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We study a multilayer silicon-germanium quantum well structure doped with acceptor impurities for
resonant-state lasers capable of emitting photons of energy below 4 meV �1 THz�. Unlike previous proposals
on terahertz lasers in doped silicon-germanium quantum wells, the emitted photon energy does not need to
exceed the acceptor binding energy, which is tens of meV. The energy constraint is relaxed by placing the
acceptor impurity levels and the quantum well subband continuum in separate layers of different germanium
compositions. We calculate the nonequilibrium behaviors of the holes in detail and demonstrate that population
inversion between strain-split impurity levels can be built for sufficiently high acceptor densities under the
application of a moderate dc electric field at about ten kelvins.
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I. INTRODUCTION

Electromagnetic radiation in the 1–10-THz range, corre-
sponding to wavelengths of 30–300 �m, has important ap-
plications in optical communication, medical diagnosis, and
radio astronomy. There has been significant progress in the
realization of THz radiation sources.1 For example, broad-
band THz radiation with output power up to 20 W is gener-
ated from subpicosecond electron bunches in an accelerator.
It is applied to image the distribution of a specific protein or
water in tissue and buried layers in semiconductors.2 Despite
the high power output this approach is not very convenient
for compact applications. Owing to rapid advances in semi-
conductor technology, many earlier theoretical ideas based
on solid-state THz sources can now be implemented. For
instance, the Bloch oscillation �BO� is not possible for bulk
crystals because of scatterings. The structure of superlattices
makes it possible for BO to take place due to a shrinking
zone boundary. By precise control of the period of the super-
lattice, emission at 1.7 THz was observed in a GaAs/
AlGaAs superlattice due to BO.3 However, BO has not been
proved to be viable for a THz laser. In addition, there is
growing interest in quantum cascade lasers �QCL’s� where
THz radiation results from intersubband electrolumin-
escence.4 QCL’s have been demonstrated to emit cw THz
radiation at liquid-nitrogen temperature in GaAs/AlGaAs.5

However, to date there is no QCL able to emit radiation
below 2.9 THz.6

One promising way to realize semiconductor THz lasers
is resonant-state lasers7,8 �RSL’s� based on doped quantum
well �QW� structures,9,10 whose operation involves strain-
induced resonant states and pumping by an electric field. A
THz transition between higher and lower acceptor states has
been observed.9,10 In RSL’s with one single QW, the two
degenerate valence bands are split by symmetry-lowering ex-
ternal strain caused by external pressure or lattice mismatch.
The splitting also removes the degeneracy of the hydrogen-
like acceptor localized states, and therefore two localized
states are formed with energy levels attached to each split
band. As the strain is so strong that the energy splitting ex-
ceeds the binding energy of the acceptor, one of the two

localized states becomes resonant with the band to which the
other localized state is attached. The coincidence in energy
leads to resonant scattering between the continuous and lo-
calized states. A population inversion between the two local-
ized states can be achieved by resonant capture of the holes
under an electric field.

In the previous approach to RSL’s7–10 there is a serious
constraint on the emitted photon energy. In single QW’s the
acceptor level splitting needs to be greater than the impurity
binding energy in order to have a resonant state. The photon
energy therefore must be larger than the binding energy,
which is several tens of meV �15 meV for Ge and 50 meV
for Si �Ref. 11�� corresponding to more than 10 THz. In this
paper we present a concept of silicon-germanium QW RSL’s
which is free of such a constraint. Instead of one single QW,
in our structure the continuous and localized states are in
different layers and the resonance can be controlled by inde-
pendent strains in different layers. Therefore resonant scat-
tering can occur even if the energy splitting is smaller than
the acceptor binding energy. Silicon-germanium alloy is cho-
sen as the material system for this concept because of its low
absorption in the THz range and easy integration with Si
electronics. We calculate the energies of the localized accep-
tor levels and continuous subband levels �indicated as “con-
tinuum” below� and give the relation between the emitted
photon energy and the structure parameters. In order to show
that population inversion can be realized under practical ex-
perimental conditions, we construct a comprehensive theo-
retical model for the nonequilibrium behaviors of holes in
the QW structure and study in detail the the dynamical be-
haviors of the holes with an external pumping field. Our
results indicate that emission as low as 1 THz can be ob-
tained in the QW structure with reasonable germanium com-
positions under a dc electric field of about 100 V/cm at
10 K.

The paper is organized as follows. Section II introduces
the QW structure featuring the flexible control of lasing fre-
quency by germanium compositions. In particular we show
how the QW structure is able to emit radiation of frequency
at 1 THz. In Sec. III the wave functions and resonant transi-
tion between localized states and subband continuum are cal-
culated. In Sec. IV the Boltzmann equation and rate equation
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are employed to study the population inversion. In Sec. V we
present the final results on the conditions for the formation of
a population inversion in the QW structure. Section VI draws
the conclusion.

II. QUANTUM WELL STRUCTURE AND PUMPING
MECHANISM

The profile of valence band edge diagram along crystal
growth direction �z direction� of the proposed QW structure
is shown in Fig. 1. For clarity the sign of the energy is
reversed. The splitting of heavy-hole and light-hole band
edges is due to strain caused by lattice mismatch between
SiGe alloy and Si. The strain can be linearly related to the
germanium compositions in the alloy. The two Si1−xGex lay-
ers sandwiching the central Si1−yGey layer have identical
profiles and are � doped with identical acceptor density na.
The profile has been designed to be symmetric for simpler
theoretical treatments.

As can be seen in the profile of the heavy-hole band edge
in Fig. 1, holes are confined in the central layer in the z
direction due to potential barriers constituted by the two
identical Si1−xGex layers at two sides. Series of subbands are
formed due to the confinement. We label the energy mini-
mum of the first heavy-hole subband �HH1�, which is a func-
tion of the well width W, by the dash-dotted line in the cen-
tral layer. In addition there is a series of localized acceptor
levels attached to the heavy-hole band edge in each �-doped
layer. We focus on the low-lying heavy-hole 2p±1 level
�HH2P± �, labeled by a short dashed line, and the light-hole
acceptor 1s level �LH1S�, labeled by a short solid line. LH1S
and HH2P± have opposite parity and hence are expected to
give the strongest intensity of radiation among all possible
transitions. Besides the acceptor 1s level attached to the
heavy-hole band edge is the very lowest state for holes in the
system and is labeled by HH1S, which is shown below
HH2P± in Fig. 1. With precise control of germanium com-

positions x and y in the QW structure, the heavy-hole and
light-hole band edges as well as the localized acceptor levels
can be adjusted to have the relative energies required for
THz lasers.

Now we consider the pumping mechanism of the holes
under an external electric field F �strength F� perpendicular
to the z direction—say, the x direction. The physical picture
is shown in Fig. 2. HH2P± is below LH1S and the minimum
of HH1 by � and E0, respectively. Note that in our problem �
must be larger than E0 to have resonance between HH1 and
LH1S. At zero temperature all the holes stay in the low-lying
HH1S state without field. When the external electric field is
applied, some holes on HH1S are initially field ionized. Then
more holes are excited to HH1 through impact ionization and
acquire more kinetic energy until the occurrence of phonon
scattering. The processes of field ionization and pumping of
holes are denoted by process 1 and 2, respectively, in Fig. 2.
Another channel for slowing down the holes in HH1 is the
resonance capture by LH1S. The transition between heavy-
hole and light-hole states, denoted by process 3, is facilitated
by the off-diagonal matrix element8 of the Luttinger-Kohn
Hamiltonian to be discussed below. As the occupation of
higher LH1S grows with increasing external field and the
lower HH1S and HH2P± are gradually depleted by impact
ionization, a population inversion is expected. Emission of
THz photons, indicated by process 4, will take place due to
the radiative decay of holes from LH1S to HH2P±.

