiltonian cycle C2 in G2 − (y, y1). Obviously, C2 can be written
as 〈y, y3, Q, y2, y〉. Obviously, 〈x2, P , x3, y3, Q, y2, x2〉 forms a hamiltonian cycle of G − e. Hence, G is 1-edge
hamiltonian. �

We say that a vertex x is good in a graph G if degG(x) = 3 and G − e is hamiltonian for any edge e incident with x.
We use Good(G) to denote the set of good vertices in G.

Obviously, Good(G) = V (G) if G is a 3-regular 1-edge hamiltonian graph.

Lemma 2. Assume that both G1 and G2 are 1-vertex hamiltonian graphs. Then G is 1-vertex hamiltonian if and only
if x is good in G1 and y is good in G2. Moreover, Good(G) = (Good(G1) ∪ Good(G2)) − {x, y} if x is good in G1
and y is good in G2.

Proof. We prove this lemma through the following steps.
(1) Suppose that G is 1-vertex hamiltonian. We claim that x is good in G1 and y is good in G2. By symmetry, it is

sufficient to prove that x is good in G1. Let e be any edge incident with x. Without loss of generality, we assume that
e = (x, x1). Since G is 1-vertex hamiltonian, there exists a hamiltonian cycle C in G − y1. Obviously, C can be written
as 〈x2, P , x3, y3, Q, y2, x2〉. Thus, 〈x, x2, P , x3, x〉 forms a hamiltonian cycle of G1 − (x, x1). Hence, x is good in G1.

(2) Suppose that x is good in G1 and y is good in G2. We claim that G is hamiltonian. Since x is good in G1, there
exists a hamiltonian cycle C1 in G1 − (x, x1). Obviously, C1 can be written as 〈x, x2, P , x3, x〉. Similarly, there exists a
hamiltonian cycle C2 in G2 −(y, y1). Obviously, C2 can be written as 〈y, y3, Q, y2, y〉. Thus, 〈x2, P , x3, y3, Q, y2, x2〉
forms a hamiltonian cycle of G.

(3) We prove that G is 1-vertex hamiltonian. Let u be any vertex of G. Then u is either in (V (G1) − {x}) or in
(V (G2) − {y}). By symmetry, we assume that u ∈ V (G1) − {x}.

Suppose that u ∈ N(x). Without loss of generality, we assume that u = x1. Since G1 is 1-vertex hamiltonian,
there exists a hamiltonian cycle C1 in G1 − u. Obviously, C1 can be written as 〈x, x2, P , x3, x〉. Since y is good
in G2, there exists a hamiltonian cycle C2 in G2 − (y, y1). Obviously, C2 can be written as 〈y, y3, Q, y2, y〉. Thus,
〈x2, P , x3, y3, Q, y2, x2〉 forms a hamiltonian cycle of G − u.

Suppose that u /∈ N(x). Since G1 is 1-vertex hamiltonian, there exists a hamiltonian cycle C1 in G1−u. Obviously, C1
can be written as 〈x, xi, P , xj , x〉 for some i, j ∈ {1, 2, 3} with i 
= j . Let k be the only element in {1, 2, 3}−{i, j}. Since
y is good in G2, there exists a hamiltonian cycle C2 in G2 − (y, yk). Obviously, C2 can be written as 〈y, yj , Q, yi, y〉.
Thus, 〈xi, P, xj , yj , Q, yi, xi〉 forms a hamiltonian cycle of G − u.

Hence, G is 1-vertex hamiltonian.
(4) We claim that Good(G) ⊆ (Good(G1) ∪ Good(G2)) − {x, y}. Let u be any good vertex in G. Obviously,

degG(u) = 3 and u ∈ (V (G1) − {x}) ∪ (V (G2) − {y}). Without loss of generality, we assume that u ∈ V (G1) − {x}.
Obviously, degG1

(u) = 3. Let e = (u, v) be any edge of G1 incident with u.
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Suppose that u ∈ NG1(x). Without loss of generality, we assume that u = x1. Suppose that v = x. Since u is good
in G, there exists a hamiltonian cycle C in G − (x1, y1). Obviously, C can be written as 〈u, P, xi, yi, Q, yj , xj , R, u〉
where i, j ∈ {2, 3} with i 
= j . Obviously, 〈u, P, xi, x, xj , R, u〉 forms a hamiltonian cycle of G1 − (u, v). Suppose
that v 
= x. Since u is good in G, there exists a hamiltonian cycle C in G − (u, v). Obviously, C can be written as
〈u, y1, Q, yi, xi, R, u〉, where i ∈ {2, 3}. Obviously, 〈u, x, xi, R, u〉 forms a hamiltonian cycle of G1 − (u, v). Thus,
u is good in G1.

