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Abstract

A new IIR adaptive notch filter (ANF) with fast convergence rate, accurate estimation of notch frequencies, and modest

realization complexity is presented in this paper. The problem of obtaining a notch filter from a given signal containing

multiple sine waves in noise is first formulated as the conventional problem of system identification. Then the new ANF

is developed via the algorithm of Steiglitz McBride. Extensive simulations have been performed to verify the effectiveness

of the ANF.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive notch filters (ANFs) are useful for
detection, estimation, filtering, and tracking of
sinusoidal signals in wideband noise environment.
The ANF self-tunes its model parameters such that
its notch frequencies can track the signal frequen-
cies. Early ANFs [1] are realized by the finite
impulse response (FIR) model. Recently, most
ANFs use the infinite impulse response (IIR) model
because it commonly requires a smaller number of
parameters than the FIR one to characterize the
sinusoidal signals.

Several IIR models have been used to develop the
ANFs. The general IIR model was first proposed in
[2]. Later, a more efficient IIR model which
constrains model poles and zeros identical was used
e front matter r 2005 Elsevier B.V. All rights reserved
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to derive ANFs [3–5]. Recently, Nehorai [6] and Ng
[7], independently, developed ANFs using the most
efficient IIR model for which the poles and zeros are
not only identical but also located on the unit circle.
Nehorai derived the ANF via the recursive max-
imum likelihood (RML) algorithm [6,8], while Ng
developed the ANFs using the stochastic Gauss–
Newton (SGN) as well as the approximate max-
imum likelihood (AML) algorithms [7].

Most recent ANFs, in our opinions, mainly focus
on developing a better filter model. In this paper, we
focus on developing a better ANF algorithm. We
first formulate the problem of obtaining a notch
filter as the conventional problem of system
identification. Hence, many existing identification
techniques can be applied for developing ANFs.
From this perspective, the existing RML, SGL, and
AML ANFs can be regarded to be developed via
algorithms of the output-error formulation for
system identification [9]. Since the Steiglitz–Mc-
Bride method (SMM) [10] is well known for its
.
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Fig. 1. A notch filter for a given signal yðnÞ.
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Fig. 2. The system identification configuration to obtain a notch

filter from a given signal.
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simple realization complexity, fast convergence rate,
and proven convergence to the unbiased solution
for off-line estimation and on-line adaptive IIR
filters [11–13], we present a new ANF via SMM and
explore its performance in this paper.

This paper is structured as follows: In Section 2,
we derive the formulation and algorithm of the new
ANF. Section 3 presents simulation results and the
convergence properties of the ANF. Then, conclu-
sions are made in Section 4.

2. SMM for adaptive notch filters

In this section, we first show that for a given signal
containing multiple sine waves in noise finding a
notch filter is equivalent to identifying a system.
Then, the SMM algorithm for both identifying a
system and finding a notch filter is discussed.
Finally, the new ANF via SMM is developed.

2.1. System identification for notch filter

Consider a given signal which consists of a known
number of sine waves and a measurement noise eðnÞ;
given by

yðnÞ ¼
Xm

i¼1

ci sinðwinþ fiÞ þ eðnÞ, (1)

where the amplitudes fcig, phases ffig; and frequen-
cies fwig are unknown constants. It has been shown
in [14] that yðnÞ can be characterized as the output
of an autoregressive moving average system excited
by the measurement noise eðnÞ, i.e.,

Aðq�1ÞyðnÞ ¼ Aðq�1ÞeðnÞ, (2)

where q�1 denotes a unit-delay operator and Aðq�1Þ

is a monic polynomial of degree 2m with m

coefficients a1; . . . ; am; given by

Aðq�1Þ ¼
Ym

i¼1

ð1� 2 coswiq
�1 þ q�2Þ ð3Þ

¼ 1þ a1q
�1 þ � � � þ amq�m

þ � � � þ a1q
�ð2m�1Þ þ q�2m. ð4Þ

If yðnÞ is used to excite a notch filter with the
transfer function Aðq�1Þ=Aðrq�1Þ, 0oro1, as
shown in Fig. 1, then we know from (2) that the
filter output eðnÞ will approach eðnÞ as the parameter
r approximates 1: Hence, the problem to design a
notch filter Aðq�1Þ=Aðrq�1Þ is often formulated via
Fig. 1 as an optimization problem to find filter
coefficients ai; i ¼ 1; . . . ;m, for r! 1 such that the
mean square error of eðnÞ is minimized. That is,