The resonance of the localized state and the continuum is
achieved by raising the strain of the lattice so that the local-
ized state is lifted to immerse within the continuum. In the
previous works on QW RSL’s9,10 this acceptor impurity is
doped in the same layer as the continuous states, so E0 is
simply the binding energy. Apparently in such a case the
strain splitting � must exceed the binding energy, corre-
sponding to a lower bound of photon energy. In this work we

FIG. 1. The band edge profiles for light hole �LH, solid line� and
heavy hole �HH, dashed line� of the proposed QW structure are
shown. Both x and y directions are perpendicular to the crystal
growth direction z. x, and y are the germanium compositions for the
well and barrier layers, respectively. W is the well width. The en-
ergies of the strain-split acceptor levels LH1S, HH1S, and HH2P±
relevant for the THz laser are also shown. d is the distance between
the dopant and the boundary of the well. The HH1 minimum is
indicated by the dash-dotted line. The inset defines the directions in
the system.

FIG. 2. Schematic four-level operation of the THz laser. The
operation involves three acceptor states LH1S, HH1S, and HH2P±
as well as the HH1 continuum �shaded region�. The four major
processes are also indicated. Process 1 indicates the field ionization
of HH1S through the barrier to reach the HH1 minimum. The low-
energy holes in HH1 are pumped toward resonant states by an elec-
tric field in process 2. Process 3 represents resonant capture of
continuum holes of energy Er to meta-stable LH1S. The radiative
decay by stimulated emission into the lower localized state HH2P±
is denoted by process 4.
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spatially separate the acceptor impurity and quantum well, so
the relative energy between the localized state and con-
tinuum has a much higher flexibility by adjusting the com-
positions x and y and the well width W. As a result no matter
how small � is we can always adjust the QW structure such
that E0��. However, the only lower bound for the emitted
photon energy is the energy shift of the resonant state caused
by the perturbation of the continuum as discussed in Sec.
III A. Hence our proposed structure is able to emit photons
of energy less than the binding energy which is usually sev-
eral tens of meV �12 THz in the case of Si� and is expected
to fulfill the needs of solid-state optical sources of several
THz or even sub-THz range. Because the relative energies of
the localized and continuous states are crucial to the laser
operation, below we calculate the quantitative relations be-
tween the relevant levels in the QW structure and QW pa-
rameters like the width W and germanium compositions.
Even though the acceptor levels are outside the central well,
there is no difficulty for the holes in the central well to be
resonantly captured by the acceptor as long as there is an
overlap between the wave functions of the acceptor levels
and HH1. In order for the above picture to be valid, it is
important to choose an intermediate value for the distance
between the dopants and quantum well. The distance should
be neither so large relative to the acceptor Bohr radius that
there is no overlap between the acceptor level and quantum
well level nor so small that the acceptor level itself becomes
heavily influenced by the well.

III. LOCALIZED AND CONTINUOUS STATES

A. Subband and impurity wave functions

In this subsection we calculate the wave functions and
energies of the relevant states. We first consider a perfect
crystal. The wave functions for the heavy-hole and light-hole
bands can be represented by the eigenfunctions of the
Luttinger-Kohn Hamiltonian12 HLK in the Bloch function ba-
sis �u3/2 ,u1/2 ,u−1/2 ,u−3/2�, which is the periodic sum of the
atomic orbitals with total angular momentum quantum num-
ber j= 3

2 . The subscripts stand for their z component jz of
total angular momentum j. The column vector � formed by
the envelope functions ��3/2�r� ,�1/2�r� ,�−1/2�r� ,�−3/2�r�� is
the eigenfunction of HLK. The true wave function ��r� of the
state is given by ��r�=	
�
�r�u
. The Luttinger-Kohn
Hamiltonian can be written as

HLK =
�2

2m0�
â+ b̂ ĉ 0

b̂† â− 0 ĉ

ĉ† 0 â− − b̂

0 ĉ† − b̂† â+

�
jz = 3

2

jz = 1
2

jz = − 1
2

jz = − 3
2

, �1�

and the matrix elements are

â+ = − k̂z��1 − 2��k̂z − ��1 + ���k̂x
2 + k̂y

2� , �2�

â− = − k̂z��1 + 2��k̂z − ��1 − ���k̂x
2 + k̂y

2� , �3�

b̂ = 	3�k̂x − ik̂y���k̂z + k̂z�� , �4�

ĉ = 	3��k̂x − ik̂y�2. �5�

m0 is the free electron mass and k̂i= i �
�xi

, i=x ,y ,z, are opera-
tors for the envelope functions. �1, �2, and �3 are material-
dependent Luttinger parameters, and �= �2�2+3�3� /5. For
crystals with translational invariance the envelope functions
are all proportional to plane waves eik·r and the above opera-
tors turn into c numbers. Diagonalization of the matrix gives
the spectrum E±�k� which possesses fourfold degeneracy at
the band edge. The sign  indicates that there are two
branches: the heavy-hole and light-hole bands. The spectrum
E±�k� is given by

E±�k� =
�2

m0

�1

k2

2
± 	�2

2k4 + 3��3
2 − �2

2��kx
2ky

2 + ky
2kz

2 + kz
2kx

2�� .

�6�

When the perfect crystal is subject to a stress due to ex-
ternal strain or lattice mismatch the crystal symmetry is low-
ered and the fourfold degeneracy at the valence band edge is
split into two twofold degeneracies. If the strain is along the
�001� axis, which is parallel to the z direction, this effect is to
add a strain term Vst to the Hamiltonian.13 It can be repre-
sented by the diagonal matrix

Vst =�
� 0 0 0

0 − � 0 0

0 0 − � 0

0 0 0 �
� . �7�

The coincidence of heavy-hole and light-hole bands at the
band edge is split by the strain factor � which is proportional
to external force and dependent on the direction of strain. In
QW’s the strain results from the lattice mismatch between Si
and SiGe alloy. In epitaxially grown SiGe QW structure on
Si substrate, the lattice constant of the whole structure is
fixed by the Si lattice constant. Because the natural lattice
constant of SiGe alloy is different from Si, there must be a
strain in the alloy to force the lattice constant to match Si.
The relation between valence band splitting � due to strain
and the germanium composition t in Si1−tGet alloy was stud-
ied before.14 The expression in eV is ��t�=0.01+0.2t
− 1

4
	0.0016+0.0074t+0.24t2. In our proposed QW structure

the germanium compositions vary in the z direction and the
hence the strain factor � is a function of z.

For an acceptor in the stressed crystal we shall add the
Coulomb potential VI due to the charged center:

VI�r� = vI�r�I =
1

4��

e

r
I , �8�

where � is the dielectric constant. r is the distance from the
acceptor. I represents the 4�4 identity matrix. In the high-
strain limit the off-diagonal coupling b̂ and ĉ can be consid-
ered as perturbations and HLK becomes approximately diag-
onal with twofold degeneracy for heavy and light holes. The
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resultant localized states can also be divided into two sub-
groups like the band states.

