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Abstract

This study addresses a fuzzy–neural hybrid system of simulating typhoon waves. A membership function based on the fuzzy theory is
expressed by a union Gaussian function to illustrate the rapid wave decaying. Four areas separated by two lines which intersect at the Hua-Lien
harbor indicate the case of typhoon's position and propagation. Better simulation performance of the peak wave heights and their occurrence time
in both the learning stage and the verification stage simulated by the NF2 model than by the NF1 model is identified. The wave decaying due to
land effect is well described by the NF2 model. The NF2 model is applicable for well simulating typhoon waves during the whole period of a
typhoon approaching to Taiwan.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Coastal erosion and marine hazard disaster often occur after
a typhoon brings torrential rain and strong wind. Taiwan
situated on the western Pacific Ocean suffers from 3.5 typhoons
per year passing through or around Taiwan from averaging
more than 100-year typhoon records. Therefore, several
typhoon wave models have been used to calculate typhoon
waves in Taiwan using the modified SWAN model (Hsu et al.,
2005), Wave-Watch-III, MIKE-21. These models are generally
developed to solve the energy balance equation in finite
difference or finite element form through many grids over the
water area where active generation is taking place. However, in
this approach, the winds sometimes obtained by some wind
models at all grids are required beforehand. Expert works in
computer processing is also demanded. The computational time
of a numerical model mainly depends on the number of grids
that is generally enormous. Commonly these numerical models
take long time to calculate typhoon waves of each typhoon at all
grids in the entire domain. For practical engineering use, it is
very necessary to provide fast wave calculation for a marine
hazard alarm system, which can afford to fast update wave
⁎ Corresponding author.
E-mail address: hkc@faculty.nctu.edu.tw (H.-K. Chang).

0378-3839/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.coastaleng.2006.02.003
conditions around Taiwan when a typhoon is approaching to
Taiwan, of ship navigation and disaster prevention.

Empirical prediction models for wave height and period
have been proposed in simplified form, such as JONSWAP
prediction graphs (Hasselmann et al., 1973), SMB prediction
graphs (Bretschneider and Tamaye, 1976), Donelan method
(Donelan, 1980; Donelan et al., 1985), and Krylov method
(Koylov, 1966), or Shore protection manual (1984). The
prediction formulas of wave height and period are presented in
an explicit form for a fetch-limited condition or for a duration-
limited condition. When the fetch length and wind speed and
duration are obtained, the explicit expressions can fast
determine the wave height and period at a point of interest.
An examination on the SPM formulas against other methods
carried out by Bishop et al. (1992) showed that the SPM
method tends to overestimate wave height and period. Both
Donelan's and Krylov's methods consider the difference
between wind and wave directions. In most of these simplified
empirical methods, wind and wave directions are assumed to
be the same. Some supplements regarding to finite water depth
are proposed to modify the basic properties of the empirical
formulas. Hurdle and Stive (1989) proposed alternative
formulas that asymptotically match the SPM expressions in
deep water and shallow waters, for small and large fetch
lengths. The literature review can refer to Massel (1996) and
Goda (2003).
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The artificial neural network (NN) is an effective tool
because of its high functioning with fast computation to solve
the problems of high nonlinearity and of multi-variables. An
NN model can be developed to establish suitable mathematical
mapping between input and output variables by self-learning
and self-adaptation. Thus NN has widely been implemented in
different areas. Current works of using neural network for wave
prediction and metrological science have been carried out by
Deo and Shidhar Naidu (1998), Deo and Kiran Kumar (2000),
Deo et al. (2001, 2002), Deo and Jagdale (2003), Makarynskyy
(2004), Balas et al. (2004) and Agrawal and Deo (2002).

Typhoon waves induced by strong winds inside a typhoon in
some days differ from monsoon waves acted by long-term
monsoon. The authors particularly developed two NN typhoon
wave models for the eastern water of Taiwan. In model
development the physical relation between empirical formulas
of wave prediction is considered to choose some suitable input
variables in the input layer of an NN. This basic NN model can
fairly calculate the peak wave height and its occurrence time of
each typhoon.

However, the obtained typhoon wave data are not many so
that the basic NN model cannot be well trained to fit all possible
typhoon's paths and scales. To overcome the limitation of
collected data Chang and Chien (2006) applied multi-trend
functions instead of traditional transfer functions in a neural
network to functionally fit the relationship between the inputs
and the output and established the NN–MT model. The NN–
MT model provides more stable and accurate calculation on
wave heights before a typhoon reaches Taiwan.

Taiwan is an island of 385 km long in north–south and
143 km wide in east–west. About two-thirds of the island is
covered with lush forested mountains. Jade Mountain at 3952 m
above sea level is the tallest peak in Taiwan. Indeed some high
mountains in Taiwan play an important role in changing the
wind distribution of a typhoon around Taiwan and weakening
the wind speed. The weakened winds result in a corresponding
wave's decay. The interaction between typhoon winds and land
is so complex that so far the existing parametric wind models
are hard to accurately calculate the wind speeds inside a
typhoon mount over the land. An efficient land modification on
wind speeds is still unavailable.

The problem of land effect on winds can be solved by an NN
model with a good construction that is established by using
proper input variables and sufficient data to determine valid
weight and bias matrices of an NN. The construction of an NN
depends on the complexity of a problem and the number of
input parameters. Commonly more neurons in each layer of an
NN are required to connect possible relations between input and
output variables for a complicated problem than those for a
simple problem. However, due to the increase of neurons in
each layer of an NN, sufficient data and much computational
time are necessary to decide the suitable weight and bias
matrices of the NN. When training data are less or ill-distributed
the trained NN model possibly gives worse simulation. The
present problem of land effect on winds is complicated and the
number of collected wave data is not many enough. Thus the
previous NN models can be applicable for accurately predicting
the peak wave heights and their occurrence times, but fail to
calculate the decaying wave heights when a typhoon
approaches to Taiwan.