min
ai;i¼1;...;m

E½e2ðnÞ�, (5)

where E½�� denotes the expectation.
This problem can be expressed as a system

identification problem by the simple manipulation

Aðq�1Þ

Aðrq�1Þ
¼ 1�

Aðrq�1Þ � Aðq�1Þ

Aðrq�1Þ
ð6Þ

¼ 1�
q�1Bðq�1Þ

Aðrq�1Þ
, ð7Þ

where

Bðq�1Þ ¼ q½Aðrq�1Þ � Aðq�1Þ� ð8Þ

¼ a1ðr� 1Þ þ a2ðr2 � 1Þq�1

þ � � � þ ðr2m � 1Þq�ð2m�1Þ. ð9Þ

Thus, the configuration shown in Fig. 1 is equiva-
lent to the configuration shown in Fig. 2; the
problem of obtaining a notch filter from the given
signal yðnÞ, therefore, is equivalent to identifying the
model Bðq�1Þ=Aðrq�1Þ excited by the input yðn� 1Þ
such that the error between the model output ŷðnÞ

and the desired signal yðnÞ is minimized in the mean
square sense.
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Fig. 4. The block diagram of SMM for notch filter identification.
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The identification problem has been studied for
several decades [9]; many identification techniques
such as the output-error formulation, the equation-
error formulation, and the Steiglitz–McBride meth-
od, therefore, can be applied to develop ANFs.
Thus, existing RML, SGN, and AML ANFs [6,8,7]
are just variants of the algorithms derived via the
output-error formulation. Although the equation-
error formulation can in theory be used to design a
new ANF, it is in fact rarely used because its
convergence solution is normally biased due to the
measurement noise. In the followings, we exploit the
SMM to develop a new ANF and investigate its
performance.

2.2. SMM for notch filter

SMM [10] was proposed in 1965 as an ad hoc
approach for off-line system identification. Later,
SMM was shown in [15] that its convergence
solution is unbiased when the model has sufficient
order and the measurement noise is white. Since
SMM often converges fast, has a theoretically
proven unbiased convergence solution, and is simple
to realize, it has been used in many off-line and on-
line applications [11–13].

The block diagram of SMM for parameter
identification from a given input uðnÞ and output
yðnÞ of a plant is shown in Fig. 3. The algorithm
initially sets the denominator polynomial D0ðq

�1Þ to
a random value or unity and the index k to 1. The
main SMM iteration for the index k determines
both Dkðq

�1Þ and Nkðq
�1Þ such that the mean square

error of esðnÞ is minimized. Note that esðnÞ is
obtained under the fixed all-pole prefilters 1=
Dk�1ðq

�1Þ: Then the index is updated ðk ¼ k þ 1Þ
and the iteration continues until the obtained
Dkðq

�1Þ converges. Finally, the plant Hðq�1Þ is
modeled by the obtained Nkðq

�1Þ=Dkðq
�1Þ:
Fig. 3. The block diagram of SMM for system identification.
Combining two block diagrams shown in Figs. 2
and 3 together, we can derive directly the block
diagram, shown in Fig. 4, for finding a notch filter
via SMM. Note that this block diagram is slightly
modified because we introduce a delay parameter D
instead of the unity constant. The main function of
D is to remove the correlation between the noise
component of yðnÞ and that of yðn� DÞ. Hence, the
delay parameter is also called the decorrelation
parameter [16]. This parameter, therefore, is intro-
duced to cope with the effect arising from the
colored noise eðnÞ. A judicious choice of the delay
parameter may greatly reduce the bias caused by the
colored noise contamination. Simulations, illu-
strated in the later section, will be used to verify
its effectiveness.

2.3. The new adaptive notch filter

The new ANF via SMM can be derived directly
from Fig. 4; its detailed algorithm is listed in
Table 1. The algorithm is basically of the Newton-
type adaptive filter. Some parameters in the algo-
rithm and their functions are briefly discussed
below.