After reviewing the bulk crystals we can extend the dis-
cussions to the states in QW structures shown in Fig. 1. Even
without strain the valence band edge depends on the ger-
manium compositions,15 described by Vb�z�=vb�z�I. For
Si1−tGet alloy grown on Si, the valence band offset in eV can
be written as vb=0.84t. The total band edge profile in Fig. 1
comes from the sum of Vb�z� and Vst�z�. The Luttinger pa-
rameters have different values in different layers; hence, they
are functions of z. The homogeneity of those parameters is
assumed within each silicon-germanium layer, and their val-
ues are determined by linear interpolation between pure Si
and pure Ge. The heavy-hole and light-hole subbands in the
structure can be expressed by the total Hamiltonian H:

H = HLK + Vb�z� + Vst�z� . �9�

Note that z=0 is at the center of well, so there is a parity
symmetry with respect to z→−z in this problem. Here we
separate HLK into diagonal and off-diagonal parts, labeled by
HLK

0 and HLK
1 , respectively. The wave functions for HH1

emerge from eigenfunctions of the diagonal parts H0=HLK
0

+Vb�z�+Vst�z� of the full Hamiltonian H. The off-diagonal
heavy-hole–light-hole mixing HLK

1 will be considered later as
a perturbation. The unperturbed Schrödinger equation can be
written as

H0� = �� . �10�

We solve this to obtain the HH1 envelope functions � of the
wave functions �k with eigenvalues ��k�. On the other hand,
the localized states �1s

LH and �2p±

HH with respective eigenvalues
E1s

LH and E2p±

HH are eigenstates of the Hamiltonian HLK
0 +VI�r�

+ �Vb�z�+Vst�z��z=z0
±. Here z0

±� ± � W
2 +d� denote the positions

of the acceptors. The implicit assumption is that the Cou-
lomb potential VI has little effect on the subband wave func-
tions while the nonuniform strain is irrelevant to the local-
ized state. The above approximations are justified by the
condition that the distance between the dopant and quantum
well boundary d as well as the thickness of outer Si1−xGex
layers be both larger than the acceptor Bohr radius. The
equations turn out to be the typical one-dimensional potential
well problem for the subband and hydrogen atom problem
for the localized states. The energy spectra for the relevant
states are shown in Fig. 3. The explicit wave functions for
HH1 can be expressed as

�k��,z� =
1

	A
g�z�eik·��u±3/2, �11�

where the  sign in the wave functions reflects the twofold
degeneracy guaranteed by time-reversal symmetry in the ab-
sence of a magnetic field and the envelope function g�z� has
even parity to yield the lowest energy of all subbands. A is
the QW area. �� = �x ,y� is the in-plane coordinate. The accep-
tor wave functions localized at z=z0

± and �� =0 are of the form

�1s
LH��� ,z� = �1s��� ,z − z0

±�u±1/2, �12�

�2p±

HH��� ,z� = �2p±
��� ,z − z0

±�u±3/2, �13�

where  stands for z�0 and z�0, respectively. We use the
hydrogenic trial functions

�1s��� ,z� =
1

	�a2b
exp−	�2

a2 +
z2

b2� , �14�

�2p±
��� ,z� =

1

2�a4b
�ei� exp−	�2

a2 +
z2

b2� . �15�

a �in-plane Bohr radius� and b �out-of-plane Bohr radius� are
variation parameters for minimizing their energy, and � is
the polar angle in the x-y plane. � is the modulus ��� �. Varia-
tional calculations are performed to obtain the acceptor level
splitting � and the difference E0 between HH2P± and HH1
minima. Variational calculations are performed to obtain the
acceptor level binding energy. The resultant binding energies
and the variational Bohr radius of the levels of interest are
shown in Table I.

Next we consider the corrections to the impurity states
resulting from the QW confinement potential as well as the
off-diagonal couplings with the HH1 continuum. Such cor-
rections are necessary for having a more precise prediction
on the emitted photon energy. Here we focus on the correc-
tions to the binding energy of LH1S, which is resonant with
the continuum. Note that the binding energy is relative to the
barrier, not the quantum well continuum. The expressions for
the corrections �E1s are given below, and the details of deri-
vation are presented in Appendix A:

FIG. 3. Spectrum of the diagonal part H0 of the full Hamiltonian
H. The acceptor states of interest and the continuous HH1 are
shown. The binding energy for HH2P± and the emitted photon
energy are denoted by E0 and �, respectively. Their values and
corresponding variational Bohr radius are shown in Table I. ��k� is
the spectrum of the subband HH1.

TABLE I. Binding energies and variational parameters of the
localized acceptor states.

Level Binding energy �meV� Variational Bohr radius �nm�

HH1S 20.9 a=3.6, b=3.0

HH2P± 4.9 a=4.4, b=3.9

LH1S 21.0 a=2.8, b=4.0
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�E1s = � + P
A

�2��2 � dk
��k�2

E1s − �k
. �16�

� is the correction due to the confinement potential while the
integral due to the coupling with the continuum. P stands for
the Cauchy principal-value integration. �k and � are given
by

�k = ��1s�ĉ��k� , �17�

� = ��1s��vC�z� − vC�z0����1s� . �18�

Note that only the off-diagonal elements involving kx and ky
are considered because the resonance requires a large in-
plane momentum. The confinement potential vC is the diag-
onal element of Vb+Vst belonging to light-hole states. The
correction due to the confinement potential � is negligible in
the present case because a very small portion of the impurity
wave function for the impurity falls on the QW region and
the confinement potential is small compared to the impurity
binding energy. In fact our calculation shows that this cor-
rection on E1s is less than 0.1%. However, this effect for the
case of smaller binding energy is important such as the shal-
low donors located in the barrier near the quantum well.16

The second term resembles the formula for a second-order
perturbation. Even though still only about 10% of E1s, it
provides significant corrections in case of a small emitted
photon energy. The smallness of the corrections is reasonable
since the light-hole localized states and the heavy-hole con-
tinuum have a small overlap and they can couple to each
other only though the off-diagonal elements of HLK which is
treated as a perturbation in the high-strain limit.8 The QW
continuum and the HH2P± are assumed to be unaffected by
the perturbation.

To be specific we consider the case which gives a radia-
tion frequency of 1 THz �4 meV�. We set �=6 meV in Fig.
2. � determines the germanium composition x in the Si1−xGex
layer in Fig. 1. The corresponding x is 0.088. Such an ar-
rangement gives an unperturbed binding energy of LH1S
21 meV by a variational calculation. This value is shifted to
23 meV after the correction in Eq. �16� is put in. Conse-
quently the real emitting photon energy is 4 meV as ex-
pected. Next we determine the width W and germanium
composition y of the central layer such that the HH1 mini-
mum lies equally between LH1S and HH2P. In other
words E0 is set to 2 meV in Fig. 2. To meet the requirement
we choose the composition y by coinciding the HH band
profile in the Si1−yGey layer �dashed line in Fig. 1� with
HH2P± in the Si1−xGex layers. This gives y=0.094. W is so
determined such that the HH1 minimum �dash-dotted line in
Fig. 1� is 2 meV above due to the spatial quantization. By
solving the potential well problem with the barrier height
given by the valence band offset, the well width W is
11.7 nm. The energy levels relevant to the laser operation are
shown as functions of germanium composition x in Si1−xGex
layers for fixed well width W in Fig. 4. The valence band
edges in Si layers are taken as zero. The parameters used in
the calculation are summarized in Table II. The x dependence
of the LH and HH band edges is due to the collective con-
tributions from the x-dependent intrinsic band edge offset of

SiGe alloy and x-dependent strain. The LH1S and HH2P±
acceptor levels are downward shifted from the band edges by
the binding energies calculated by the variational trial wave
functions in Eqs. �14� and �15�. The HH1 minimum in the
central well depends on x through the QW barrier height.
The lasing operation is possible only when the HH1 mini-
mum lies between HH2P± and LH1S, as indicated by the
arrow in Fig. 4. After having all the levels in the right order
of energy, LH1S is immersed within the HH1 continuum as
the resonant state.

FIG. 4. Unperturbed LH1S �upper dotted line� and HH2P±
�lower dotted line� energy levels in Si1−xGex barrier layers are plot-
ted versus germanium composition x. The solid line stands for the
LH1S energy with the corrections in Eq. �16�. The valence band
edge in outer most Si layer is taken as zero energy. The HH1 mini-
mum is also shown as a dashed line and the difference from the
perturbed LH1S is denoted by resonance energy Er. The heavy-hole
�diamond� and light-hole �circle� band edges in barrier layers are
also plotted for references. The QW width W is 11.7 nm. y=0.094.
LH1S becomes a resonant state if the HH1 minimum lies between
the two localized states HH2P± and LH1S. The arrow indicates that
the resonance condition for the THz laser is satisfied in the region
right to the vertical line.