A fuzzy inference system (FIS) providing vague conjecture
in terms of IF–THEN rules is commonly used to predict
uncertain systems. FIS do not require knowledge of underlying
physical process as a precondition. Thus it has been applied to
different subjects, such as reservoir operation (Russel and
Camplell, 1996; Shrestha et al., 1996; Dubrovin et al., 2002;
Ponnambalam et al., 2003), rainfall forecasting (Yu et al., 2005)
and metrological studies (Bardossy et al., 1995; Galambosi et
al., 1998; Hiraoka et al., 1999). If the subject is complex and
training data is less, a common adaptive-Network-Based FIS
(ANFIS) with many IF–THEN rules, which is a combination of
ANN and FIS, can not afford to serve good simulation.

In order to solve the complicated problem of the land effect
on winds, this paper employs a neural network and FIS together
to set up a fuzzy–neural hybrid wave model for accurately
simulating wave heights when the obtained wave data is not
sufficient. The previous NN–MT model is used to simulate
wave heights first and then some specified membership
functions which describe the land effect on winds in a typhoon
are used to correct pre-estimated wave height. The proposed
fuzzy–neural hybrid wave model with specified parameters in
the membership function of FIS differs from ANFIS.

2. A brief introduction to the previous NN models

2.1. The original BPNN wave model

Through empirical formulae of wave prediction and energy
action balance equation, the key parameters of a typhoon's
waves at a point of interest are found to express a function of the
significant wave heights

Hs ¼ F1ðV10; Vf ; r;h1; h2Þ ð1Þ
where V10 is local wind speed at 10 m above mean sea level; Vf

is the moving speed of a typhoon; (r,θ1) is the distance and
azimuth between the point of interest and the center of the
typhoon and θ2 is the angle of an interesting point in a typhoon
between the typhoon moving direction and the radial direction
from the typhoon's eye to that point. The sketch definition of
r,θ1 and θ2 is depicted in Fig. 1.

When a typhoon moves, accelerates or changes direction, the
preceding and subsequent winds affect local waves. A sequence
of positions of a moving typhoon offers information that yields
the speed of the typhoon at any position. The speed Vf can be
omitted from Eq. (1) if the earlier and subsequent positions of a
typhoon are available. The sequential input of V10, r,θ1 and θ2 is
considered by another NN model. Significant wave heights can
therefore be expressed as a set of preceding and subsequent
positions of local winds and the center of the typhoon, as
follows.

HsðtÞ ¼
Xn
m¼0

amF2ðV10; r;h1; h2; t � mDtÞ ð2Þ

where Δt is the sampling rate and am is the coefficient.



Table 1
The normalized input parameter and their corresponding multi trend transfer
functions used in the NN–MT model of Chang and Chien (2006)

Normalized inputs Multi trend transfer functions

Wind speed, V̄10 f
V̄ 10

¼ 2

1þ eð�2�V̄10Þ
� �� 1

Radial distance, r̄ fr̄ ¼ Max fr̄ 1 ;0:5fr̄ 2 ;0:3fr̄ 3 ;0:2fr̄ 4

� �
where

fr̄ 1 ¼ e
1ðr�cÞ
2r2 , i=1,2,3,4 and coefficients (c, σ) for each

port are (0, 0.05) for fr1; (0.15, 0.1) for fr2;(0.2, 0.3) for
fr3;(0.4,0.5) for fr4

Azimuth, θ̄ 1 f
h̄ 1

¼ h̄ 1; 0Vh̄ 1V1
Movement angle, θ̄ 2

fh2 ¼ Max e
�ðh̄2�c1 Þ2

2r2
1 ; e

�ðh̄2�c2 Þ2
2r2

2

 !
fr̄ ; c1 > c2

¼ fr̄ ; c1 < c2

where coefficients (c1, σ1, c2, σ2)in each port are
(0.66, 0.05, 0.84, 0.05) for f

h̄21
; (0.41, 0.05, 0.59,

0.05) for f
h̄22

; (0.16, 0.05, 0.34, 0.05) for f
h̄23

and
(0.91, 0.05, 1.0, 0.05) or (0.0, 0.05, 0.09, 0.05) for f

h̄24

Fig. 1. Sketch definition of the coordinates (r,θ1) and the angle θ2.
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Based on Eqs. (1) and (2), Back-Propagation Neural
Network (BPNN) is selected by Chang et al. (2003) to
implement the typhoon wave model. The common Satlin
function in the MATLAB software (Demuth and Beale, 2001) is
used for the transfer function. If the relationships between the
input and output are uncertain and complex, then the number of
neurons in the first hidden layer can be increased to determine
their relationships. Lippman (1987) addressed that a 2-hidden-
layer NN is sufficient to simulate a problem that includes a
highly nonlinear interaction or discontinuity. According to
Mirchandani and Cao's (1989) formula of hidden nodes in
neural nets, 80 neurons were suggested in the first hidden layer
of the NN model. The second hidden layer contains 40 neurons
to integrate the weightings in the first hidden layer and to
connect weightings in the second layer to the output, Hs.