The estimated coefficients at the nth iteration is
expressed by ĥðnÞ, given by

ĥðnÞ ¼ ½â1ðnÞ; . . . ; âmðnÞ�
T, (10)

where the superscript T denotes the transpose. The
number of frequencies in the signal is denoted by m.
The delay parameter D; as discussed above, is used
to cope with the colored measurement noise. The
parameter l, commonly referred to as the forgetting
factor, is increasing at each iteration from the initial
value (the nominal value is 0.7) to l1 at the rate of
the geometric ratio lr. Similarly, the parameter r is
also increasing in the same way as l from its initial
value to r1 with the geometric ratio rr. Note that
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Table 1

The new ANF algorithm

Design variables: m;D; l; lr; l1; r; rr; r1;k.

Initialization:

Nominal values: l ¼ 0:7; lr ¼ 0:99; l1 ¼ 0:995

r ¼ 0:7; rr ¼ 0:99; r1 ¼ 0:995

k ¼ 1

ĥð�1Þ ¼ ½0; . . . ; 0�T

Pð�1Þ ¼ kI

hðiÞ ¼ gðiÞ ¼ 0 for i ¼ �2m; . . . ;�1

Main iteration loop: for n ¼ 0; . . . ;N

gðnÞ ¼ yðnÞ � r2mgðn� 2mÞ �
Pm�1

i¼1 ½r
igðn� iÞ þ r2m�igðn� 2mþ iÞ�âiðn� 1Þ � rmgðn�mÞâmðn� 1Þ

hðnÞ ¼ yðn� DÞ � r2mhðn� 2mÞ �
Pm�1

i¼1 ½r
ihðn� iÞ þ r2m�ihðn� 2mþ iÞ�âiðn� 1Þ � rmhðn�mÞâmðn� 1Þ

ciðnÞ ¼
�rigðn� i � Dþ 1Þ � r2m�igðn� 2mþ i � Dþ 1Þ þ ðri � 1Þhðn� i þ 1Þ þ ðr2m�i � 1Þhðn� 2mþ i þ 1Þ; i ¼ 1; . . . ;m� 1

�rmgðn�m� Dþ 1Þ þ ðrm � 1Þhðn�mþ 1Þ; i ¼ m

(

wðnÞ ¼ ½c1ðnÞ;c2ðnÞ; . . . ;cmðnÞ�
T

esðnÞ ¼ gðn� Dþ 1Þ þ r2mgðn� 2m� Dþ 1Þ � ðr2m � 1Þhðn� 2mþ 1Þ � wT
ðnÞĥðn� 1Þ

PðnÞ ¼
1

l
Pðn� 1Þ �

Pðn� 1ÞwðnÞwT
ðnÞPðn� 1Þ

lþ wT
ðnÞPðn� 1ÞwðnÞ

� �
ĥðnÞ ¼ ĥðn� 1Þ þ PðnÞwðnÞesðnÞ

l ¼ lrlþ ð1� lrÞl1
r ¼ rrrþ ð1� rrÞr1
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the parameter r determines the bandwidth of the
notch filter; the closer to 1 is the parameter r, the
narrower is the notch bandwidth. Smaller initial l
and r serve to increase the initial convergence speed
of the ANF. The matrix P, called the correlation
matrix inverse, is initially set to Pð�1Þ ¼ kI where I

is an identity matrix and k is a constant. The larger
is the value k, the faster is the convergence speed.
Fast convergence speed, however, often results in a
larger overshoot or undershoot of the estimated
coefficients at each iteration.

3. Computer simulations and convergence properties

The ANF performance has been evaluated by
extensive computer simulations. In this section, we
present four simulations under various settings,
demonstrating advantages and disadvantages of the
new ANF. The first simulation demonstrates that
the ANF can estimate multiple frequencies cor-
rectly. The second simulation shows the fast
convergence speed and tracking capability of the
ANF. The capability of the new ANF to estimate
close frequencies in signal is illustrated in the third
simulation. The last simulation illustrates the bias
caused by the colored noise and the remedy by the
properly chosen delay parameter. Then the ANF
convergence properties are discussed.
3.1. Simulation 1

Let the signal be given by

yðnÞ ¼
X4
k¼1

ck sinð2pf knÞ þ eðnÞ, (11)

where f 1 ¼ 0:1; f 2 ¼ 0:2; f 3 ¼ 0:3, f 4 ¼ 0:4, and eðnÞ

is a zero-mean and unit-variance white noise. The
magnitude ck of each sine wave is determined by the
given signal-to-noise ratio (SNR). Here each sine
wave is assumed to have identical SNR. Hence, if
the SNR of each sine wave is 0 dB, then ck ¼

ffiffiffi
2
p

for
all k.