Suppose that u /∈ NG1(x). Since u is good in G, there exists a hamiltonian cycle C in G − (u, v). Obviously, C can
be written as 〈u, P, xi, yi, Q, yj , xj , R, u〉, where i, j ∈ {1, 2, 3} with i 
= j . Obviously, 〈u, P, xi, x, xj , R, u〉 forms
a hamiltonian cycle of G1 − (u, v). Thus, u is good in G1.

Therefore, Good(G) ⊆ (Good(G1) ∪ Good(G2)) − {x, y}.
(5) We claim that Good(G1) − {x} ⊆ Good(G). Suppose that u is good in G1 with u 
= x. Obviously, degG(u) = 3.

Let e = (u, v) be any edge of G incident with u.
Suppose that u = xi and e = (xi, yi) for some i with i ∈ {1, 2, 3}. Without loss of generality, we assume that

i = 1. Since u is good in G1, there exists a hamiltonian cycle C1 in G1 − (x1, x). Obviously, C1 can be written as
〈x, x2, P , x3, x〉. Since y is good in G2, there exists a hamiltonian cycle C2 in G2 − (y, y1). Obviously, C2 can be
written as 〈y, y3, Q, y2, y〉. Obviously, 〈x2, P , x3, y3, Q, y2, x2〉 forms a hamiltonian cycle in G − e.

Suppose that u 
= xi or e 
= (xi, yi) for any i with i ∈ {1, 2, 3}. Since u is good in G1, there exists a hamiltonian
cycle C1 in G1 − e. Obviously, C1 can be written as 〈u, P1, xi, x, xj , P2, u〉 where i, j ∈ {1, 2, 3} with i 
= j . (Note
that the length of Pt is 0 if u = xt for t ∈ {1, 2}.) Let k be the only element in {1, 2, 3} − {i, j}. Since y is good
in G2, there exists a hamiltonian cycle C2 in G2 − (y, yk). Thus, C2 can be written as 〈y, yi, Q, yj , y〉. Obviously,
〈u, P1, xi, yi, Q, yj , xj , P2, u〉 forms a hamiltonian cycle in G − e.

Therefore, Good(G1) − {x} ⊆ Good(G).
(6) Similar to Step 5, we have Good(G2) − {y} ⊆ Good(G).
(7) Combining Steps 4–6, Good(G) = (Good(G1) ∪ Good(G2)) − {x, y}. �

Lemma 3. Let a and b be two distinct vertices of G1 such that a 
= x and b 
= x. Let y ∈ Good(G2). Then there exists
a hamiltonian path of G1 joining a to b if and only if there exists a hamiltonian path of G joining a to b.

Proof. Assume that there exists a hamiltonian path P1 of G1 joining a to b. We can write P1 as 〈a, P 1
1 , xi, x, xj , P

2
1 , b〉

with {i, j} ⊂ {1, 2, 3} and i 
= j . Note that the length of P 1
1 and the length of P 2

1 could be 0. Let k be the only element
in {1, 2, 3} − {i, j}. Since y is good in G2, there exists a hamiltonian cycle C2 in G2 − (y, yk). We can write C2 as
〈y, yi, P2, yj , y〉. Then 〈a, P 1

1 , xi, yi, P2, yj , xj , P
2
1 , b〉 forms a hamiltonian path of G joining a to b.

Assume that there exists a hamiltonian path P of G joining a to b. Since there are exactly three edges, namely
(x1, y1), (x2, y2) and (x3, y3), between V (G1) − {x} and V (G2) − {y} in G, P can be written as 〈a, P1, xi, yi, P2, yj ,

xj , P3, b〉 for some {i, j} ⊂ {1, 2, 3} with i 
= j . Note that the length of P1 and the length of P3 could be 0. Thus,
〈a, P1, xi, x, xj , P3, b〉 forms a hamiltonian path in G1 joining a to b. �

A vertex x is nice in a graph G if it is good in G with the following property: let N(x)={x1, x2, x3} be the neighborhood
of x in G. For any i ∈ {1, 2, 3}, there exists a hamiltonian path of G − (x, xi) joining u to xi for any vertex u of G with
u /∈ {x, xi}.

We use Nice(G) to denote the set of nice vertices in G.

Lemma 4. Assume that both G1 and G2 are hamiltonian connected graphs, x ∈ Nice(G1), and y ∈ Nice(G2). Then
G is hamiltonian connected.

Proof. To prove that G is hamiltonian connected, we want to show that there exists a hamiltonian path joining a to b
for any a, b ∈ V (G) with a 
= b. By symmetry, we only need to consider the following cases.

