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Fig. 8. Recovered source signal x̂ (n).

IV. CONCLUSION

In this correspondence, a theorem that sates the condition for the
existence of MIMO FIR inverses, which are also FIR inverses, is pro-
posed and proved. The use of the theorem for equalization of a MIMO
FIR channel is illustrated through a numerical example.
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Maximum-Likelihood Estimation of Frequency and
Time Offsets in OFDM Systems With Multiple

Sets of Identical Data

Mu-Huo Cheng, Member, IEEE, and Chi-Chan Chou

Abstract—This paper generalizes the existing algorithm for the max-
imum-likelihood (ML) estimation of frequency and time offsets in
orthogonal frequency-division multiplexing (OFDM) systems using from
two sets to multiple sets of identical data. The algorithm is derived by the
application of the matrix inversion lemma; the Cramér–Rao bound for
estimation of the frequency offset is also obtained. For reducing realization
complexity, a simplified algorithm is developed. Simulations using the ten
sets of identical data in the preamble of IEEE 802.11a for estimation of
frequency and time offsets have been performed to verify the effectiveness
of the proposed algorithms.

Index Terms—IEEE 802.11a, maximum-likelihood (ML) estimation, or-
thogonal frequency-division multiplexing (OFDM).

I. INTRODUCTION

The orthogonal frequency-division-multiplexing (OFDM) scheme
has been adopted in many applications such as the digital broadcast
television, the wireless communications, and the high-bit-rate commu-
nications over the existing copper networks [1]–[3]. The OFDM sys-
tems, however, are highly sensitive to the frequency offset [4], [5].
Therefore, an accurate estimation of the frequency offset is critical.
Existing approaches for the frequency-offset estimation using the pre-
amble data [6], [7], the cyclic prefix data [8], [9], or the cyclostationary
property [10] of the received signals have been proposed. Extensive
coverage of techniques for digital synchronization is also provided in
textbooks [11]–[13]. Here, we focus on the data-aided maximum-like-
lihood (ML) estimation in OFDM systems. The ML estimation of fre-
quency and time offsets in OFDM systems using the two sets of iden-
tical cyclic prefix data has been derived in [8]. In the IEEE 802.11a
[14] standard for wireless LAN communications, the preamble con-
tains multiple sets of identical data for channel estimation and syn-
chronization. Hence, an extension for the ML estimation algorithm to
include for multiple sets of identical data is practically useful and worth
studying. Therefore, in this paper, by using the matrix inversion lemma
[15], we generalize the ML algorithm for the estimation of frequency
and time offsets to include for the number of the identical data set more
than two. Moreover, we also derive the Cramér–Rao bound for the fre-
quency-offset estimate. Since the resulting ML algorithm requires high
realization complexity, we further develop a simplified algorithm that
can reduce significantly the realization complexity but at the cost of
modest performance degradation. Simulations are then carried out to
evaluate the performance of all proposed algorithms using the ten short
identical symbols in the preamble of IEEE 802.11a standard.

II. ALGORITHM DERIVATION

The algorithm is derived under the assumption of the nondispersive
channel and the additive white Gaussian noise (AWGN) n(k) with the
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Fig. 1. Observed data-encompassing contiguousN sets of identical data.

transmitted complex signal s(k), which is also assumed to be a white
Gaussian random process. The received complex sample data for a fre-
quency offset � and an integer time offset � are given by

r(k) = s(k � �) exp(j2�k�=N) + n(k) (1)

where N represents the number of subcarriers of a complex trans-
mitted OFDM symbol. Notice that here the effect of the offset in sam-
pling frequency is assumed negligible such that the time offset is an
integer. The effect of nonsynchronized sampling has been discussed in
[16]. Suppose that we have observed L consecutive samples of r(k),
k = 1; 2; . . . ; L, shown in Fig. 1, encompassing contiguous Ns sets
of identical data, indexed by Ii, i = 0; 1; . . . ; Ns � 1, where each
set contains Ls data samples. Note that in theory, it is not necessary
to assume that the Ns sets of identical data are contiguous. The as-
sumption is made here for the simplicity in derivation and for the use
of the preamble data in IEEE 802.11a standard. Then, the index sets
are Ii = f�+ iLs; . . . ; �+ (i+ 1)Ls� 1g for i = 0; 1; . . . ; Ns � 1.

Collect the observed samples in the L � 1 vector r =
[r(1); � � � ; r(L)]T , where the superscript T denotes the transpose oper-
ation. Notice that the samples in theNs sets, i.e., r(k); k 2

N �1
i=0 Ii,

are pairwise correlated. Hence, form;n 2 [0; Ns � 1], andm � n

8k 2 I0 : E [r(k + nLs)r
�(k +mLs)]

=

�2s + �2n; m = n

�2se
�j(m�n)� ; (m� n) = 1; . . . ; Ns � 1

0; otherwise

(2)

where E[�] denotes the expectation, �2s = E[s2(k)] the signal power,
�2n = E[n2(k)] the noise power, and �0 = 2�Ls�=N .