2.2. The NN–MT model

On account of wind distribution in a typhoon and data
regression some trend transfer functions are introduced by
Chang and Chien (2006) to describe the relationship between
the input variables, which are V10, r,θ1, and θ2, and wave height.
The construction of the original NN–MT model of Chang and
Chien (2006) is shown in Fig. 2. The input parameters and their
corresponding multi-trend transfer functions of the NN–MT
model are list in Table 1. The NN–MT model mainly attempts
to enhance the functional relationships between the normalized
input data and the normalized wave heights by using seven
kinds of trend transfer functions to determine normalized data,
Fig. 2. The construction of the previous NN–MT model.
fV̄10
; fr̄ ; fh̄1

; fh̄21
; fh̄22

; fh̄23
, and fh̄24 . θ2 indicates the wind speed

distribution in radial direction. It is common sense that the wind
speed is stronger in the right-hand semicircle than that in the
left-hand semicircle. Thus θ2 is an important factor affecting
wave height. It is hard to hold a well-learned NN model from
several wind data without almost uniform distribution by θ2.
Thus the authors separate the wind speed distribution of
Holland wind model by θ2 into four quarters, shown in Fig. 3.
The trend functions fh̄21

, fh̄22 , fh̄23
, and fh̄24

with different bell-
shaped function show different effect of an approaching
typhoon on waves of a point of interest. The suggested trend
transfer function for θ2 resulted from the Holland wind model
that fits open sea.

Cumulative waves with sequentially different speeds
propagating from a far distance possibly together reach the
point of interest at time t. Thus the wave height observed at the
time t maybe result from a sequence of wind at time t−nΔt
where Δt=1 h is the time interval of wave data acquisition and
Fig. 3. Schematic diagram of four quarters of the wind speed distribution in a
typhoon.



Fig. 4. Definition sketch of four areas separated for showing land effects on
typhoon waves at the Hua-Lien harbor.
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n=1, 2, …, 24 is the delay time. Wind effect of 24-h time delay
on the significant wave heights in the NN–MT model is also
considered. The BPN network in the present NN–MT model is
expressed as

HsMT ¼
X24
n¼0

and f ½Wd ½I�MT þ b; t � n� ð3Þ

where f represents the transfer function; an is the weights of
which the values are evaluated by the optimal procedure in the
BPN network; IMT ¼ ½fV̄10

; fr̄ ; fh̄1
; fh̄21

; fh̄22
; fh̄23

; fh̄24
�T is the

input vector;W and b are the weight matrix and the bias matrix,
and n is the time lag.

3. Development of the fuzzy–neural hybrid wave model

3.1. Membership function for land effect

The range of land effect on typhoon waves can be
surrounded from discriminating the time of wave's decaying
Fig. 5. Wave heights observed at the Hua-L
and corresponding positions of the typhoon. From the data of
decaying waves and corresponding typhoon's positions and
scales wave attenuation depends on the land roughness and
space, the membership function of a fuzzy inference system can
describe the fuzzy relation between waves and wind speed of a
typhoon that is changed by land effect.

The membership function related to land effect and wind-
speed distribution in a typhoon is established for the Hua-Lien
harbor in this paper. The Hua-Lien harbor is located at the center
of eastern coast in Taiwan shown in Fig. 4. The whole island of
Taiwan places on the western side of the Hua-Lien harbor. The
wind-speed distribution of a typhoon in the right semicircle
differs from that in the left semicircle due to the differently
consultant velocity from the gradient wind velocity and the
movement velocity of the typhoon. In order to indicate the land
effect and different wind-speed distribution in a typhoon, two
lines interacting at the Hua-Lien harbor separate the whole
regions into four areas which are denoted by Area 1–Area 4 and
shown in Fig. 4. The four separated areas are to indicate whether
a typhoon is affected by the land and the Hua-Lien harbor is
located either in the right semicircle or in the left semicircle of
the typhoon. Both Area 1 and Area 4 demonstrate that the
position of a typhoon is in the eastern side of the Hua-Lien
harbor. When a typhoon located in Area 1 is approaching to the
Hua-Lien harbor, the Hua-Lien harbor is located in the left
semicircle. When a typhoon is located in Area 4, the Hua-Lien
harbor is located in the right semicircle. Area 2 and Area 3 show
the location of the Hua-Lien harbor being in either the left
semicircle or the right one.

Fig. 5 shows wave heights at the Hua-Lien harbor at the
corresponding positions (r,θ1) for all typhoons collected. When
a typhoon is located in Area 2 and Area 3 and near the Taiwan
(30°<θ1<210°, r<500), the waves display faster decaying than
those when a typhoon is located in Area 1 and Area 4 and near
the Taiwan (210°<θ1<360°, r<500). When a typhoon is far
ien harbor for all typhoons collected.
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from Taiwan by a distance of more than 500 km, the waves
decay more slowly than those when a typhoon is near Taiwan.
The performance of wave variations can be described by a
union Gaussian function which forms a membership function
used in a fuzzy system.

A membership function includes three components. The first
component of the membership function is to deal with the wind
variations in the Area 1 and Area 4 in which a typhoon is
located at the eastern open sea and its outer region senses the
land. The maximum radial storm range at rank 7 of a typhoon,
of which the wind speed is at a range of 13.9–17.1 m/s in
Beaufort wind table, is about 500 km. This component can be
defined as MF1 and expressed by Eq. (4) in terms of two
independent variables, r and θ1. The value of MF1 decreases
from 1 to 0.2 as r decreases from 500 km to 0 km.

MF1ðr;h1Þ ¼ Max e
�ðr�c1Þ2

2r2
1 ; e

�ðr�c2Þ2
2r2

2

 !