Case 1: a, b ∈ V (G1). Since G1 is hamiltonian connected, there exists a hamiltonian path 〈a, P1, xi, x, xj , P2, b〉
in G1. Let k be the only element in {1, 2, 3} − {i, j}. Since y is good, there exists a hamiltonian cycle 〈y, yi, Q, yj , y〉
in G2 − (y, yk). Then 〈a, P1, xi, yi, Q, yj , xj , P2, b〉 is a hamiltonian path in G.

Case 2: a ∈ V (G1) − N(x) and b ∈ V (G2) − N(y). Since x is nice in G1, G1 − (x, x1) contains a hamiltonian
path P1 joining a to x1. Without loss of generality, P1 can be written as 〈a, P 1

1 , x2, x, x3, P
2
1 , x1〉. Since y is nice in
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G2, G2 − (y, y2) contains a hamiltonian path P2 joining b to y2. P2 can be written as 〈y2, P
1
2 , yj , y, yk, P

2
2 , b〉 with

{j, k} = {1, 3}. If j = 1, then k = 3. Thus, 〈a, P 1
1 , x2, y2, P

1
2 , y1, x1, (P

2
1 )−1, x3, y3, P

2
2 , b〉 is a hamiltonian path in G

that joins a to b. If j = 3, then k = 1. Thus, 〈a, P 1
1 , x2, y2, P

1
2 , y3, x3, P

2
1 , x1, y1, P

2
2 , b〉 is a hamiltonian path in G that

joins a to b.
Case 3: a ∈ N(x) and b ∈ V (G2). Without loss of generality, we assume that a = x1. Since x is nice in G1, there

exists a hamiltonian path P1 of G1 − (x, x2) joining a to x2. Write P1 as 〈a, x, x3, Q1, x2〉. Since y is nice in G2,
there exists a hamiltonian path P2 of G2 − (y, y1) joining y1 to b. P2 can be written as 〈y1, Q

1
2, y2, y, y3, Q

2
2, b〉 or

〈y1, Q
1
2, y3, y, y2, Q

2
2, b〉. If P2 = 〈y1, Q

1
2, y2, y, y3, Q

2
2, b〉, then 〈a, y1, Q

1
2, y2, x2, Q

−1
1 , x3, y3, Q

2
2, b〉 is a hamil-

tonian path joining a to b in G. If P2 = 〈y1, Q
1
2, y3, y, y2, Q

2
2, b〉, then 〈a, y1, Q

1
2, y3, x3, Q1, x2, y2, Q

2
2, b〉 is a

hamiltonian path joining a to b in G. �

Lemma 5. Assume that G1 is a hamiltonian connected graph with a nice vertex x. Let K4 be the complete graph
defined on {y, y1, y2, y3} and G=J (G1, N(x); K4, N(y)). Then G is hamiltonian connected. Moreover, {y1, y2, y3} ⊆
Nice(G).

Proof. Obviously, K4 is hamiltonian connected, and it is easy to check that Nice(K4) = V (K4). Using Lemma 4, G
is hamiltonian connected. Now, we show that {y1, y2, y3} ⊆ Nice(G). Using symmetry, we only need to verify that y1
is nice in G. It is obvious that degG(y1) = 3.

We first claim that y1 is good in G. Thus, we show that G − (y1, z) is hamiltonian for any z ∈ {x1, y2, y3}. Since x is
good in G1, there exists a hamiltonian cycle Ci

1 of G1−(x, xi) for any i ∈ {1, 2, 3}. We may write Ci
1 as 〈x, xj , Pi, xk, x〉

with {i, j, k} = {1, 2, 3}. Let Ci = 〈xj , Pi, xk, yk, yi, yj , xj 〉. Obviously, C1 is a hamiltonian cycle in G − (y1, x1); C2

is a hamiltonian cycle in G − (y1, y3); and C3 is a hamiltonian cycle in G − (y1, y2). Hence, y1 is good in G.
Let b be any element in N(y1) = {x1, y2, y3}. To show that y1 is nice in G, we need to find a hamiltonian path of

G − (y1, b) that joins a to b for any vertex a of G with a /∈ {y1, b}.
Case i: a ∈ V (G1)−{x, x1} and b=x1. Since x is nice in G1, there exists a hamiltonian path P1 of G1−(x, x1) joining

a to x1. We can write P1 as 〈a, P 1
1 , xk, x, xj , P

2
1 , x1〉 where {k, j}={2, 3}. Obviously, 〈a, P 1

1 , xk, yk, y1, yj , xj , P
2
1 , x1〉

is a hamiltonian path joining a to x1 in G − (x1, y1).
Case ii: a ∈ V (G1) − {x, x1} and b = yk for some k ∈ {2, 3}. Since x is nice in G1, there exists a hamiltonian

path P1 joining a to xk in G1 − (x, xk). Write P1 as 〈a, P 1
1 , xi, x, xj , P

2
1 , xk〉 where {i, j, k} = {1, 2, 3}. Obviously,

〈a, P 1
1 , xi, yi, yj , xj , P

2
1 , xk, yk〉 is a hamiltonian path of G − (y1, yk)joining a to yk .