The log-likelihood function�(�; �) is the logarithm of f(rj�; �), the
probability density function (pdf) of the L observed samples r condi-
tioned by the given time offset � and the frequency offset �. This func-
tion, by (2), can be written as

�(�; �)

=ln f(rj�; �)

=ln

k2I

f (r(k); r(k+Ls); . . . ; r (k+(Ns�1)Ls))

�

k 62 I

f (r(k))

=ln

k2I

f(r(k); r(k+Ls); . . . ; r(k+(Ns�1)Ls))

f(r(k))f(r(k+Ls)) � � �f(r (k+(Ns�1)Ls)))

�

L

k=1

f (r(k)) (3)

where the conditioned variables � and � are omitted for sim-
plicity. Since f(r(k)) for each k is a one-dimensional (1-D)

zero-mean complex Gaussian distribution function, it equals
exp[�jr(k)j2=(�2s + �2n)]=[�(�

2
s + �2n)]; the product

L

k=1 f(r(k))
in (3), therefore, is independent of � and �. Also the denominator in (3)
equals the multiplication ofNs 1-D complex Gaussian pdf’s, yielding

N �1

m=0

f (r(k +mLs)) =
1

� (�2s + �2n)

N

� exp �
N �1
m=0 jr(k +mLs)j

2

�2s + �2n

=
1

� (�2s + �2n)

N

� exp �
z
H(k)z(k)

�2s + �2n
(4)

where z(k) = [r(k); r(k + Ls); . . . ; r(k + (Ns � 1)Ls)]
T and the

superscriptH represents the transpose conjugate (hermitian) operation.
Then f(r(k); r(k+Ls); . . . ; r(k+ (Ns � 1)Ls)) = f(zzz(k)) and its
pdf is an Ns �D joint complex Gaussian function [17], given by

f (z(k)) =
1

�N det(R)
exp �zH(k)R�1

z(k) (5)

where R denotes the correlation matrix of z(k), which, by using (2)
and by observation, can be written in the form

R =E z(k)zH(k)

=

�2s + �2n �2se
�j� � � � �2se

�j(N �1)�

�2se
j� �2s + �2n � � � �2se

�j(N �2)�

...
...

. . .
...

�2se
j(N �1)� �2se

j(N �2)� � � � �2s + �2n

=�2nI + �2sqq
H (6)

where q = [1; ej� ; . . . ; ej(N �1)� ]T and I is the identity matrix
having the same dimension as the matrix R. Then, we can directly ob-
tain the matrix determinant det(R) = (�2n)

N �1(�2n + Ns�
2
s) and

R�1 using the matrix inversion lemma [15], yielding

R�1 =
1

�2n
I �

�2s
�2n (�2n +Ns�2s)

qq
H : (7)

Equation (5), therefore, becomes

f (z(k)) =
1

�N (�2n)
N �1 (�2n +Ns�2s)

exp

� �
1

�2n
z
H(k)z(k)+

�2s
�2n (�2n+Ns�2s)

z
H(k)qqHz(k) : (8)

By simple manipulation, we obtain

z
H(k)qqHz(k)

=

N �1

m=0

jr(k +mLs)j
2

+

N �1

m=1

N �1

p=m

2Re r (k+(p�m)Ls)r
�(k+pLs)e

jm�

= z
H(k)z(k) + 2

N �1

m=1

Re m(k)ejm� (9)
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where the superscript � denotes the complex conjugate operation and
m(k) = N �1

p=m
r(k+(p�m)Ls)r

�(k+pLs). Substituting (9), (8),
and (4) into (3) and rearranging, we obtain the following log-likelihood
function

�(�; �) =

�+L �1

k=�

ln c1 + 2c2

N �1

m=1

Re m(k)ejm�

� c3z
H(k)z(k) +

L

k=1

ln f (r(k)) (10)

where c1 = ((�2n + �2s)
N )=((�2n)

N �1(�2n + Ns�
2
s)), c2 =

�2s=(�
2
n(�

2
n + Ns�

2
s)), c3 = ((Ns � 1)�4s)=(�

2
n(�

2
n +Ns�

2
s)(�

2
n +

�2s)). The first term ln c1 and the last term L

k=1
ln f(r(k)) are

independent of � and �; the ML estimate (�ML; �ML), therefore, is
given by

�ML; �ML = argmax
�;�

�+L �1

k=�

N �1

m=1

Re m(k)e
jm�

�

Ns � 1

2
�zH(k)z(k) (11)

where � = �2s=(�
2
s + �2n). Note that for Ns = 2, (11) is equal to the

(5) in [8], as expected.