TABLE II. Useful values in the calculation are listed with ref-
erences. Luttinger parameters and optical phonon energy used here
are obtained by interpolation with values between Si and Ge.

Parameter Value Description

��1 ,�2 ,�3� �4.22,0.39,1.44�a/
�13.38,5.69,4.24�b

Luttinger parameters
in Si/Ge

��0 53/37c Optical phonon energy
for Si/Ge �meV�

�A 5b Average optical phonon
emission rate �1012 s−1�

� 2.328c Mass density �g/cm3�
c 9040d Sound velocity �m/s�
� 9d Deformational potential �eV�

aReference 17.
bReference 7.
cReference 11.
dReference 18.
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B. Resonant transition

The hybridization of the localized LH1S and HH1 con-
tinuum via the off-diagonal perturbation HLK

1 leads to a new
set of resonant states ��E� labeled by its complex energy E

+ i
�E

2 . The imaginary part is given by

�E

2
= �

A

�2��2 � dk��E − �k���k�2. �19�

The nonzero imaginary energy �E here represents that �E is
a quasistationary state. More precisely speaking the HH1
holes of momentum k can be captured by LH1S with the
transition rate Wk

res for a time interval � /�. The transition
rate and the time interval are determined in a self-consistent
manner—that is,

Wk
res =

2

�
��k�2

�/2

���k� − E1s�2 + �2/4
, �20�

�

�
= �

k
Wk

res. �21�

The center of the Lorentzian corresponds to E1s because the
resonant state �E1s

contains the maximum component of the
localized LH1S. For simplicity we regard the unknown � in
Eq. �20� as close to zero and the Lorentzian is reduced to a �
function. As long as the resultant � from Eq. �21� is small
compared to the resonance energy Er�E1s−��k=0� �see
Figs. 2 and 3� of LH1S, this method is self-consistent to
obtain �.

Next we work out � in the small-� limit. In other words
the resonant transition rate Wk

res can be given simply by the
Fermi golden rule

Wk
res =

2�

�
��k�2����k� − E1s� . �22�

In order to obtain an explicit expression for the transition
rate we need to calculate the overlap integral ��1s ��k�. As-
suming that the main contribution to this integral comes from
the region in the barrier—i.e., �z�� W

2 —we arrive at

��1s��k� =
1

	A

1
	�a2b

� dzg�z� � dxdyeik�·��

�exp−	�2

a2 +
z2

b2�
= �	16�ab2

A

1

�2�e−�d/b 1

�b − �

 �b − 2�

���b − ��
+

d

b
�

+ e−�d
 �2� − �b�
���b − ��2 +

�2� + �b�
���b + ��2�� . �23�

The dimensionless quantity ��	1+a2k2 is introduced. � is
to normalize the envelope function g�z� as ��2�g�z��2dz=1. �
is the decay constant of g�z� in the barriers.
� as a function of resonance energy Er is plotted in Fig. 5

for various acceptor in-plane Bohr radii a and separations d.
The effect of coupling with the continuum can be investi-

gated through �. For a distance d much larger than the Bohr
radius, the coupling is diminished due to the decreasing over-
lap between the impurity state and the continuum. In such a
case the formation of a resonant state is impossible. How-
ever, the dependence of the coupling on the Bohr radius is
determined by two competing factors. Namely, in the z di-
rection the envelope function g�z� of the continuum has a
larger overlap with the localized impurity state of larger Bohr
radius, while in the x-y plane the continuum of higher kinetic
energy can only be coupled to the impurity state of smaller
Bohr radius because such a localized state has larger Fourier
momentum components. For larger Bohr radius, it is shown
in Fig. 5 that � is larger at lower Er while it is smaller at
higher Er.

IV. HOLE DISTRIBUTION AND POPULATION
INVERSION

So far there is no comprehensive theoretical model for the
nonequilibrium behavior of acceptor levels interacting with a
subband in QW’s. In order to make quantitative predictions
of the conditions for hole population inversion, below we
construct a model which takes into account all of the relevant
physical processes for such a system.

A. Hole statistics at equilibrium

The occupation probabilities of LH1S, HH2P, HH1S,
and HH1 states are indicated by f1, f2, fg, and fk, respec-
tively. In thermal equilibrium the occupation ratio of LH1S
to HH2P± is given by the Boltzmann factor—i.e., f2 / f1
=exp�−���. � is the inverse of the product of the Boltzmann
constant kB and temperature T. Moreover, at equilibrium the
hole densities are determined by assigning each level its
Boltzmann weighting. Note that all the holes are provided by
the lowest localized level, and hence we have the following
normalization of total holes:

FIG. 5. The energy width � of the resonant state is shown as a
function of the resonant-state energy Er measured from the HH1
minimum. Symbol curves correspond to various in-plane Bohr ra-
dius a of LH1S orbital with fixed d=6 nm. Dashed and dotted lines
correspond to various distances d between the acceptor and bound-
ary of the central well with a=2.7 nm.
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nafg + naf1 +
1

A
�
k

fk + naf2 = na. �24�

When the electric field is turned on holes acquire kinetic
energy from the external field and the distribution of holes
deviates from the Boltzmann distribution. In order to give a
quantitative account of how the nonequilibrium populations
depend on the parameters �e.g., field strength F, temperature
T, and acceptor density na�, we need to study the micro-
scopic kinetics governing the transitions among the states.

B. Boltzmann kinematic equation

The strategy for obtaining the nonequilibrium populations
is as follows. First we neglect the low-lying HH2P± and
HH1S temporarily and solve the kinetics of the subsystem
containing HH1 and LH1S in order to obtain the relation
between f2 and fk, with considerations of phonon scattering
within HH1 and the resonant transition between the continu-
ous HH1 and the localized LH1S. This is justified because
the resonant scattering is much faster than the decay through
spontaneous emission from LH1S to HH2P.7 Afterwards
the occupation probability f1 of HH2P± is determined by the
its balance with the nonequilibrium subband distribution fk
through impact ionization, thermal recombination, and their
inverse processes Auger recombination and thermal excita-
tion. Detailed calculations are given below.

For a given number of holes in the subsystem containing
HH1 and LH1S, the nonequilibrium distribution fk in HH1
and occupation of LH1S f2 are studied by solving the Bolt-
zmann kinetic equation numerically for various electric fields
and acceptor densities. In the subsystem the holes in HH1
acquire kinetic energy from the constant electric field F ap-
plied along the x axis. For moderate electric field and low
temperature, it is adequate to adopt the concept of streaming
motion19 in which the only significant scattering is due to
optical phonons �energy ��0�. This is implemented by intro-
ducing a particle drain in momentum space such that once a
specific hole drifts with velocity eF /� through the energy
surface �=��0 �denoted by  � in the momentum space, the
hole will experience an optical phonon scattering and simul-
taneously reemerge as a hole of energy less than �0.7,8 Hence
fk=0 for ��k�!��0. The energy �0 is determined by the
requirement that in the presence of constant electric field F
the probability for a hole being able to drift beyond the con-
stant energy surface �=��0+�0 without emitting one optical
phonon be negligibly small. The quantity �0 is equal to the
product of the external force, eF, carrier velocity
	2m*��0 /m*, and inverse of the average optical phonon
emitting rate, �A. m* stands for the effective mass. Note that
the energy-independent optical-phonon-emitting rate is due
to the constant density of states in two dimensions. Therefore
the excess energy can be expressed as

�0 =
eF

�A

	2��0

m* . �25�

The reemerging holes can be modeled as a particle source7,8

S�k,t� =

e

�
� fk�t�F · dS�

� "„�0 − ��k��…d2k��"„�0 − ��k�… , �26�

where " is the step function. The meaning of the above
expression is that the hole reemerging rate is uniform for
energy within �0 and the total reemergence rate must match
the collection of the outward carrier flux eF

� fk passing
through the surface  in momentum space.