�Max e
�ðh1�c3Þ2

2r2
3 ; e

�ðh1�c4Þ2
2r2

4

 !

þMax e
�ðr�c5Þ2

2r2
5 ; e

�ðr�c6Þ2
2r2

6

 !

�Max e
�ðh1�c7Þ2

2r2
7 ; e

�ðh1�c8Þ2
2r2

8

 !

¼ 1; c1 < c2; c3 < c4; c5 < c6; c7 < c8 ð4Þ

where (c1,σ1,c2,σ2)= (0, 10, 500, 500), (c3,σ3,c4,σ4)= (0, 10, 30,
10), (c5,σ5,c6,σ6)= (0, 10, 500, 500), and (c7,σ7,c8,σ8)=
(210,10, 360, 10) are examined to be valid. The values of ci
(i=1,8) denotes the mean that identifies the storm range at rank
7 in the Area 1 or Area 4. The values of σi(i=1,8) indicating the
variance determine the shape of the functional curve. The
parameters ci and σ1 are commonly called by the location and
shape parameter of the normal distribution, respectively. When
the Hua-Lien harbor is beyond the range of a 500-km circle of a
typhoon, MF1=1. When the Hua-Lien harbor is located within
this range, the waves at the Hua-Lien harbor increases as the
radial distance decreases. When the typhoon is near the Hua-
Lien harbor, the wind speeds vary fast. When the typhoon is far
from the Hua-Lien harbor, the wind speeds change slowly. Thus
the variances σ1=σ5=10 km are accepted, and σ2 and σ6 are
assumed to be 500 km. All variations on θ1 during the typhoon
movement are assumed to be 10°. The south–north line for
separating areas is inclined by an angle of about 30°. Thus, the
mean angle θ1 of each port is set by 0°, 30°, 210° and 360°.

Most of the typhoons that pass through or by the eastern
Taiwan start around the western Pacific Ocean and move
westwards. However, some typhoons form around the China
South Sea and pass through Taiwan. These typhoons of which
the positions are still at the western Taiwan have little effect on
the waves of the Hua-Lien harbor at the eastern coast of Taiwan.
The second component of the membership function, MF2
shown in Eq. (5), clarifies rapidly decaying of waves when a
typhoon is approaching from Area 1 to Area 2. For the case, the
Hua-Lien harbor is always situated at the left semicircle of the
typhoon.

MF3ðr;h1Þ ¼ Max e
�ðr�c1Þ2

2r2
1 ; e

�ðr�c2Þ2
2r2

2

 !

�Max e
�ðh1�c3Þ2

2r2
3 ; e

�ðh1�c4Þ2
2r2

4

 !
¼ 1; c1 < c2; c3 < c4 ð5Þ
where (c1,σ1,c2,σ2)= (0,10, 30, 10) and (c3,σ3,c4,σ4)= (180, 10,
210, 10). When r≈30 km, the high mountains in the central
Taiwan have strong effects on wave decaying. Thus c1=0 and
c2=30 km are accepted, and the variances, σ1 and σ2, of r are
reasonably set as 10 km. The variances, σ3 and σ4, of θ1 are still
assumed to be 10° for the case. The mean angle θ1 for c3 and c4
is 180° and 210°.

The third component, MF3 illustrates wind decaying of a
typhoon approaching from Area 4 to Area 3. For this case, the
Hua-Lien harbor is always situated at the right semicircle of the
typhoon. Thus MF3 can be also expressed by Eq. (5) but with
different (c1,σ1,c2,σ2)= (0, 10, 70, 10) and (c3,σ3,c4,σ4)= (30,
10, 80, 10) are examined to be valid. The valid MF2 and MF3
represent different wind decaying after examinations. The
membership function shown in Fig. 6 will be finally determined
by maximizing these three possible components as follows

MFðr;h1Þ ¼ MaxfMF1; MF2; MF3; 0:2g ð6Þ
Eq. (6) shows that the minimum of MF(r,θ1) is set 0.2 rather
than 0. The required minimum confirms the output larger than 0.

3.2. The algorithm of fuzzy–neural hybrid model

Following 24-h time lag well examined in the NN–MT
model, the positions of a typhoon during 24 h form a proceeding
distance vector, r(t) = [r(t−24), r(t−23), …, r(t)], and a
proceeding azimuth vector, θ1(t)= [θ1(t−24), θ1(t−23), …, θ1
(t)] at time t. Both vectors have 25 elements which indicate the
distance and azimuth, respectively, between the center of the
typhoon and the point of interest at each hour. A rule of fuzzy
inference system is given as

If r ¼ ðtÞ 1 h1 ¼ h1ðtÞ is MðtÞ and

r ¼ rðt � 1Þ 1 h1 ¼ h1ðt � 1Þ is Mðt � 1Þ; N ; and

r ¼ rðt � 24Þ 1 h1 ¼ h1ðt � 24Þ is Mðt � 24Þ then

HsðtÞ ¼ f ðWd IFNðtÞ þ bÞ ð7Þ
where IFN(t)= [M(t)HsMT(t), M(t−1)HsMT(t−1), …, M(t−24)
HsMT(t−24)] is the input vector also including 25 elements that
are the product of the membership function and the wave height
obtained by the NN–MT model and M(t− i)=MF(r,θ1; t− i)
which is the linguistic label of fuzzy sets denoting the
membership functions when a typhoon moves to (r,θ1) at time
t− i (i=1,2, …,n), respectively.

The membership function depending on the degree of a
typhoon approaching to the Taiwan shows the correction on
local winds and waves due to land effect. The membership



Fig. 6. The proposed membership function MF(r,θ1).