Case iii: a ∈ {y2, y3} and b = x1. Since x is good in G1, there exists a hamiltonian cycle C1 in G1 − (x, x2). We can
write C1 as 〈x, x3, P1, x1, x〉. Obviously, 〈y2, y1, y3, x3, P1, x1〉 forms a hamiltonian path of G − (y1, x1) joining y2
to x1. Since x is good in G1, there exists a hamiltonian cycle C2 in G1 − (x, x3). We can write C2 as 〈x, x2, P2, x1, x〉.
Obviously, 〈y3, y1, y2, x2, P2, x1〉 is a hamiltonian path of G − (y1, x1) joining y3 to x1.

Case iv: a=x1 and b ∈ {y2, y3}. Let b=yk for some k ∈ {2, 3} and j be the only index in {2, 3}−{k}. Since x is a nice
vertex in G1, there exists a hamiltonian path P that joins x1 to xk in G1 − (x, xk). We can write P as 〈x1, x, xj , Q, xk〉.
Obviously, 〈x1, y1, yj , xj , Q, xk, yk〉 forms a hamiltonian path of G − (y1, yk) joining x1 to yk .

Case v: {a, b} = {y2, y3}. Without loss of generality, let a = y2 and b = y3. Since x is good in G1, there exists
a hamiltonian cycle C in G1 − (x, x2). We can write C as 〈x, x1, R, x3, x〉. Obviously, 〈y2, y1, x1, R, x3, y3〉 is a
hamiltonian path of G − (y1, y3) joining y2 to y3. �

Lemma 6. Assume that y ∈ Good(G2). Let a ∈ V (G1) such that a 
= x. Then G1 − a is hamiltonian if and only if
G − a is hamiltonian.

Proof. Assume that there exists a hamiltonian cycle C1 in G1 − a. We can write C1 as 〈x, xi, P , xj , x〉 with i, j ∈
{1, 2, 3} and i 
= j . Let k be the only element in {1, 2, 3} − {i, j}. Since y is good in G2, there exists a hamiltonian
cycle C2 in G2 −(y, yk). We can write C2 as 〈y, yj , Q, yi, y〉. Obviously, 〈xi, P, xj , yj , Q, yi, xi〉 forms a hamiltonian
cycle in G − a.

Assume that there exists a hamiltonian cycle C of G − a. Since there are exactly three edges between V (G1) − {x}
and V (G2) − {y} in G, C can be written as 〈xi, P, xj , yj , Q, yi, xi〉 for some i, j ∈ {1, 2, 3} with i 
= j . Obviously,
〈x, xi, P , xj , x〉 forms a hamiltonian cycle in G1 − a. �
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Lemma 7. Let a ∈ V (G1) such that a 
= x. Let K4 be the complete graph defined on {y, y1, y2, y3} and G =
J (G1, N(x); K4, N(y)). Then G − yi is hamiltonian if and only if G1 − (x, xi) is hamiltonian. Moreover, G − a is
hamiltonian if and only if G1 − a is hamiltonian.

Proof. Assume that there exists a hamiltonian cycle C in G − yi . We can write C as 〈xj , yj , yk, xk, P, xj 〉 where
{i, j, k} = {1, 2, 3}. Obviously, 〈xj , x, xk, P, xj 〉 forms a hamiltonian cycle of G1 − (x, xi).

Assume that there exists a hamiltonian cycle C1 in G1 − (x, xi). We can write C1 as 〈xj , x, xk, P, xj 〉 where
{i, j, k} = {1, 2, 3}. Obviously, 〈xj , yj , yk, xk, P, xj 〉 forms a hamiltonian cycle of G − yi .

Note that Good(K4) = V (K4). Using Lemma 6, G1 − a is hamiltonian if and only if G − a is hamiltonian. �

Lemma 8. Assume that G1 is a hamiltonian graph and G2 is a 1-edge hamiltonian graph. Then G is hamiltonian.