A. Cramér–Rao Bound for Frequency-Offset Estimate

If the time offset has been given a priori and assume the estimation of
frequency offset is unbiased, then its Cramér–Rao bound can be derived
directly using the result [18]

E (�(r)� �)2 � �E
@2 ln f(rj�; �)

@�2

�1

: (12)

Note that extensive simulations have shown that the frequency esti-
mate via the ML algorithm (11) is unbiased, but this property has not
been analytically proven, and hence the assumption is made. Taking
the second derivative of the log-likelihood function with respect to �
using (10), we obtain

@2 ln f(rj�; �)

@�2
=

�+L �1

k=�

�2c2
2�Ls
N

2 N �1

m=1

N �1

p=m

m2Re

� r (k + (p�m)Ls) r
�(k + pLs)e

jm� : (13)

We then apply the expectation, use results in (2), and replace c2 by its
value, yielding

� E
@2 ln f(rj�; �)

@�2

= 2c2
2�Ls
N

2 �+L �1

k=�

N �1

m=1

N �1

p=m

m2

� Re E [r (k + (p�m)Ls) r
�(k + pLs)] e

jm�

=
8�2L3s�

4
s

N2�2n (�2n +Ns�2s)

N �1

m=1

m2(Ns �m)

=
2�2L3sN

2
s N2

s � 1 �4s

3N2�2n (�2n +Ns�2s)
: (14)

The Cramér–Rao bound, therefore, is obtained

E (�(r)� �)2 �
3N2�2n �2n +Ns�

2
s

2�2L3sN2
s (N2

s � 1)�4s
: (15)

This bound is intuitive; when the number of identical data setNs or the
number of data samples in each set Ls increases, the bound decreases.
The bound also shows the advantage of using multiple sets instead of
two sets of identical data for frequency-offset estimation.

III. SIMPLIFIED ALGORITHM

The computational complexity to realize (11) for estimating
�; � is intensive because a two-dimensional searching is required.
Here, we present a simplified algorithm for reducing the realization
complexity. Let x denote the angle of x. Then, the likelihood
function (11) is maximized if the frequency offset � given �ML makes
[ � +L �1

k=�
m(k)] +m�0 = 0 for all m = 1; � � � ; Ns � 1. The

simplified algorithm presumes first that the frequency-offset estimate
makes [ � +L �1

k=�
m(k)] + m�0 = 0 for m = 1; . . . ; Ns � 1.

Note that this presumption can be true for Ns = 2 but is generally
impossible to attain for Ns > 2. This discrepancy, therefore, makes
the simplified algorithm result in a performance loss for Ns > 2. The
time offset, using (11) under the presumption, can then be estimated
by the following equation:

�ML;sim

= argmax
�

�+L �1

k=�

N �1

m=1

Re m(k)ejm�

�
Ns � 1

2
�zH(k)z(k)

= argmax
�

N �1

m=1

�+L �1

k=�

m(k)

�

�+L �1

k=�

Ns � 1

2
�zH(k)z(k) : (16)

The obtained time-offset estimate, via the above equation, is used to
find the frequency offset. For each index m, we obtain, from the pre-

sumed condition, one estimate �0 = � [
� +L �1

k=�
m(k)]=m.

TheseNs�1 frequency-offset estimates are then averaged to yield the
final estimate

�ML;sim=
�N

2�Ls(Ns � 1)

N �1

m=1

1

m

� +L �1

k=�

m(k) :

(17)
The complexity to realize the algorithm (16), (17) takes approxi-

mately N2
sLsK� operations (including multiplication, addition, and

arc-tangent operations), whereK� denotes the range of � for searching
while to realize the ML algorithm (11) requires approximately
N2
sLsK�K� operations, where K� is the number to partition the

frequency offset for searching. Therefore, the realization complexity
of the simplified algorithm is greatly reduced. The frequency-offset
estimator in (17) can be analytically shown to be consistent if the
time-offset �ML;sim is properly chosen. For brevity, we only describe
the proof procedure. For the received data in the preamble set, the
product r(k)r�(k + mLs) is an addition of a constant multiplying
a random variable which is chi-square distributed with two degrees
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Fig. 2. Structure of the IEEE 802.11a preamble.

of freedom and three zero-mean Gaussian random variables, as seen
from the following equation:

r(k)r�(k +mLs) = js(k� �)j2 e�jm� + n(k)s�(k� �)

+n�(k +mLs)s(k� �) + n(k)n�(k +mLs): (18)

Since m(k) = N �1

p=m
r(k + (p�m)Ls)r

�(k+ pLs), the random
variable m(k), therefore, is an addition of a random variable with
the chi-square distribution of higher degrees of freedom and more
Gaussian random variables. Therefore, as the number of preamble
data is increased, both the averaged imaginary part and the averaged
real part of m(k), by the statistical properties of both the chi-square
and the Gaussian distributions, converge to a constant multiplying
sin(2m��0) and cos(2m��0), respectively. The variance of each
also converges to zero. The ratio then converges to the desired value
tan(2m��0) with its variance also converging to zero; hence, the
consistency of the time-offset estimator is obtained.