Fig. 7. The construction of the proposed FN1 model.
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function is expressed in terms of two variables, r and θ1. The
wind speed V10, and the angles of θ1, and θ2 of the point of
interest together depends on r and rapidly vary due to land
effect. The fast variations of V10, θ1, and θ2 when a typhoon is
near the Taiwan differ from those when a typhoon is far from
away Taiwan. Therefore, the membership function is used to
correct the original values V10, θ1, and θ2 in the NN–MTmodel.

Eq. (7) represents corrected typhoon waves resulting from
possible paths of typhoons. All possible paths of typhoons are
various so that the weights are determined by a second neural
network. This hybrid system incorporates the original NN–
MT model and a corrected NN model associated with
membership functions of fuzzy technologies. The proposed
NN model including fuzzy technologies is thus called by the
fuzzy–neural hybrid wave model, abbreviated as (FN). The
proposed FN wave model is similar to adaptive-network-based
fuzzy inference system. ANFIS uses a hybrid learning
algorithm to identify the membership function parameters of
single-output, Sugeno-type fuzzy inference systems. A
combination of least-squares and back-propagation gradient
descent methods is used for training FIS membership function
parameters to model a given set of input/output data.
Therefore, the parameters in a chosen membership function
of ANFIS usually depend on obtained data. If the number of
valid data too less to train the membership function, the
parameters in the membership function obtained may be
unreasonable. Another difficulty is that the complexity of land
effect on wind distribution and waves is described by lots of
IF–THEN rules in FIS so that it takes much computational
time in the training process. To overcome the disadvantages,
the proposed membership functions are specified to have
suitable location and shape parameters for each quarter portion
considering the in-site land topography. These parameters are
used only for the Hua-Lien harbor and are not changed by
different training data. However, the corrected simulation on
waves due to the land effect is made by another NN model
with the optimal weight and bias matrices which are obtained
in the training process.

3.3. The construction of the proposed FN wave model

The first possible network is to correct the input vectors in
the NN–MT model by multiplying the membership function
mentioned above. The other network is to multiply the outputs
of the NN–MT model, the pre-calculated wave heights, by the
membership of function. Based on the aspects of two possible
modifications on the wave heights predicted, two wave models
are proposed in this paper.

The NF1 model includes three stages. The construction of
the FN1 model is depicted in Fig. 7. The first stage of the FN1
model is the same as that of the NN–MTmodel to normalize the
four inputs and have the basic input vector IMT. In the second
stage multiplying the membership function MF(r,θ1) yields the
corrected input vector, that is IFN1(t)= IMT×MF(r,θ1). The third



Fig. 8. The construction of the proposed FN2 model.
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stage is to provide the BPN network with the corrected input
vector in a sequence of 24 h which is connected to the wave
heights. The mathematical expression for the FN1 model is
similar to Eq. (3) in which IFN1 is instead of IMT.

The FN2 model of which the construction is shown in Fig.
8 also comprises three stages. In the first stage the NN–MT
model is used to obtain pre-calculated wave heights in which
the land effect is excluded. The membership function MF(r,θ1)
is first computed in the second stage and then multiplied by the
pre-calculated wave heights to have the corrected input vector
IFN2(t)= [HsMT(t)]×MF(r,θ1). The BPN network is used in the
third stage to have optimal weight and bias matrices showing
the sequential 24-h wind effect on waves. The input vector in
this BPN network is IFN2(t−n).

In the third stage of both models, BPN network with two
hidden layers is used to obtain optimal weight matrix and bias
matrix by minimizing the error square of the outputs computed
and the normalized wave heights measured. A 24-h time lag is
also considered in the proposed model. To aid the computation
time, each input is simultaneously selected from time series for
every 4 h instead of every hour, i.e., at the time t, t−4, t−8,…, t
−24. Thus, the total number of inputs equals seven variables in
the input vector times seven time steps and is 49. The neurons in
the first hidden layer are 80, and 40 neurons in the second
hidden layer. The proposed FN1 model is thus designated by
(49–80–40–1). The inputs of the second BPN network of the
FN2 models in a sequence at the time t, t−4, t−8,…, t−24. The
total number of inputs is 7. The neurons in the first hidden layer
are 60, and 20 neurons in the second hidden layer. The FN2
model is thus designated by (7–60–20–1).

4. Model calibration

Typically, an applicable BPNNmodel is validated in both the
learning stage and the verification stage. When the errors of
each iteration in both the learning stage and the verification
stage are simultaneously decreasing, the model continues to
learn. Conversely, whenever the error magnifies, the model
stops learning. When the simulation error reaches the assigned
minimum, the optimal weight and the bias matrices have been
set. To simulate typhoon waves accurately, the model must pass
the verification stage. The iteration stops in the learning stage
when the maximum iteration is over 5000 times or the root
mean square (RMS) of the target function of each iteration is
less than 0.1 m.
The data of typhoon's position and scale were obtained from
the Central Weather Bureau of Taiwan (CWB; http://www.cwb.
gov.tw/), the Joint Typhoon Warning Center (JTWC; http://
manati.wwb.noaa.gov/) and UNISYS WEATHER (http://
weather.unisys.com/). The name of the typhoon given by
JTWC and Greenwich Mean Time (GMT) were used. The
typhoon data were sampled every 6 h. Third-order Lagrangian
interpolation for transforming 6 h of typhoon data into 1 h of
data was applied to match the 1-h wave data. Fig. 9 plots the
path of nine typhoons examined in the learning stage.