The ANF performance under various settings of
the number of signal data N and SNR has been
investigated. In each setting, 100 independent trials
are performed. Simulation results are presented in
Table 2 in which the bias, standard deviation, and
Cramér–Rao bound (CRB) of each estimated
frequency are shown. Note that the symbol with a
number in parenthesis in Table 2 for N ¼ 100 and
SNR ¼ 0 dB denotes the number of outliers in 100
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Table 2

Simulation results of the new ANF: 100 independent trials for each case

N SNR Bias St. dev. Bias St. dev. Bias St. dev. Bias St. dev. CRB

(dB) f̂ 1 f̂ 1 f̂ 2 f̂ 2 f̂ 3 f̂ 3 f̂ 4 f̂ 4

�10�5 �10�4 �10�5 �10�4 �10�5 �10�4 �10�5 �10�4 �10�4

100 0 �9.09(2) 42.89(2) �33.39(5) 38.63(5) 45.32(2) 42.80(2) 29.94(2) 42.36(2) 5.51

4 �58.16 27.59 �22.41 31.66 8.25 23.62 55.95 32.80 3.48

8 �31.60 19.11 �13.68 17.86 26.27 18.77 3.06 19.25 2.19

12 �36.86 13.03 �1.34 10.19 �10.11 10.91 14.72 11.82 1.38

16 �24.18 7.12 �1.56 7.52 �1.44 6.97 30.11 6.98 0.87

20 �13.30 4.54 �3.80 4.44 1.64 4.60 21.71 5.22 0.55

�10�6 �10�5 �10�6 �10�5 �10�6 �10�5 �10�6 �10�5 �10�5

500 0 22.49 21.98 12.76 21.98 7.85 20.72 28.37 23.91 4.93

4 5.72 14.75 �13.33 14.36 12.63 13.98 7.71 14.46 3.11

8 �4.27 9.30 �4.75 9.33 �0.86 8.98 8.28 9.34 1.96

12 �7.83 5.56 �7.58 5.51 �0.12 5.56 4.62 5.71 1.24

16 �5.71 3.49 �6.78 3.71 0.57 3.65 6.05 3.53 0.78

20 �10.04 2.45 �0.48 2.20 4.72 2.20 12.40 2.18 0.49

�10�7 �10�6 �10�7 �10�6 �10�7 �10�6 �10�7 �10�6 �10�6

2000 0 2.70 10.32 16.46 11.46 15.27 12.44 �2.67 10.49 6.16

4 0.66 7.61 �6.25 6.66 3.57 6.92 3.54 6.80 3.89

8 �0.53 4.12 6.95 4.17 �1.93 4.71 �10.84 4.68 2.45

12 �0.89 2.54 �3.51 2.61 0.74 3.08 3.39 2.67 1.55

16 0.82 1.62 1.50 1.96 �2.51 1.91 1.92 1.66 0.98

20 �1.13 1.09 �0.79 1.16 �1.43 1.08 0.27 1.10 0.62
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Fig. 5. The estimated frequencies versus time of the proposed

ANF with l ¼ 0:9 and with r ¼ 0:7 or r ¼ 0:9.
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independent trials. The estimate is classified as an
outlier if the absolute error between any one of
the estimated and true signal frequency is more
than 0.01.

This simulation shows that the ANF solution is
unbiased. Moreover, its estimate is almost efficient
because its standard deviation is close to the
theoretic CRB. Compared with the results via
RML–ANF shown in Table 3 in [6], we observe
that under this setting, the presented ANF and
RML–ANF both attain similar performance.

3.2. Simulation 2

The setting of this simulation is the same as
Example 10.4 in [17]. The signal is given by

yðnÞ ¼
ffiffiffi
2
p

sinð2pf 1nÞ þ eðnÞ, (12)

where eðnÞ is a white noise of unit variance. Note
that the SNR in this example is 0 dB. The sinusoid
frequency f 1 is switching abruptly every 1000
samples. For tracking, the ANF uses fixed l and
r. In this example, the ANF is simulated with l ¼
0:9 and its estimated frequencies for r ¼ 0:7 or r ¼
0:9 are shown in Fig. 5. Note that because a smaller
r will widen the notch bandwidth, the convergence
speed is faster but the estimate yields a larger ripple.
Compared with the simulation results shown in [17],
we observe that the new ANF exhibits fast
convergence speed and excellent tracking capability.
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3.3. Simulation 3