Proof. Since G1 is hamiltonian, G1 has a hamiltonian cycle C1. Write C1 as 〈xi, P1, xj , x, xi〉, where i, j ∈ {1, 2, 3}
and i 
= j . Let k be the only element in {1, 2, 3}−{i, j}. Since G2 is 1-edge hamiltonian, G2 −(y, yk) has a hamiltonian
cycle C2. Obviously, we can write C2 as 〈yi, y, yj , P2, yi〉. Thus, G has a hamiltonian cycle 〈xi, P1, xj , yj , P2, yi, xi〉.

�

Let G = (V , E) be a graph with a vertex x of degree 3. The 3-vertex expansion of G, Ex(G, x), is the graph
J (G, N(x); K4, N(y)), where y ∈ V (K4). Any vertex in Ex(G, x) − V (G) is called an expanded vertex of G at x.
Obviously, Ex(G, x) is cubic if G is cubic, Ex(G, x) is planar if G is planar, and Ex(G, x) is connected if G is connected.

3. Various types of cubic planar hamiltonian graphs

Let U be the set of cubic planar hamiltonian graphs, A the set of 1-vertex hamiltonian graphs in U, B the set of 1-edge
hamiltonian graphs in U, and C the set of hamiltonian connected graphs in U. With the inclusion and/or exclusion of
the sets A, B, and C, the set U is divided into eight subsets. In this section, we prove that there is an infinite number of
elements in each of the eight subsets.

3.1. A ∩ B ∩ C

Obviously, K4 is the smallest cubic planar hamiltonian graph. It is easy to check that K4 is a graph in A∩B∩C. More-
over, Nice(K4)=V (K4). Let x1 be any vertex of K4. Using Lemmas 1, 2, and 5, Ex(K4, x1) is a graph in A∩B∩C. More-
over, with Lemma 5, any expanded vertex of K4 at x1 is nice. Now, we recursively define a sequence of graphs as follows:
letG1=K4 andG2=Ex(K4, x1). Suppose that we have definedG1, G2, . . . , Gi with i�2. Letxi be any expanded vertex
of Gi−1 at xi−1. We define Gi+1 a Ex(Gi, xi). Recursively applying Lemmas 1, 2, and 5, Gi ∈ A∩B∩C for every i�1.
Hence, we have the following theorem.

Theorem 1. There is an infinite number of planar 1-vertex hamiltonian, 1-edge hamiltonian, and hamiltonian con-
nected graphs.

3.2. Ā ∩ B ∩ C̄

Let Q3 be the three-dimensional hypercube shown in Fig. 1(a). Obviously, Q3 is planar. It is easy to check that Q3
is 1-edge hamiltonian. Since Q3 is a bipartite graph, there is no cycle of length 7. Hence, Q3 − x is not hamiltonian for
any vertex x in Q3. Thus, Q3 is not 1-vertex hamiltonian. Since there are four vertices in each partite set, there is no
hamiltonian path joining any two vertices of the same partite set. Thus, Q3 is not hamiltonian connected. Therefore,
Q3 is a graph in Ā ∩ B ∩ C̄. Let x1 be any vertex in Q3. Using Lemma 1, Ex(Q3, x1) is 1-edge hamiltonian. Using
Lemma 7, Ex(Q3, x1) is not 1-vertex hamiltonian. Using Lemma 3, Ex(Q3, x1) is not hamiltonian connected. Thus,
Ex(Q3, x1) is a graph in Ā ∩ B ∩ C̄. Now, we recursively define a sequence of graphs as follows: let G1 = Q3 and
G2 = Ex(Q3, x1). Suppose that we have defined G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex of Gi−1
at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively applying Lemmas 1, 7, and 3, Gi ∈ Ā ∩ B ∩ C̄ for every i�1.
Hence, we have the following theorem.
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Fig. 1. The graphs (a) Q3 and (b) Q.

Theorem 2. There is an infinite number of planar graphs that are 1-edge hamiltonian, but neither 1-vertex hamiltonian
nor hamiltonian connected.

3.3. Ā ∩ B ∩ C

Let Q be the graph in Fig. 1(b). Obviously, Q is obtained from the graph Q3 by a sequence of 3-vertex expansions.
From Section 3.2, Q3 ∈ Ā∩B∩C̄. Using Lemma 1, Q is 1-edge hamiltonian. Using Lemma 7, Q−g is not hamiltonian.
Hence, Q is not 1-vertex hamiltonian. By brute force, we can check that Q is hamiltonian connected. (See Fact 1 in
Appendix.) Thus, Q ∈ Ā ∩ B ∩ C.

Theorem 3. There is an infinite number of planar graphs that are 1-edge hamiltonian and hamiltonian connected but
not 1-vertex hamiltonian.