In order to properly account for the temperature effects,
we include the acoustic phonon scattering. The acoustic pho-
non scattering rate Wk,k�

acu is of the form20

Wk,k�
acu =

2��2q2

��qWA
nq +

1

2
#

1

2
��„��k�� − ��k�# ��q… ,

�27�

where � is the mass density of solid lattice and � is the
lattice deformation potential. The acoustic phonon involved
in the transition has wave number q=k�−k and its disper-
sion is given by �q=cq where c is the sound velocity in the
solid. Emission and absorption of phonons in the processes
correspond to � and �, respectively. The product WA rep-
resents the QW volume.

We assume homogeneity in the x and y directions so that
the distribution is a function of the variables kx and ky only.
The set of kinetic equations can be written as

�fk

�t
+

eF

�
·
�fk

�k
= Sk − Dk + C1�fk, f2� , �28�

�f2

�t
= C2�fk, f2� . �29�

Ci�fk , f2�, i=1,2, represent the collision terms for the acous-
tic phonon and resonant scattering. They are functionals of
the distribution functions. The explicit expressions for the
collision terms are

C1�fk, f2� = naA�Wk
res�f2 − fk�� + �

k�

�Wk�k
acu fk� − Wkk�

acu fk� ,

�30�

C2�fk, f2� = �
k

Wk
res�fk − f2� . �31�

The kinetic equations �28� and �29� are solved numerically
by starting with the equilibrium distribution and then inte-
grating forward in time until a steady state is reached. Note
that the sum of densities, naf2+ 1

A�kfk, is a conserved quan-
tity in the time evolution, guaranteed by cancellation of col-
lision terms and the boundary conditions at the surface  . In
this way not only the steady state but also the transient of the
system can be modeled. The occupations of LH1S f2 and the
HH1 fk are obtained up to an arbitrary total number of holes
in the subsystem. In particular the relation between f2 and fk
at steady state can be readily seen by setting the left-hand
side of Eq. �29� equal to zero:
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f2 =

�
k

Wk
resfk

�
k

Wk
res

=� d�����k� − Er�fk. �32�

Now we consider the special case with no electric field.
The subsystem is in thermal equilibrium. The occupations of
HH1 and LH1S obey the Boltzmann statistics guaranteed by
the presence of a � function in the expression for resonant
scattering as well as the fact that the scattering between HH1
states k and k� due to acoustic phonon emission and absorp-
tion satisfies the relations

Wk�k
acu

Wkk�
acu =

1 + nq

nq
= exp�− ����k�� − ��k��� . �33�

��k�����k� is assumed without loss of generality, and q is
the wave vector of the phonon involved in the process.
Therefore in equilibrium f2 is given by

f2 =
N/A

1

A�
k

e−���k� + nae−�Er

e−�Er, �34�

where N represents the total number of holes in the sub-
system.

In order to describe the effect of the electric field on the
distribution, we define a dimensionless parameter $�F ,T� by

$�F,T� �

1

A
�
k

fk

naf2 +
1

A
�
k

fk

=
ns

n2 + ns
. �35�

$�F ,T� is the fraction of holes in HH1 for the subsystem. For
low temperature at equilibrium virtually all holes stay near
the HH1 minimum, so $ is close to unity. In the presence of
the electric field the population of LH1S increases as a con-
sequence of Eq. �32�, since holes in HH1 acquire kinetic
energy from the field, so the nonequilibrium distribution fk
has a larger value at ��k�=Er. Therefore, for a given na,
$�F ,T� is expected to decrease as the electric field increases.
An increase of the acceptor density na also raises f2 because
the distribution in HH1 becomes more concentrated on
��k�%Er. This is because the stronger resonance scattering
inhibits the holes from acquiring energy higher than the reso-
nance energy Er.

C. Impact ionization and thermal recombination rates

Next we turn to the interactions between HH1 and low-
lying localized states including HH1S and HH2P±. The in-
teractions are dominated by impact ionization and the ther-
mal recombination as well as their inverse processes. In the
impact ionization process one energetic hole in HH1 with
momentum k scatters with one hole in the low-lying local-
ized states �b in the barrier through the Coulomb interaction
such that they both come out as free holes in HH1. The
transition rate is given by

wip�k� =
2�

�
�

k1,k2

��k1,k2�
e2

r
�k,b��2

��„��k� − Eb − ��k1� − ��k2�… , �36�

where r is the separation between the incident hole and lo-
calized hole. The summation is over all final two-particle
Bloch states �k1 ,k2�. The first task is to evaluate the scatter-
ing matrix element �k1 ,k2� e2

r �k ,b�. Substituting the explicit
expressions for those localized wave functions and Coulomb
potential into the scattering matrix element, it becomes

� d3r1d3r2
1

	A
e−ik1·��1f*�z1�

1
	A

e−ik2·��2f*�z2�

�V��r1 − r2��
1

	A
eik1·��1f�z1��b�r2� , �37�

where the dummy coordinates ri= ��� i ,zi�, i=1,2, are to be
integrated out to obtain an impact ionization rate as a func-
tion of the momentum k of the incident hole. The integral is
complicated by the entanglement of the dummy variables r1
and r2 but it can be eased by replacing the Coulomb inter-
action with its representation in Fourier expansions

1

4��

e2

�r1 − r2�
=

e2

�
� d3q

�2��3

1

q2eiq·r1e−iq·r2. �38�

Similar to Eq. �24�, the overlap between the HH1 and LH1S,
the major contributions to the matrix element come from
�z�� W

2 . After some algebra the scattering amplitude M ar-
rives at the expression

M�k;k1,k2� = �k1,k2�
e2

r
�k,b�

=
1

A3/2

e2

�
� dq�

2�

1

q�
2 + q�

2 � dz1�f�z1��2eiq�z1

�� dz2f*�z2�I�z2,q��e−iq�z2. �39�

q� = �k−k1�, and the expression for I�z� is given by

I�z,q�� =	4�a2

b
�

0

&

d�h���exp
− �2 +
�z − z0

±�2

b2 �1/2� ,

�40�

where the function h��� is �J0�aq��� for the case of HH1S as

initial state and is 	1
2�

2J1�aq��� for the case of HH2P± as
initial state. J stands for the Bessel functions. q�= �k−k1
−k2� and '=	1+a2q�2. The upper script  is for z�0 and
z�0, respectively. Note that I�z ,q�� decreases with the mo-
mentum transfer q� as a consequence of localization of the
initial acceptor state. The scattering amplitude is expected to
decrease rapidly when the momentum transfer q� is larger
than the inverse of the Bohr radius a of the localized orbital.
Hence we simplify the expression, Eq. �36�, as
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wip�k� =
2�

�
�M̄�2 �

k1,k2

"1

a
− �k − k1 − k2��

��„��k� − E0 − ��k1� − ��k2�…

=
2�

�
�M̄�2(�k� . �41�

M̄ stands for the maximum scattering amplitude which oc-
curs when k1=k2, and the angle between k and k1 is equal to
that between k and k2. The summation in the above expres-
sion gives the effective phase-space volume (�k� available
for this scattering process given that the incident momentum
is k. Carrying out k1 and k2 integral one obtains

(�k� = A2� d2k1

�2��2

d2k2

�2��2"1

a
− �k − k1 − k2��

��„��k� − E0 − ��k1� − ��k2�…

=  A

�2��2�2� d2u

2
d2v"1

a
− u�

��� �2

2m

1

2
��u + k�2 + v2� − ���k� − E0��

=
A2

2�

m

�2 � d2u"1

a
− u�

�"
−
�2

4m
�u + k�2 + ���k� − E0�� , �42�

where the phase-space dummy variables �k1 ,k2� were trans-
formed into the new coordinates �u ,v�= �k1+k2 ,k1−k2�
with the corresponding Jacobian equal to one-half. After in-
tegrating out the variable v the evaluation of (�k� can be
obtained through counting the overlapping area of one circle
centered at the origin with radius 1/a and another circle

centered at −k on the x axis with radius
	4m���k�−E0�

� . The
resultant rate wip is plotted in Fig. 6 as a function of kinetic

energy �2k2

2m* . The reverse process of impact ionization is Au-
ger recombination, in which two HH1 holes collide and re-
sult in one localized hole and one HH1 hole with higher
kinetic energy. The Auger process must be taken into account
as well.