Although most existing ANFs suffer in estimating
close signal frequencies, this simulation shows that
the proposed ANF exhibits remarkable frequency
discrimination capability. Let the signal comprise
two sine waves and a measurement noise, given by

yðnÞ ¼ c1 sinð2pf 1nÞ þ c2 sinð2pf 2nÞ þ eðnÞ, (13)
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Fig. 6. The estimated frequencies versus time of the RML–ANF

for SNR ¼ 10 dB.
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Fig. 7. The estimated frequencies versus time of the new ANF for

SNR ¼ 10 dB.

Table 3

Simulation results of the new ANF: f 1 ¼ 0:1; SNR ¼ 10 dB, and sever

f 1 f 2 Bias f̂ 1 S

�10�6 �

0.1 0.20 �1.02 1

0.1 0.17 �2.55 1

0.1 0.15 �1.01 1

0.1 0.13 �4.50 1

0.1 0.11 �21.73 1
where f 1 ¼ 0:1, f 2 ¼ 0:11, and eðnÞ is a zero-mean
unit-variance white noise. Set SNR ¼ 10 dB for
each sine wave, we observe that RML, SGN, and
AML ANFs all may fail to estimate signal
frequencies correctly. For demonstration, the esti-
mated frequencies via RML–ANF in one single trial
are shown in Fig. 6 where the RML–ANF estimates
only one frequency correctly. The new ANF,
however, estimates both frequencies correctly, as
shown in Fig. 7.

To further compare the frequency discrimination
capability between the new ANF and RML–ANF,
simulations for f 1 ¼ 0:1 and several f 2 with
SNR ¼ 10 dB, N ¼ 1000 have been performed and
their results are listed, respectively, in Tables 3 and
4. Note that the proposed ANF always estimates
frequencies correctly; the RML–ANF, however,
often converges to an incorrect solution. When the
frequency f 2 is closer to f 1, the RML–ANF more
frequently obtains an incorrect estimate. As shown
in Table 4, when f 2 ¼ 0:11 the RML–ANF yields in
an incorrect estimate 53 times out of 100 trials.

3.4. Simulation 4

One disadvantage of the proposed ANF is that it
may end up with a biased solution when the noise is
colored. This simulation demonstrates that a
judicious choice of the delay parameter can lessen
this effect. Let the signal for simulation be of the
same form as (13), but the noise eðnÞ be the output
of a system with the transfer function 1=ð1� 0:8z�1Þ

excited by a white noise with unit variance. The
magnitudes c1 and c2 are determined by the assigned
SNRs; note that the noise power here is 1=0:36.

The ANF estimate of a typical one trial for
f 1 ¼ 0:1, f 2 ¼ 0:2 and SNR ¼ 0 dB with D ¼ 1 or
D ¼ 30 are shown in Figs. 8 and 9, respectively. For
D ¼ 1, the colored noise makes the ANF solution
biased, as shown in Fig. 8. For D ¼ 30, however,
al values of f 2

t. dev. f̂ 1 Bias f̂ 2 St. dev. f̂ 2

10�5 �10�6 �10�5

.53 1.78 1.48

.41 0.90 1.56

.45 0.49 1.39

.39 3.27 1.59

.74 21.51 1.63
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Table 4

Simulation results of the RML–ANF: f 1 ¼ 0:1, SNR ¼ 10dB, and several values of f 2

f 1 f 2 Bias f̂ 1 St. dev. f̂ 1 Bias f̂ 2 St. dev. f̂ 2

�10�6 �10�5 �10�6 �10�5

0.1 0.20 �2.12 2.21 �1.81 2.15

0.1 0.17 1.74(4) 2.16(4) 1.40(6) 1.79(6)

0.1 0.15 �3.21(21) 2.44(21) 5.39(22) 4.59(22)

0.1 0.13 �11.66(45) 5.79(45) 15.27(43) 16.66(43)