Proof. Let g3,1 be the vertex of Q shown in Fig. 1(b). By brute force, we can check that g3,1 ∈ Nice(Q). (See Fact 2 in
Appendix.) Let Y = Ex(Q, g3,1). Using Lemmas 1, 5, and 7, Y is a graph in Ā ∩ B ∩ C. Moreover, with Lemma 5, any
expanded vertex of Q at g3,1 is nice. Now, we recursively define a sequence of graphs as follows: let G1 =Q, x1 = g3,1
and G2 = Ex(Q, x1). Suppose that we have defined G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex of Gi−1
at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively applying Lemmas 1, 5, and 7, Gi ∈ Ā∩B ∩C for every i�1. �

3.4. A ∩ B ∩ C̄

Let M be the graph in Fig. 2(a) and M0 the graph in Fig. 2(b). Obviously, M is obtained from M0 by a sequence of
3-vertex expansions.

Lemma 9. The graph M is 1-edge hamiltonian and 1-vertex hamiltonian.

Proof. We first check that M0 is 1-edge hamiltonian. By symmetry, we only need to prove that M0 − e is hamiltonian
for any e ∈ {(s1, s2), (s1, r1), (r1, q2)}. The corresponding cycles are listed below:

Note that M is obtained from M0 by a sequence of 3-vertex expansions. Recursively applying Lemma 1, M is 1-edge
hamiltonian. Applying Lemma 7, M − v is hamiltonian if v ∈ {pi,j | 1� i�4, 1�j �3} ∪ {si,j | 1� i�4, 1�j �3}.
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Fig. 2. Graphs (a) M; (b) M0; (c) M1; (d) M2; (e) M3; and (f) M4.

To prove that M is 1-vertex hamiltonian, we only need to check that M − r1 and M − q1 are hamiltonian by the
symmetric property of M. Using Lemma 7, it suffices to show that M0 − r1 and M0 − q1 are hamiltonian. Obviously,
〈q1, p1, p2, q2, r2, s2, s1, s4, s3, r3, q3, p3, p4, q4, r4, q1〉 is a hamiltonian cycle of M0 − r1, and 〈r1, q2, r2, s2, s3, r3,

q3, p3, p2, p1, p4, q4, r4, s4, s1, r1〉 is a hamiltonian cycle of M0 − q1. Hence, M is 1-vertex hamiltonian. �

Lemma 10. There is no hamiltonian path of M joining p1,2 to r1. Hence, M is not hamiltonian connected.

Proof. Let M1 be the graph shown in Fig. 2(c). Obviously, M is obtained from M1 by a sequence of 3-vertex expansions.
With Lemma 3, it suffices to show that there is no hamiltonian path in M1 joining p1,2 to r1.
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Fig. 3. The graph Eye(2).

We prove it by contradiction. Suppose there exists a hamiltonian path P in M1 joining p1,2 to r1. Let P = 〈v1 =
p1,2, v2, . . . , v18〉. Obviously, v2 is p2, p1,1, or p1,3.

Case 1: v2 = p2. Then neither (p1,1, p1,2) nor (p1,2, p1,3) is in P. However, both (p1,1, p1,3) and (p1,3, p4) are in
P. Hence, the graph M2 in Fig. 2(d) is hamiltonian. Let H be any hamiltonian cycle of M2. Since M2 is a planar graph,
M2 and H satisfy the Grinberg condition [1]. The Grinberg condition can also be found in some standard textbooks,
say [14, p. 302], and is stated below.

If G is a planar graph having a hamiltonian cycle C, and G has f ′
i faces of length i inside C and f ′′

i faces of length
i outside C, then

∑
i (i − 2)(f ′

i − f ′′
i ) = 0.

Thus, 2(f ′
4 − f ′′

4 ) + 3(f ′
5 − f ′′

5 ) + 6(f ′
8 − f ′′

8 ) = 0, where f ′
i is the number of faces of length i inside H and f ′′

i is
the number of faces of length i outside H for i = 4, 5, 8. Obviously, 2(f ′

4 − f ′′
4 ) = 0 (mod 3). Since |f ′

4 − f ′′
4 | = 1, the

equation cannot hold and we arrive at a contradiction.
Case 2: v2 is either p1,1 or p1,3. Then the graph M3 shown in Fig. 2(e) is hamiltonian. Using Lemma 3, the graph

M4 in Fig. 2(f) is hamiltonian. It is easy to see that M4 is isomorphic to M2. Thus, M4 is not hamiltonian. Again, we
get a contradiction. �

Theorem 4. There is an infinite number of planar graphs that are 1-edge hamiltonian and 1-vertex hamiltonian but
not hamiltonian connected.