The holes impact-ionized to the HH1 can go back to the
low-lying localized states by acoustic phonon emission—i.e.,
thermal recombination. The thermal recombination rate is
given by21

wtr�k� = 210�
c

l0

E0
4m*c2

���k� + E0�5a3�g�z0
±��2�Nq + 1� , �43�

where c is the sound velocity. Nq is the number of phonons
involved in the scattering, and q is the wave vector of the
phonon satisfying conservation of energy given by q
= ���k�+E0� /�c. l0 is the characteristic length for acoustic
phonon scattering,

l0 =
��4�

2m*3�2 , �44�

where � and � are mass density of the lattice and deforma-
tion potential as mentioned previously. The reverse process
of thermal recombination is the thermal excitation of holes in
the low-lying localized states by acoustic phonon absorption.

Between the two localized levels HH1S and HH2P±, the
thermal capture/generation rates ta/e are given by

ta/e = 210 c

l0

mc2

��
Nq +

1

2
#

1

2
� . �45�

�� denotes the energy difference between the localized lev-
els. The subscripts a and e indicate that these processes are
accompanied by phonon absorption and phonon emission,
respectively.

D. Hole population in subband and lower localized
acceptor states

From Sec. IV B we are able to deal with the nonequilib-
rium occupations fk and f2 with normalization up to an arbi-
trary total number of holes. Using the impact ionization and
phonon emission rates we are now able to deal with the
occupations in the subsystem consisting of lower localized
levels and HH1. To be precise, we adopt the normalization
given by Eq. �24� where the total hole density of subsystem
consisting of LH1S and HH1 is equal to the vacancy density
in HH2P± and HH1S. Since the occupation probability f2 is
completely determined from fk, it is convenient to write the
density of HH1 holes ns as

ns =
ns

ns + naf2
�ns + naf2� = $�F,T�na�1 − f1 − fg� �46�

and the hole density of LH1S as

n2 = �1 − $�F,T��na�1 − f1 − fg� . �47�

The dimensionless parameter $�F ,T�, given by Eq. �35�, has
values between zero and unity.

Once f1 and fg are known, f2 can be determined from Eq.
�47�. f1 and fg can be calculated from the kinetics between

FIG. 6. Impact ionization rates wip as functions of kinetic energy
� of the incident subband hole for HH1S to HH1 and HH2P± to
HH1 are respectively shown.
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HH1 and the low-lying localized states. Impact ionization
and thermal excitation processes cause the upward transi-
tions while Auger recombination and thermal recombination
processes cause the downward transitions. The respective
downward Auger recombination rates from HH1 to HH2P±
and HH1S are r2p

ar =A2p�T�ns
2�1− f1� and r1s

ar=A1s�T�ns
2�1− fg�,

where the coefficients A’s are temperature and acceptor den-
sity dependent for the Auger recombination and the factors
�1− f1,g� account for the constraint that the process is forbid-
den when the lower acceptor state is filled with a hole. Note
that holes in HH1 are not required to have threshold kinetic
energy for the recombination process to take place, so we
assume the coefficients A’s have a negligible field depen-
dence. The holes occupied the continuum can drop to the
lower localized states, HH1S and HH2P±, by thermal recom-
bination. In our case HH2P± is below the HH1 minimum by
2 meV, which is much smaller than the gap between HH1
and HH1S, 16 meV; here we neglect the latter recombination
process since the rate is inversely proportional to the gap.
This downward rate from HH1 to HH2P± is proportional to
the hole density in HH1 and can be written as r2p

tr

=C�F ,T�ns. The coefficient C�F ,T�, dependent on field and
temperature, is taken as the average of Eq. �43� with respect
to fk:

C�F,T� =

�
k

wtr
„��k�…fk

�
k

fk

. �48�

We now consider upward transitions. The impact ionization
rates for the respective processes, HH1S to HH1 and HH2P±
to HH1, are of the expressions r1s

ip =B�F ,T�nsfg and r2p
ip

=B�F ,T�nsf1. Note that the factors f1 and fg in the expres-
sions account for the requirement of an occupied initial lo-
calized acceptor state. The coefficients Bi�F ,T� can be writ-
ten as the average

Bi�F,T� =

�
k

wi
ip
„��k�…fk

�
k

fk

. �49�

The subscript of wi
ip in Eq. �49� stands for different rates

resulting from different initial localized states in the different
collision processes in the present case. There exists a thresh-
old of kinetic energy for the hole in HH1 for impact ioniza-
tion, and consequently the coefficient B for low field and low
temperature is negligibly small. Besides the upward transi-
tion caused by the inelastic collision, holes occupying the
lower localized states can also be excited to the continuum
through phonon emission. Here we also neglect the direct
excitation of HH1S holes to HH1 because it requires absorp-
tion of phonons of much greater energy. Therefore we are
left with the thermal excitation from HH2P± to HH1, and the
rate can be expressed as rte=D�T�n1. The phonon absorption
coefficient D�T� is determined by detailed balance with rtr at
thermal equilibrium.

Since we have to consider two lower localized states in
the kinetic problem, we are left with the transition between

HH1S and HH2P±. For simplicity we only consider the ther-
mal excitation and recombination. The upward and down-
ward transitions among the two levels are given by tang and
ten1. With all the necessary transitions at hand we are ready
to write down the kinetic equations for the populations n1
and ng of the two localized states. Substituting all the for-
mula into the relation we have

dn1

dt
− tang + ten1 = r2p

ar − r2p
ip + rtr − rte

= A2pns
2�1 − f1� − B2pnsf1 + Cns − Dn1,

dng

dt
+ tang − ten1 = r1s

ar − r1s
ip = A1sns

2�1 − fg� − B1snsfg.

�50�

Now we are left with the determination of the coefficients
A1s, A2p, and D which are assumed to be independent of the
electric field. Since the occupations obtained from the rate
equation must be restored to thermal equilibrium when the
electric field is set to zero, the requirement of detailed bal-
ance at zero field gives A1s, A2p, and D using B1s, B2p, and C:

A2p�T��ns
0�2�1 − f1

0� = B2p�F = 0,T�ns
0f1

0,

A1s�T��ns
0�2�1 − fg

0� = B1s�F = 0,T�ns
0fg

0,

D�T�n1
0 = C�F = 0,T�ns

0. �51�

Note that the zeros as superscripts in fg, f1, n1, and ns stand
for the equilibrium values.