0.1 0.11 80.98(63) 14.56(63) �94.31(53) 11.27(53)
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Fig. 8. The estimated frequencies versus time of the new ANF for

f 1 ¼ 0:1, f 2 ¼ 0:2, SNR ¼ 0 dB with D ¼ 1 in the colored noise

environment.
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f 1 ¼ 0:1, f 2 ¼ 0:2, SNR ¼ 0dB with D ¼ 30 in the colored noise

environment.
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because the colored noise of yðnÞ and that of
yðn� DÞ are almost uncorrelated, the ANF solution,
shown in Fig. 9, is greatly improved. Therefore, a
properly chosen delay parameter can greatly reduce
the bias caused by the colored noise contamination.
3.5. Convergence properties

Extensive simulations indicate that the ANF
always converges but its analytic proof is not
available. The convergence solution of the proposed
ANF, similar to the off-line SMM, can be shown to
be unbiased when the model has sufficient order and
the measured noise is white. This property is proven
via the technique of ordinary differential equation
(ODE) [18] in Appendix A. The proven unbiased
solution also explains the powerful frequency
discrimination capability of the new ANF.

4. Conclusions

This paper presents a new ANF via SMM. We
first formulate the problem of determining a notch
filter from a given signal as a system identification
problem, then SMM is employed to develop the
ANF. The new ANF exhibits fast convergence
speed and an excellent capability to estimate close
frequencies in signals. Simulations have been
performed to verify the effectiveness of the pro-
posed ANF.

Appendix A

In this appendix, we use the ODE technique [18]
to show that the ANF convergence solution is
unbiased when the model has sufficient order and
the measurement noise is white.

The ODE approach, in essence, models the
adaptive algorithm as a continuous time system
which is described via the state-space representation
by a set of ODEs. Hence, the ODEs can analyze the
asymptotic behavior of the adaptive filter. Follow-
ing the approach in [18] and denoting the correla-
tion matrix and the coefficient vector of the ANF by
RðtÞ and ĥðtÞ, respectively, we obtain the ODEs for
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the ANF, given by

dĥ

dt
¼ R�1fðĥÞ, ðA:1Þ

dR

dt
¼ GðĥÞ � R, ðA:2Þ

where

fðĥÞ ¼ lim
n!1

EfwðnÞ½yðnÞ � ĥ
T
wðnÞ�g

¼ pðĥÞ � GðĥÞĥ, ðA:3Þ

GðĥÞ ¼ lim
n!1

EfwðnÞwT
ðnÞg, ðA:4Þ

pðĥÞ ¼ lim
n!1

EfwðnÞyðnÞg, ðA:5Þ

and wðnÞ and yðnÞ are defined in the algorithm.
Since (A.1) equals a zero vector in convergence

and the matrix R is positive definite, the ANF
convergence solution, denoted by ĥ

�

, can be
obtained by solving the equation

fðĥ
�

Þ ¼ pðĥ
�

Þ � Gðĥ
�

Þĥ
�

¼ 0. (A.6)

Note that either the correlation matrix Gðĥ
�

Þ or the
cross-correlation vector pðĥ

�

Þ can be decomposed
into the sum of two terms, one for the sine wave
signals and the other for the measurement noise
because the signal and the noise are uncorrelated.
Hence we can write

Gðĥ
�

Þ ¼ Gsðĥ
�

Þ þ Geðĥ
�

Þ, ðA:7Þ

pðĥ
�

Þ ¼ psðĥ
�

Þ þ peðĥ
�

Þ, ðA:8Þ

where the subscripts s and e denote the effect of
signal and noise, respectively. Substituting
(A.7)–(A.8) into (A.6) and rearranging yields

psðĥ
�

Þ þ peðĥ
�

Þ ¼ ½Gsðĥ
�

Þ þ Geðĥ
�

Þ�ĥ
�

. (A.9)

Since the model is sufficient, if the signal contains
no noise then the true system parameter, denoted
by h0, will be the optimum solution for any ĥ

�

;
that is,

psðĥ
�

Þ ¼ Gsðĥ
�

Þh0. (A.10)

Replacing this result into (A.9) yields

Gsðĥ
�

Þðh0 � ĥ
�

Þ ¼ Geðĥ
�

Þĥ
�

� peðĥ
�

Þ. (A.11)

Note that the terms in the right side of (A.11)
represent the relation of the system shown in Fig. 4
with its input yðnÞ containing the measurement noise
only. Since the noise is white, we have

GeðhÞh ¼ peðhÞ for any h. (A.12)
The above result and the property that the matrix
Gs is positive definite enable us to conclude via
(A.11) the unbiased convergence solution of the
ANF, i.e., ĥ

�

¼ h0.
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