Commonly the simulation performance of a model is
evaluated by the root mean square (RMS) and correlation
coefficients (R). The root mean square is defined as

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

½HsmðtiÞ � HspðtiÞ�2
s

ð8Þ

where Hsm(ti) and Hsp(ti) represent the observed and calculated
wave height at time ti, respectively, and m is the total number of
data. The correlation coefficient identifies the degree of
correlation between Hsm(ti) and Hsp(ti). The maximum wave
height and its occurrence time are very important in practical
engineering. Two alternative indices of simulation performance
are given by the difference between the peak observed wave
height and the corresponding calculated value, ΔHsp, and time
lag between the corresponding times, Δtp, as follows

DHsp ¼ Hsp;p � Hsp;m ð9Þ

Dtp ¼ tp;p � tp;m ð10Þ
where Hsp,m and Hsp,p are the observed and calculated peak
wave heights, respectively; tp,m and tp,p are the times at which
these peaks occur.

Four performance indices for the simulated waves by the
NN–MT, FN1 and FN2 models in the learning stage are list in
Table 2. The values of R in Table 2 indicate that the FN2 model
has the values of R higher than 0.6 for seven cases, and the NN–
MT model obtains the values of R of six cases higher than 0.6,
but the values of R of only one case obtained by the FN1 model
is less than 0.6. This shows that the FN1 model can better
simulate the behaviors of wave growth and wave decaying of
each typhoon similar to those observed than do the NN–MTand
FN2 models. From the comparison on R in Table 2, the NN–MT
and FN2 models have equivalent capacity of simulating the
wave growth and wave decaying.

Comparisons on RMS and RMS/Hsp,m in Table 2 show that
the FN2 model is the best model among the three models to have
small RMS less than 0.73 m or relative RMS/Hsp,m less than
19%. In common cases examined by the FN2 model, the values
of RMS less than 0.4 m or relative RMS/Hsp,m less than 15%
indicates that the FN2 model can be applicable for accurately
calculating the typhoon wave heights. Averaging the RMS of
nine typhoons yields 0.52, 0.78 and 0.48, respectively. The FN1
model estimates commonly larger RMS and RMS/Hsp,m than do
the NN–MT and FN2 models.

From comparisons of ΔHsp and ΔHsp/Hsp,m, the FN1
model is the worst one of calculating the peak wave height

http://www.cwb.gov.tw/
http://www.cwb.gov.tw/
http://manati.wwb.noaa.gov/
http://manati.wwb.noaa.gov/
http://weather.unisys.com/
http://weather.unisys.com/


Fig. 9. Paths of nine typhoons considered in the learning stage.
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among three models. The NN–MT model has good estimate
on the peak wave height by an error less than 1.0 m or by a
relative error less than 25%. In most cases the relative error of
ΔHsp/Hsp,m obtained by the NN–MT model is less than 12%.
The FN2 model can also precisely calculate by an error of
ΔHsp less than 1.2 m. There are seven cases examined by the
FN2 model to have a relative error of ΔHsp/Hsp,m greater than
15%. This shows that the FN1 model is a slightly worse
predictor on the peak of wave heights than the NN–MT and
FN2 models.

These three models compared have equivalent capacity of
determining the occurrence time of the peak wave heights of
each typhoon. The largest difference between the estimated and
the observed occurrence time is 5 h. The FN1 and FN2 models
can precisely estimate the occurrence time of the peak wave
height by less than 3 h for six cases.
Table 2
Comparisons of R, RMS, ΔHsp and Δtp obtained using the NN–MT, FN1, and FN2

Model and typhoon Levi Opal Peter Ott

R NN–MT 0.47 0.36 0.88 0
NF1 0.66 0.66 0.84 0
NF2 0.50 0.39 0.90 0

RMS (m) NN–MT 0.52 0.25 0.32 0
NF1 0.57 0.39 0.40 0
NF2 0.31 0.37 0.30 0

RMS
Hsp;m

NN–MT 0.27 0.13 0.10 0
NF1 0.30 0.20 0.13 0
NF2 0.16 0.19 0.12 0

ΔHsp (m) NN–MT 0.37 0.02 −0.36 −1
NF1 0.74 −1.00 −0.17 −1
NF2 0.06 −0.20 −0.48 −0

DHsp

Hsp;m
NN–MT 0.19 0.01 0.11 0
NF1 0.25 0.51 0.05 0
NF2 0.03 0.10 0.15 0

Δtp (h) NN–MT 5 0 0 0
NF1 5 0 0 0
NF2 5 0 0 0

Hsp,m 1.92 1.97 3.19 8
After the comparisons on the simulation accuracy, the FN1
model generally has worse simulation performance than do both
the NN–MTand FN2 models. The direct correction on the input
vector in the FN1 model adds the complexity of simulation to
the BPN network. The FN1 model using the same learning data
as the NN–MT model becomes tricky to simulate the wave
heights. The disadvantage can be overcome by increasing the
number of valid data. However, the FN2 model using the
membership function to directly and efficiently modify the
wave heights pre-calculated is capable of simulating wave
heights affected by the land.