V. RESULTS AND DISCUSSIONS

For a given F and T, Eq. �50� can be solved to give fg and
f1. Then they can be substituted into Eq. �47� to give f2.
f2 / f1�1 is the condition for population inversion. Putting
everything together we are now able to obtain the nonequi-
librium distribution of holes in all levels under electric field
pumping. For the subsystem containing LH1S and HH1, the

normalized subband distribution f̃���� f���
kp

2

�2��2ns
versus

hole kinetic energy for different acceptor densities is shown
in Fig. 7 with applied electric field 1 kV/cm. kp stands for
the hole momentum corresponding to the kinetic energy of
one optical phonon energy ��0=40 meV and the integration

��k��kp
f̃���d� gives unity. For lower acceptor densities na

holes in HH1 are more likely to be pumped to acquire energy
exceeding the resonance energy Er. This results in a lower
occupation below Er. Higher acceptor densities na lead to

higher occupation probability at Er—i.e., larger f̃�Er�. This
phenomenon results from strong resonant scattering for
higher acceptor densities. From Eq. �32� the occupation f2 of
LH1S is consequently enhanced with increasing acceptor
density. In other words, for the same hole density in HH1,
higher acceptor densities na lead to higher LH1S occupation
probabilities f2. Therefore higher na is advantageous for
building population inversion. The effect of electric fields is
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shown in Fig. 8 by plotting the subband hole fraction $. At
low field, the occupation of LH1S compared to that of HH1
is suppressed by the Boltzmann factor and $ is near unity. As
the field is turned on �between 10−2 and 10−1 V/cm�, holes
acquire kinetic energy by field pumping. Hence more holes
accumulate in LH1S through resonant capture of holes in
HH1 with kinetic energy ��k�=Er. As the field further in-
creases, the fraction $ starts to increase because the field
pumping overwhelms resonant capture and acoustic phonon
scattering. In that case a large fraction of holes in HH1 ac-
quire kinetic energy larger than Er. The temperature effect
diminishes in this regime as shown by the coincidence of the
two curves in Fig. 8. Eventually the growth of $ in the high-
field regime saturates when optical phonon scattering sets in.

Next we consider the subsystem consisting of HH1 and
the lower localized states. At low temperature and equilib-

rium, most of the holes are bound by the acceptors and oc-
cupy the lowest HH1S. There are very few holes in HH1 and
even fewer holes with enough kinetic energy to inelastically
collide with the localized holes. Therefore the process of
impact ionization is negligible and the so is the Auger re-
combination because in such a dilute case the average dis-
tance between the free holes is so large that the probability of
collision is extremely small. Hence the populations of these
levels are dominated by thermal processes and the statistics
obey the Boltzmann distribution. When the electric field is
turned on, holes can acquire more kinetic energy and impact
ionization of the low-lying localized state is possible through
inelastic collisions with energetic holes. The subsequent dis-
tribution of holes is balanced by those upward and down-
ward transitions, as illustrated by Eq. �50�. In order to have a
quantitative understanding of how an electric field change
the steady-state distribution of holes as the impact ionization
rates increase, it is easier to consider the subsystem as HH1
and one single localized state, which is below HH1 mini-
mum by eg. The rate equation can be written in a similar
manner—that is,

Ãna$
2)3 + B̃$)2 + C̃ − B̃ +

D̃

$
�$) − D = 0. �52�

The variable )=1− f̃ and f̃ stands for the population in the
localized state. The capital letters with tildes represent the
effective coefficients for the corresponding processes. Now
we first focus on the limit of low temperature and low field.
In such a case the occupation of lower localized levels is

close to unity �)*1� and the impact ionization coefficient B̃
is nearly zero. So it is a good approximation to neglect the
term of highest power in ) in the rate equation �52�. The
solution is given by

) =
�B̃ − C̃�$ + 	�B̃ − C̃�2$2 + 4$B̃D̃

2$B̃
, �53�

where the term for thermal excitation D̃ /$ is dropped in the
parentheses of Eq. �52� because the thermal excitation pro-
cess is much weaker than the thermal recombination process
�C̃+ D̃

$
� at low temperature. Note $�1 at low field. In order

to illustrate how an electric field affects the solution )
through the impact ionization coefficient B̃, we set $=1 and
define the relative coefficients for impact ionization, bc� B̃

C̃
,

and thermal excitation, dc� D̃

C̃
, to the thermal recombination

coefficient C. The solution can be rewritten as

) =
�bc − 1� + 	�bc − 1�2 + 4bcdc

2bc
. �54�

dc�e−�eg is a temperature-dependent parameter in the ex-
pression as suggested by Eq. �51�. For bc=1, ) is 	dc*1,
justifying the omission of the )3 term in Eq. �52� in the
regime of discussion. The relation between ) and the relative
impact ionization coefficient bc is plotted in Fig. 9 for tem-
perature from 1 K to 4 K. In the limit of small bc the solu-
tion can be approximated as )=dc which is nothing but the

FIG. 7. Normalized subband hole distribution f̃��� versus hole
energy � for electric field strength of F=1000 V/cm and T=1 K.
The vertical line denotes the resonance energy Er. The distribution
is concentrated more in the ��Er region as the acceptor density na

increases.

FIG. 8. The subband hole fractions $�F ,T� as a function of
electric field F for T=1 K �solid line� and T=4 K �dashed line� are
shown. The coincidence for different temperatures at higher electric
fields suggests that kBT becomes irrelevant compared with the scale
of Er and optical phonon energy ��0.
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thermal equilibrium. Such a case corresponds to the low-field
situation in which impact ionization is not yet activated. As
the electric field increases, bc grows towards unity because
more holes in HH1 acquire enough kinetic energy from the
field. In the crossover regime where the term �bc−1� in Eq.
�54� turns positive from negative, ) grows rapidly as both the
population and average kinetic energy of holes in HH1 in-
crease. As bc gets larger and larger than 1 the solution ap-
proaches 1− 1

bc
. In the crossover there is competition between

the two terms �bc−1�2 and bcdc in the square root of Eq.
�54�. Consequently the size of the crossover is determined by
	dc. Since the impact ionization parameter bc is strongly
field dependent, this crossover corresponds to the variation
of field �F as

�F � e−�eg/2 �bc

�F
�−1

. �55�

This �F characterizes how sensitive pumping is to electric
field. The dramatic jump of ) at bc�1 is due to the domi-
nance of upward impact ionization over the downward ther-
mal recombination. The depletion of the lower localized lev-
els when bc�1 is critical for the realization of the hole
population inversion.

After combining the two subsystems, we are able to ob-
tain the occupation of each level in the system. The occupa-
tion probabilities fg, f1, and f2 for the strain-split acceptor
levels and the ratio f2 / f1 at 4 K are shown in Fig. 10. By
definition a population inversion is established if f2 / f1�1.
There is a threshold acceptor density na of about 10−3 nm−2

when the applied field is 100 V/cm. The threshold acceptor
density reflects the fact that the resonance scattering is nec-
essary for building the population inversion. As na increases
further, it becomes harder for HH1 holes to acquire higher
energy, which is shown in Fig. 7, and this effect leads to a
suppression of the impact ionization processes from the
lower levels. Even though the upward transitions get sup-
pressed due to more resonant scattering, the population f2

remains at fixed values due to the increase of $ with increas-
ing na. However, this effect leads to the fact that the popu-
lation ratio fg / f1 is getting closer to its equilibrium value.
For T�4 K the result is the same because acoustic phonon
scattering is irrelevant for low temperature and higher field.
The behaviors of the system differ for low-temperature
�kBT��� and high-temperature �kBT��� regimes. At low
temperature �T�10 K� population inversion can be realized
for only a moderate electric field �100 V/cm� because there
is almost no acoustic phonon scattering and the hole distri-
bution in HH1 can be easily distorted by the field. At high
temperature, the distribution is stabilized by the strong
acoustic phonon scattering. Therefore population inversion is
impossible even for a stronger field.