Proof. Let Y =Ex(M, q1). Using Lemmas 9 and 10, M ∈ A∩B ∩C̄. Using Lemmas 1–3, Y ∈ A∩B ∩C̄. Let G1 =M ,
x1 = q1, and G2 = Ex(M, q1). Suppose that we have defined G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex
of Gi−1 at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively applying Lemmas 1–3, Gi ∈ A ∩ B ∩ C̄ for every i�1.

�

3.5. A ∩ B̄ ∩ C

Let Eye(2) be the graph in Fig. 3. In [13], it is proved that Eye(2) is 1-vertex hamiltonian but not 1-edge hamiltonian.
More precisely, Eye(2)−e is not hamiltonian for any edge in {(e1, e2), (e3, e4), (e5, e6)}. By brute force, we can check
that Eye(2) is hamiltonian connected. (See Fact 3 in Appendix.) Thus, Eye(2) is a graph in A ∩ B̄ ∩ C. Let e16 be
the vertex of Eye(2) shown in Fig. 3. By brute force, we can check that e16 is a nice vertex of Eye(2). (See Fact 4
in Appendix.) Let Y = Ex(Eye(2), e16). Using Lemmas 1, 2, and 5, Y is a graph in A ∩ B̄ ∩ C. Using Lemma 5, any
expanded vertex of Eye(2) at e16 is nice in Y. We recursively define a sequence of graphs as follows: let G1 = Eye(2)

and G2 = Ex(Eye(2), e16). Suppose that we have defined G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex
of Gi−1 at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively applying Lemmas 1, 2, and 5, Gi ∈ A ∩ B̄ ∩ C for every
i�1. Hence, we have the following theorem.

Theorem 5. There is an infinite number of planar graphs that are 1-vertex hamiltonian and hamiltonian connected
but not 1-edge hamiltonian.
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Fig. 4. The graph N.

3.6. A ∩ B̄ ∩ C̄

Let N = J (Eye(2), N(e16); M, N(s4,1)) be the graph in Fig. 4. Obviously, N is a cubic planar graph. Since M
is 1-edge hamiltonian, s4,1 ∈ Good(M). From Section 3.5, we know that e16 ∈ Good(Eye(2)). Using Lemma 2,
N is 1-vertex hamiltonian. Again, we know that Eye(2) ∈ A ∩ B̄ ∩ C. Using Lemma 1, N is not 1-edge hamil-
tonian. Using Lemma 10, there is no hamiltonian path of M joining p1,2 to r1. Using Lemma 3, there is no
hamiltonian path of N joining p1,2 to r1. Therefore, N is not hamiltonian connected. Thus, N is a graph in
A ∩ B̄ ∩ C̄.

Theorem 6. There is an infinite number of planar graphs that are 1-vertex hamiltonian but neither 1-edge hamiltonian
nor hamiltonian connected.

Proof. Let x be the vertex p3,1 of N shown in Fig. 4. Since M is 1-edge hamiltonian, x ∈ Good(M). Using Lemma 2,
x ∈ Good(N). Let Y = Ex(N, x). Using Lemmas 1–3, Y is a graph in A∩ B̄ ∩ C̄. With Lemma 2, any expanded vertex
of N at x is good. We recursively define a sequence of graphs as follows: let G1 = N and G2 = Ex(N, x). Suppose
that we have define G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex of Gi−1 at xi−1. We define Gi+1 as
Ex(Gi, xi). Recursively applying Lemmas 1–3, Gi ∈ A ∩ B̄ ∩ C̄ for every i�1. �

3.7. Ā ∩ B̄ ∩ C

Let R be the graph J (Eye(2), N(e16); Q, N(g3,1)) shown in Fig. 5. Obviously, R is a cubic planar graph. In Section
3.3, we know that Q ∈ Ā ∩ B ∩ C, Q − g is not hamiltonian, and g3,1 is nice in Q. From Section 3.5, we know that
Eye(2) ∈ A ∩ B̄ ∩ C and e16 ∈ Nice(Eye(2)). Using Lemma 1, R is not 1-edge hamiltonian. Using Lemma 6, R − g

is not hamiltonian. Hence, R is not 1-vertex hamiltonian. Using Lemma 4, R is hamiltonian connected. Thus, R is a
graph in Ā ∩ B̄ ∩ C.

Theorem 7. There is an infinite number of planar graphs that are hamiltonian connected but neither 1-vertex hamil-
tonian nor 1-edge hamiltonian.
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Fig. 5. The graph R.