5. Model verification

After model calibration of the proposed models is well done,
the model verification will be then examined to identify the
models in the learning stage

o Sam Jelawat Bilis Boph Yagi

.91 0.91 0.31 0.86 0.88 0.66

.77 0.84 0.26 0.78 0.89 0.80

.88 0.90 0.63 0.90 0.88 0.67

.89 0.44 0.51 0.65 0.45 0.63

.94 0.65 0.80 1.03 1.22 1.02

.68 0.54 0.28 0.70 0.39 0.73

.11 0.11 0.27 0.08 0.16 0.22

.12 0.17 0.42 0.12 0.44 0.35

.08 0.14 0.15 0.08 0.14 0.25

.00 0.37 −0.10 −0.52 0.22 0.24

.62 −0.91 0.90 −2.14 2.50 1.20

.96 −0.34 −0.02 −1.20 0.30 1.00

.12 0.10 0.05 0.06 0.08 0.08

.20 0.24 0.47 0.26 0.90 0.42

.12 0.09 0.01 0.14 0.11 0.35
2 −2 −3 5 4

−4 −2 −5 −2 4
2 0 −3 5 4

.03 3.89 1.97 8.39 2.78 2.89



Table 3
Comparisons of R, RMS, ΔHsp and Δtp obtained using the NN–MT, NF1, and
NF2 in the verification stage

Model and typhoon Fred Kent Haiyan Rananim Aere Maggie a

R NN–MT 0.90 0.87 0.83 0.71 0.53 0.93
NF1 0.90 0.82 0.84 0.85 0.88 0.95
NF2 0.94 0.92 0.82 0.89 0.89 0.87

RMS (m) NN–MT 0.53 0.59 0.47 0.70 1.63 0.72
NF1 0.35 0.79 0.51 0.56 0.73 0.53
NF2 0.35 0.45 0.51 0.39 0.68 0.66

RMS
Hsp;m

NN–MT 0.08 0.10 0.10 0.21 0.24 0.12
NF1 0.05 0.13 0.11 0.17 0.18 0.09
NF2 0.05 0.07 0.11 0.12 0.17 0.11

ΔHsp (m) NN–MT 0.45 −1.14 −0.30 0.51 1.42 −0.11
NF1 0.10 −0.50 −0.10 0.44 0.61 −2.00
NF2 0.50 −1.14 −0.30 0.51 0.60 0.30

DHsp

Hsp;m
NN–MT 0.07 0.18 0.02 0.16 0.35 0.02
NF1 0.01 0.08 0.07 0.13 0.15 0.34
NF2 0.07 0.18 0.07 0.16 0.15 0.05

Δtp (h) NN–MT 1 −1 0 0 23 1
NF1 −1 2 0 −2 10 0
NF2 1 0 0 0 5 0

Hsp,m (m) 6.75 6.29 4.49 3.29 4.09 5.96
a The simulation for the Su-Ao harbor.
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capacity of accurately calculating typhoon's waves in this
section. Comparisons on the results simulated by the three
developed models for six typhoons that are excluded in the
training data are list in Table 3. Five typhoons are chosen for
simulating wave heights at the Hua-Lien harbor. They are
typhoons Fred in 1994, Kent in 1995, Haiyan in 2001,
Rananim, and Aere in 2004. The proposed models are also
applied to calculating the wave heights at the Su-Ao harbor
during the period of typhoon Maggie in 1999. Except the
typhoon Haiyan five typhoons are affected by the Taiwan. The
paths of six typhoons are depicted in Fig. 10.

A comparison on R in Table 3 shows that, except for two R
values obtained by the NN–MT model for typhoon Rananim
and typhoon Aere, most of the R values are higher than 0.8 and
Fig. 10. Paths of six typhoons us
that the FN2 model has higher R than do the other two models
for four typhoons. Comparisons on RMS indicate that the
proposed FN1 and FN2 models have slightly larger RMS for
typhoon Haiyan than does the NN–MT model by only 0.04 m,
but for the other five typhoons the proposed FN1 and FN2
models have significantly smaller RMS than does the NN–MT
model. These results show that the proposed FN1 and FN2
models have better calculation on typhoon waves for the whole
period of a typhoon than does the NN–MT model. The mean
RMS of the wave heights simulated by the NN–MT, FN1 and
FN2 models are 0.77, 0.58, and 0.51, respectively. For most
cases, the FN2 model having the smallest RMS among three the
models identifies the best simulation capability.

From a comparison on the peak wave heights, although the
FN1 model is very poor to simulate the peak of typhoon
Maggie, both the NN–MTand FN2 models provide rather good
simulations. The range of absolute value of ΔHsp obtained by
the FN1 and FN2 models is 0.10–2.00 m, and 0.50–1.14 m.
Their corresponding mean values are 0.66 and 0.56, respec-
tively. The occurrence time of the peak wave simulated is
shown in the last row group of Table 3. The FN2 models
demonstrate accurate simulation on the occurrence time of the
peak. Except of the typhoon Area, the FN2 model can have
exact simulation of the occurrence for four typhoons, and only
1-h delay prediction for typhoon Fred.

The capacity of simulating typhoon's wave heights affected
by the land using the proposed FN1 and FN2 can be illustrated
for three typhoons in time series. After typhoon Fred was
formed and then traveled for 300 h, it passed through the north
of the island. Fig. 11 plots the wave heights computed by the
NN–MT, FN1 and FN2 models. The time counts from the
formation of the typhoon. When typhoon Fred arrived in
Taiwan, the Hua-Lien harbor was under the left half of the
typhoon. The peak wave heights computed by the NN–MT
model for the period in which wind waves grew exceeded the
observed heights by around 0.45 m. The NN–MT model
simulated 1-h time delay after the actual peak. When typhoon
ed in the verification stage.



Fig. 11. Wave heights observed and computed at the Hua-Lien harbor for
typhoon Fred in 1994.