In Fig. 11 the populations of localized levels versus field
strength F for T=10 K are shown. As the field is turning on
and increasing toward 20 V/cm, holes in HH1 become more
and more energetic. Consequently more and more free holes
are generated due to the increase of the coefficients B1s and
B2p. Note that presently the resulting upward transition is
mainly from HH1S to HH1 because the upper level HH2P±
is empty and the population f1 mainly results from the com-
bined processes, impact ionization HH1S to HH1 plus the
thermal recombination from HH1 to HH2P± is empty and
the population f1. As F continues to increase, the populations
f1 and f2 grow significantly and the lowest HH1S begins to
be depleted due to the fact that the intracenter recombination
from HH2Pñ to HH1S is quite slow. Now the upward tran-
sition is contributed more by HH2P± is empty and the popu-
lation f1 than HH1S. When the field exceeds the threshold
field, 20 V/cm in our case, the lowest HH1S is almost empty
and the pumping process is mainly controlled by the transi-
tions between HH1 and HH2P± is empty and the population
f1. The abruptness of the growth of f2 is inversely propor-
tional to the temperature according to Eq. �55�. However, the
population f2 comes to a fixed value for the field F

FIG. 9. The solution ) of Eq. �52� at low field and low tempera-
ture is shown as a function of the relative impact ionization coeffi-
cient bc. The abrupt jump around bc=1 is due to the depletion of the
lower localized levels by impact ionization.

FIG. 10. Occupation probabilities f1 �HH2P�, f2 �LH1S�, and
fg �HH1S� for T=4 K are plotted as functions of the acceptor den-
sity na at fixed electric field F=100 V/cm. The population ratio
f2 / f1 is shown as a solid line. The horizontal line at f2 / f1=1 de-
notes that population inversion is built when na exceeds some
threshold acceptor density.
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�30 V/cm. This saturation is indicative of the fact that im-
pact ionization rates have a upper bound. If we further in-
crease the temperature, acoustic phonon scattering and ther-
mal recombination become important and kBT comes back as
a relevant energy scale. When the thermal energy dominates
the transport process, the electric field is no longer able to
significantly push the distribution away from equilibrium.
Based on these results we predict that the optimal conditions
for hole population inversion ratio f2 / f1 are na=10−3 nm−2,
F=100 V/cm, and temperature below tens of kelvins. These
conditions in a QW structure specified in Sec. III A, with
central width W=11.7 nm and germanium compositions x
=0.088 and y=0.094, are well within the range of experi-
mental implementation.

We would like to revisit the fundamental issue of the rela-
tive time scales and verify its self-consistency in this prob-
lem. In general population inversion of a laser requires that
the upper-level formation time �resonant scattering time in
our case� be shorter than the the spontaneous emission time.
The formation time is � divided by the resonance energy
width � in Fig. 5. As expected � decreases with the distance
d between the acceptor and the well due to reduced wave-
function overlap. However, � is always of the order of meV
for the range of d relevant to this work, consistent with the
previous work on impurities outside the well.16 The corre-
sponding formation time is of the order of picoseconds. This
value is not far from the case for acceptors in the bulk.7,8 On
the other hand, the spontaneous emission time is as long as
microseconds as discussed in Sec. IV B and previous work.7

The population inversion condition is therefore easily satis-
fied. Another key time scale is the transient time required for
the lower accepter level to move to the free hole levels by
impact ionization. The impact ionization time is the inverse
of the rate in Fig. 6 times the free carrier area density which
is of the order of 0.01 nm−2 according to Fig. 10. The result

is about 10 ps, also much shorter than the spontaneous emis-
sion time. Because of the large difference in the time scale,
the neglect of spontaneous emission in the rate equation is
self-consistent. Population inversion is partly made possible
by the much faster resonant scattering time.

Before drawing the conclusion, some nonideal effects
have to be remarked on here. In real structures there are
always compensating donors present. We assume that the
donor density in the �-doped region is nd. With the presence
of the compensating donors, the density of holes is reduced
to na

*=na−nd in the number normalization equation �24�. The
presence of donors reduces the total number of holes and
increases the number of unoccupied impurity levels. Since
the governing equations for the distribution of holes are non-
linear due to impact ionization and Auger recombination as
shown in Eq. �50�, the impact ionization threshold and many
other properties depend on the total number of holes and
therefore the compensation ratio nd /na. The immediate con-
sequence is an increase of the threshold electric field for
impact ionization due to fewer energetic holes generated than
in the ideal case without compensating donors. However, the
laser threshold electric field will not be increased too much
with the inevitable donors in reality. In addition the two-level
impurity interacting with a continuum employed in our
model can lead to an S-shaped current-field dependence and
bistability when compensating donors are present. This non-
linear behavior has been studied extensively in p-Ge �Ref.
22� and for recombination-generation models in semiconduc-
tors in general.23 It allows low- and high-current states for a
given field. In order for our quantum well structure to
achieve population inversion, the system must be in the high-
current state. Actually the S-shaped dependence comes from
multiple solutions of the steady-state rate equation for the
occupations and is independent of carrier species and sys-
tems. Hence the S-shaped dependence is expected to occur as
well in our subband system if the compensation ratio nd /na is
too large. In summary we estimated that the effects of donors
are negligible if nd /na is much smaller than 0.01.22

VI. CONCLUSION

We propose a QW structure with a resonant state and
show that the relative energies of the strain-split localized
states and the continuous states enable laser operation with
photon frequencies as low as 1 THz. The hole distributions
are studied in detail with consideration of all the related mi-
croscopic physical processes. Calculations of the occupation
probabilities of the localized states reveal that there are
thresholds for the external field and acceptor density in order
to achieve population inversion. For 1 THz lasing, the re-
quired field is 100 V/cm at a temperature below 10 K. These
conditions can be easily realized in experiments. This work
leads to a new and practical direction for semiconductor THz
lasers with arbitrarily small radiation frequency.
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FIG. 11. Occupation probabilities fg of HH1S, f1 of HH2P,
and f2 of LH1S versus electric field F at T=10 K are shown. Popu-
lation inversion is achieved when the electric field is larger than
20 V/cm. As the temperature further increases, population inver-
sion is not possible because the electric field cannot drive the hole
distribution significantly away from equilibrium. Therefore T
=10 K is the critical temperature for population inversion in our
case.
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APPENDIX

In this appendix we give the details of the binding energy
corrections to the LH1S impurity state in the presence of the
QW and off-diagonal couplings with the HH1 continuum.
For simplicity the envelope functions for the localized impu-
rity state and the QW continuum are denoted by � and �k,
respectively. The unperturbed states satisfy the equations

�HLK
0 + VI�r� + VC�z0���u3/2 = E1s�u3/2,

�HLK
0 + VC�z���ku1/2 = �k�ku1/2. �A1�

Considering the full Hamiltonian, the eigenstates are a super-
position of the form

�p = �
m=±1/2

ap
�m���um� + �

m=±3/2
	kbpk

�m���kum� . �A2�

Here the index p denotes the label for the hybridized states
and it runs through the total number of continuous states plus
one. Substituting the hybridized states into the equation
H�p=�p�p, a set of algebra equations for the coefficients ap
and bpk is obtained.

ap
�1/2���p − E1s − �� = �

k
bpk

�−3/2��k,

bpk
�−3/2� − 	k�bpk�

�−3/2��kk� = ap
�1/2��k

* , �A3�

where

�kk� = ��k�vI�r���k�� . �A4�

�kk� stands for the intraband transition due to Coulomb in-
teraction from the impurity center. Note that we omit another
set of equations for m=−1/2 and m=3/2 because they are
identical to Eq. �A3�. The eigenvalue �p can be solved by
iterative substitution from Eq. �A3�, and the leading terms
are

�p = E1s + � + �
k

��k�2

�p − �k
+ �

k1k2

�k1

* �k1k2
�k2

��p − �k1
���p − �k2

�
.

�A5�

The perturbed energy for LH1S can be obtained by directly
substituting the unperturbed energy E1s for �p on the right-
hand side of Eq. �A5�. Aided by the equality 1

x+i = P 1
x

− i���x� to avoid the singularity and neglecting the higher-
order terms, expressions for the shift of binding energy �E1s
and the corresponding imaginary part energy are obtained:

�E1s = � + P
A

�2��2 � dk
��k�2

E1s − �k
, �A6�

�E1s

2
= �

A

�2��2 � dk��E1s − �k���k�2. �A7�
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