Proof. Let x be the vertex e17 in Eye(2) shown in Fig. 3. By brute force, x ∈ Nice(R). (See Fact 5 in Appendix.)
Let Y = Ex(R, x). Using Lemmas 1, 5, and 7, Y is a graph in Ā ∩ B̄ ∩ C, and any expanded vertex of R at x is nice.
We recursively define a sequence of graphs as follows: let G1 = R and G2 = Ex(R, x). Suppose that we have defined
G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex of Gi−1 at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively
applying Lemmas 1, 5, and 7, Gi ∈ Ā ∩ B̄ ∩ C for every i�1. �

3.8. Ā ∩ B̄ ∩ C̄

Let Z = J (Eye(2), N(e16); Q3, N(f4)) shown in Fig. 6. Obviously, Z is a connected planar cubic graph. From
Sections 3.2 and 3.5, we know that Q3 ∈ Ā ∩ B ∩ C̄ and Eye(2) ∈ A ∩ B̄ ∩ C. Moreover, Q3 − f2 is not hamiltonian
and there is no hamiltonian path of Q3 joining f2 to g2. Using Lemma 1, Z is not 1-edge hamiltonian. From Section
3.5, we know that e16 is a good vertex of Eye(2). Using Lemma 6, Z − f2 is not hamiltonian. Hence, Z is not 1-vertex
hamiltonian. Using Lemma 3, there is no hamiltonian path of Z joining f2 to g2. Therefore, Z is not hamiltonian
connected. Thus, Z is a graph in Ā ∩ B̄ ∩ C̄.

Theorem 8. There is an infinite number of hamiltonian planar graphs that are not hamiltonian connected, not 1-vertex
hamiltonian, and not 1-edge hamiltonian.

Proof. Let x be the vertex g1 in Z shown in Fig. 6. Let Y = Ex(Z, x). Using Lemma 8, Y is hamiltonian. Using
Lemmas 1, 3, and 7, Y is a graph in U − (A ∩ B ∩ C). We recursively define a sequence of graphs as follows: let
G1 = Z and G2 = Ex(Z, x). Suppose that we have defined G1, G2, . . . , Gi with i�2. Let xi be any expanded vertex
of Gi−1 at xi−1. We define Gi+1 as Ex(Gi, xi). Recursively applying Lemmas 1, 3, and 7, Gi ∈ U − (A ∩ B ∩ C)

for every i�1. �
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Appendix

Fact 1. Q is hamiltonian connected.

Proof. We relabel the vertices of Q as in Fig. 7. The corresponding hamiltonian paths between any two vertices x and
y are listed below:
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�

Fact 2. g3,1 ∈ Nice(Q).

Proof. With the relabelling of vertices, it is equivalent to showing that vertex 20 is nice. Since Q is 1-edge hamiltonian,
vertex 20 is good. In the following, we list all hamiltonian paths of Q that joins u to xi in Q − (20, xi) for any
u ∈ V (Q) − {20, xi} and xi ∈ N(20).
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Thus, g3,1 ∈ Nice(Q). �

Fact 3. Eye(2) is hamiltonian connected.

Proof. We relabel the vertices of Eye(2) as in Fig. 8. Using the symmetric property of Eye(2), we only need to find a
hamiltonian path joining a to b for any a ∈ {1, 2, 3, 4} and b ∈ V (Eye(2)) with a 
= b. The corresponding hamiltonian
paths are listed below:
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�

Fact 4. e16 ∈ Nice(Eye(2)).

Proof. With the relabelling of vertices, it is equivalent to showing vertex 1 is nice. We first check that vertex 1 is good.
The hamiltonian cycles of Eye(2) − (1, xi) with xi ∈ N(1) are listed below:

Thus, vertex 1 is good in Eye(2). In the following, we list all hamiltonian paths of Eye(2) that joins u to xi in
Eye(2) − (1, xi) for any u ∈ V (Eye(2)) − {1, xi} and xi ∈ N(1).
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Thus, e16 is a nice vertex of Eye(2). �
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Fig. 8. Relabelling for graph Eye(2).
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Fig. 9. Relabelling for graph R.

Fact 5. e17 ∈ Nice(R).

Proof. We relabel the vertices of R as in Fig. 9. It is equivalent to showing that vertex 12 is a nice vertex. We first check
that vertex 12 is good. The hamiltonian cycles of R − (12, xi) with xi ∈ N(12) are listed below:

Thus, vertex 12 is good in R. In the following, we list all hamiltonian paths that join u to xi in R − (12, xi) for any
u ∈ V (R) − {12, xi} and xi ∈ N(12).
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Thus, e17 is a nice vertex in R. �
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