Fig. 13. Wave heights observed and computed at the Hua-Lien harbor for
typhoon Maggie in 1999.
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Fred passed Taiwan, observed wave heights decayed very fast
due to very high mountains in central Taiwan and the computed
wave heights decayed slowly because of higher wind speeds
input in the model than the real values. The land effect on winds
whenever a typhoon passes through Taiwan can not be well
predicted. Both the FN1 and FN2 models can provide quite
good calculation on the decaying waves when the typhoon Fred
approaches Taiwan.

Fig. 10 shows that typhoon Rananim moved westwards to
Taiwan and then turned northwest, and finally reached the
eastern China. Fig. 12 plots the computed and observed wave
heights for the typhoon Rananim. As the waves grew, the wave
heights computed by the NN–MT and FN2 models fairly agree
with the observed heights. The peaks simulated by both NN–
MT and FN2 models are close and have a deviation from the
observed peak by about 0.51 m. Both models exactly simulate
the occurrence time of the peak wave height. However, the FN1
model has 2-h delay prediction on the occurrence time of the
peak wave height. The FN1 and FN2 models have better
simulations on the decaying waves than does the NN–MT
model.

Only one wave record of typhoon Maggie at the Su-Ao
harbor was available for extending the proposed models to the
Fig. 12. Wave heights observed and computed at the Hua-Lien harbor for
typhoon Rananim in 2004.
Su-Ao harbor. Typhoon Maggie originally formed over the
waters to the southeast of Taiwan and moved northwestward,
passing through the Bashi Channel, finally reaching southeast
China. Fig. 13 shows the simulated and observed wave heights
during typhoon Maggie. While typhoon Maggie was far from
the Su-Ao harbor, the computed wind speeds exceed the real
wind speeds because the Su-Ao harbor was then located in the
right semicircle of typhoon Maggie. The simulated wave
heights by the FN2 model approximately exceed by 0.3 m
from the observed heights. The NN–MT and FN2 models
simulate the wave heights much better than does the FN1
model when typhoon Maggie approximately arrived in
Taiwan. When the typhoon Maggie passes through the Bashi
Channel, the land effect happens and the waves rapidly decay.
The FN2 model can accurately response to the decaying
waves. Through the examination on the wave heights
predicted for the typhoon Maggie at the Su-Ao harbor, the
proposed FN2 model is proven to be applicable for calculating
the typhoon waves at a point of interest along the Taiwan
eastern coast.

From detailed comparison on the waves simulated in time
series, the land effect on the waves can be validly simulated by
the FN2 models.

6. Conclusions

The marine structures in Taiwan have been suffered from
typhoon attacks in the summer time every year. Sometimes
people and properties are lost during the period of typhoon
approaching. Therefore, a marine alarm system that needs to
provide fast information of wave conditions and storm surge at
some important coastal sites when predicted path and scale of
the typhoon are given will be established. The authors have
developed some neural network wave models to meet the
requirement of rapidly simulating typhoon waves. However, the
high mountains in Taiwan play important role in altering the
wind speed and distribution of a typhoon. Thus the previous
models without considering the land effect have poor simulation
on the wave decaying when a typhoon is near Taiwan and is
affected by the land.
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The authors considered the land effect on waves to propose
two kinds of fuzzy–neural hybrid systems of simulating
typhoon waves. The fuzzy theory is applied to setup a
membership function of land effect on waves. This membership
function in terms of two independent parameters that are the
radial distance and the azimuth is expressed by a union
Gaussian function in which the location and shape parameters
are specified considering the performance of real data plot.
When a typhoon is near the point of interest, the membership
function plays a sharp decrease by the Gaussian function for
describing the wave decaying. The valid mean and variance in
the Gaussian function are examined for four areas separated by
two lines which intersect at the Hua-Lien harbor.

The FN1 model that directly corrects the original input
vector used in the previous NN–MT model by multiplying the
membership function and then connects to the wave heights by
a back-propagation neural network needs more learning data for
the expected complexity of wave varying by the land than does
the previous NN–MTmodel. When new data are available to be
added in the learning data set or the membership function is
modified, the weight and bias matrices in the FN1 model has to
be determined by relearning the whole latest data. It is
disadvantageous for the FN1 model to take long time for
renewing the weight and bias matrices when wind and wave
data used in the learning stage are different or the membership
function is modified.

The FN2 model includes two back-propagation neural
networks. The first network is the previous one in the NN–
MTmodel, and the second network considers a time sequence of
input vector and two hidden layers. The membership function is
used to correct the output wave heights that are calculated by the
first network as a corrected input vector for the second network.
The FN2model needs more learning time than the FN1 due to an
extra network. Because the previous NN–MT model has good
simulation on the peak wave height and its occurrence time, the
FN2 model directly corrects on the pre-estimated wave heights
by multiplying the membership function so that the FN2 model
has good simulation on wave decaying.

The better simulation performances of the peak wave heights
and their occurrence time in both the learning stage and the
verification stage by the FN2 model and the previous NN–MT
models than by the FN1 model identify the high capacity of
simulated typhoon waves. The FN2 model has slightly better
simulation on the occurrence time of the peak of typhoon waves
by an error of less than 3 h in common cases than does the NN–
MT model. The wave decaying due to land effect is well
described by the FN2 model. The FN2 model is examined to
have good simulation on the peak, occurrence time and wave
decaying of typhoon waves even when the typhoon arrives in
Taiwan. Most typhoons used in both the learning stage and the
verification stage move westwards from the Pacific Ocean.
Thus a typhoon with a particular path, i.e. south-to-north or
eastward movement, cannot be well simulated by the proposed
models. The disadvantage can be improved by adding the data
of which the typhoon path is south-to-north, or eastward into the
original learning data and renewing the weight and bias
matrices.
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