Note that for Ns = 2, this simplified algorithm is just the exact ML
algorithm, which has been derived in [8]. ForNs > 2, however, the so-
lutions using the simplified algorithm are no longer the ML estimates.
The simplified algorithm, therefore, reduces the realization complexity
at the cost of modest performance degradation, as illustrated by the
simulation results in the following section.

IV. SIMULATIONS

The IEEE 802.11a standard defines the preamble as illustrated in
Fig. 2. Each preamble consists of ten identical short symbols and two
identical long symbols. Note that the ten short symbols and the two
long symbols can be combined together by using the method similar
to the second approach proposed in [9] for performance improvement.
For demonstration and for simplicity, here we only use the ten repeated
short symbols for the estimation of time and frequency offsets. The
number of subcarriers in IEEE 802.11a is N = 64, and the sampling
frequency is 20MHz. One short symbol is of duration 0.8 �s and hence
has 16 samples.

Monte Carlo simulations are used to evaluate the performance of the
proposed algorithms in both AWGN and dispersive channels. The dis-
persive channel, similar to the model used in [8], has 15 independent
Rayleigh-fading taps with an exponentially decaying power delay pro-
file of the root mean-squared width equal to 0.1 �s (two samples) and
themaximumdelay spread of 0.75�s (15 samples). The signal-to-noise
ratio (SNR) is measured at the received signal. The squared estimation
errors of the frequency offset and the time offset, averaged over 1000
trials, versus SNRs at 0, 1, to 10 dB, are shown in Figs. 3 and 4, re-
spectively. These results show that the performance of the proposed
algorithms, as expected, degrades for the dispersive channel because
the transmitted signals passed through the channel result in signals

Fig. 3. Mean-squared error of the frequency-offset estimate versus SNRs.

Fig. 4. Mean-squared error of the time-offset estimate versus SNRs.

which are no longer uncorrelated. The performance of the simplified
algorithm at low SNRs, as shown in the figures, is slightly worse than
that of the ML method but its difference is decreasing as the SNR is
increasing. The simplified algorithm, although inferior to the ML al-
gorithm in performance, is more practical when the realization com-
plexity is concerned.
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Fig. 5. Comparison of the frequency-offset estimator between the approach
[8] and the proposed method.

Fig. 6. Comparison of the time-offset estimator between the approach [8] and
the proposed method.

Simulations are also performed for performance comparison be-
tween the proposed approach and that in [8]. For simplicity, we only
demonstrate the simulation results in AWGN channels even the ten-
dency in dispersive channels is also similar. The proposed algorithm
uses ten sets of identical data (Ns = 10), with each set having 16
samples (Ls = 16), while the approach in [8] uses two sets of identical
data ( �Ns = 2), with each set having �Ls = MLs samples, whereM
is an integer. It has been shown in [9] that the estimator using two
sets of identical data with each set having �Ls samples is equivalent
in performance to the estimator using M symbols, with each symbol
having the cyclic prefix of length Ls. The estimates of the frequency
offset and the time offset, averaged over 1000 trials versus SNRs are
shown in Figs. 5 and 6, respectively. These results demonstrate that the
symbol numberM has little effect on the time-offset estimator but in-
fluences significantly the performance of frequency-offset estimation.
Note that the proposed approach and the method in [8] are closely
comparable in the performance of frequency-offset estimation when
M = 6. In fact, this number can be derived because the performance
of each algorithm can be approximated by the obtained Cramér–Rao
bound (15). In terms of (15), under the assumption of the same SNR

and the same number of OFDM subcarriers, two approaches attain the
same Cramér–Rao bound if the following equation is satisfied:

N2

s
N2

s
� 1 L3

s

NSR+Ns

=
�N2

s

�N2

s
� 1 �L3

s

NSR+ �Ns

(19)

where NSR = �2
n
=�2

s
. For example, if NSR =1 (0 dB SNR),Ns = 10

and �Ns = 2, thenM = �Ls=Ls = 6.0822; this solution matches well
with the simulation result. Hence, the length of the cyclic prefix should
be about six times the length of one identical set such that the approach
[8] can attain the same performance as our method.

V. CONCLUSION

We have derived an ML algorithm for the estimation of frequency
and time offsets in OFDM systems using multiple sets of identical data;
the Cramér–Rao bound for the frequency offset is also obtained. We
have further developed a simplified algorithm for reducing the realiza-
tion complexity. Simulations using the preamble data in IEEE 802.11a
standard have been performed to verify the effectiveness of the pro-
posed algorithms.
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