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Parallel Scrambler for High-Speed Applications

Chih-Hsien Lin, Chih-Ning Chen, You-Jiun Wang, Ju-Yuan Hsiao, and Shyh-Jye Jou

Abstract—In order to improve the speed limitation of serial
scrambler, we propose a new parallel scrambler architecture and
circuit to overcome the limitation of serial scrambler. A very sys-
tematic parallel scrambler design methodology is first proposed.
The critical path delay is only one D-register and one XOR gate
of two inputs. Thus, it is superior to other proposed circuits in
high-speed applications. A new DET D-register with embedded
XOR operation is used as a basic circuit block of the parallel scram-
bler. Measurement results show the proposed parallel scrambler
can operate in 40 Gbps with 16 outputs in TSMC 0.18-pzm CMOS
process.

Index Terms—Parallel scrambler, register, XOR.

1. INTRODUCTION

N DIGITAL transmission systems, there are always scram-

blers to scramble the transmission data. In general, multi-
ples of base rate signals are multiplexed and then scrambled be-
fore transmission which is descrambled and demultiplexed after
reception. Scrambling used to be done serially. Standard like
IEEE802.3ae (10-Gbps Ethernet) describes the functional dia-
gram as a 7-bit series synchronous frame scrambler. The gen-
erated pattern is a maximal length sequence (m-sequence) of
2N — 1 (in this case N = 7). The scrambler diagram shown in
Fig. 1 shall generate a continuous stream of output bits at the
same rate as the transmitted bit rate (fs).

Nevertheless, as the operating frequencies of transmission
systems grow beyond gigabits per second, serial scrambling
techniques were no longer applicable. For example, in 10-Gbps
Ethernet or 40-Gbps fiber transmission, with serial scrambling,
this would mean working at frequency of 10/40 GHz which is
not feasible with today’s silicon-based CMOS integrated cir-
cuits. The requirement of high working frequency can be re-
solved by using parallel scrambling techniques [1]-[5] to enable
the scrambling process at the low-frequency base rate. Under
parallel scrambling, a set of scrambling processes are performed
at the base rate, which collectively achieves the effect of se-
rial scrambling when the scrambled base-rate signals are multi-
plexed to form a transmission-rate signal. A common character-
istic of all well-known parallel solutions is that the number of
inputs of the modulo-2 adders (XOR gates) used in the feedback
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Fig. 1. Circuit diagram of serial scrambler in IEEE802.3ae.

loops of the pseudorandom code generator is more than two for
some parallel ports. However, having to process the modulo-2
additions of more than two inputs will lead to an increase in the
processing delay and lower the maximum working rate. More-
over, in today’s deep submicrometer CMOS process, number of
fanouts and interconnect length also become a significant factor
that affect the processing delay. Thus, the architecture shall be
regular and have less fanouts in the critical path.

In this brief, a very systematic parallel scrambler design
methodology and new architecture is proposed. In the fol-
lowing, Section II will show the design methodology and
procedures to develop parallel pseudorandom code generator
used in parallel scrambling. Section III will show the architec-
tures, circuits and measurement results. Finally, a conclusion is
made.

II. REALIZATION OF PARALLEL PSEUDORANDOM
CODE GENERATOR

There are various publications [1]-[5] in which parallel
scrambling techniques are described. They allow any number
of parallel bits to be generated in each clock cycle. To realize the
parallel pseudorandom code generator, the minimized circuit
complexity required /N D-registers and M XOR2s (two inputs)
[2], [5] for serial scrambler with a single XOR2. However, the
XOR gates in the critical path for some of the parallel ports
have more than two inputs. In the following, we will show
the procedures that transform the serial scrambling to parallel
scrambling with only a XOR2 gate in the critical path of the
parallel ports.

(i) Describe the generating polynomial P(x) as

P(z) = Zcqxq or b(i) = Z cqb(i — q) (1)

q=1

where b(4) is the generated bits in the time sequence 4 of
serial pseudorandom code generator with cy = ¢ = 1
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and ¢, = 0 or 1 for other indexes. We can also write b(-)
as

N
(kN +i) =Y cgb((k—1)N +i+ N —q)
g=1
fori=0to N —landk =1tooco. (2)

Here, we define 1" as the minimal index of ¢ that ¢, =
land D = N — T. Also, S represents the number of
coefficients that ¢; to ¢ equal 1 (the number of inputs to
the XOR gates). In applications, S is usually two to reduce
circuit complexity.
Example 1: P(z) = X"+ X%+1orb(i) = b(i—7)+b(i—6)
where D = 7—6 = 1 and S = 2. Substitute N = 7 into (2),
we have b(7Tk +4) = b(7(k —1)+4) + b(7(k —1)+:+1).0

(i) Determine the number of parallel output port and write
the parallel output bits generated in jth output cycle as a
word B; for j = 0 to oo

Bj = [barj, barjsts - - barjenr—2, barjynr—1] 3)

where bas;4p is the bit that generated in cycle j at port p.
The initial conditions for 7 = 0 are stored in the registers
when start-up.

Example 2:

By = [bo, b1, b2, b3, by, bs, bg, b7, bs,
by, b10,b11,b12,b13, b14,b15]
= [x6,T5, 04,23, T2, T1, L0, T + T5, L5 + T4,
T4+ X3,T3 + T2, T2 + X1,T1 + Xo,

z6 + T5 + To, Te + T4, T5 + T3]

where zg to x( represent the initial conditions of the serial pseu-
dorandom code generator. O

Note that if M < N, we still need NV registers to store the
initial conditions.

(iii) For each bit b4, in Bj, calculate k and ¢ by using k =
|(Mj + p)/N| and i = (M7 + p) modulo N.
Recursively apply (3) such that by, only uses S bits in
Bj_1.

Example 3:

By = [b16, b17, b1g, b1g, b2o, ba1, baz, bas, bau,
bas, bas, baz, bag, bag, b3o, ba1]

B{ =[bg + b10,b10 + b11,b11 + b2, b2 + bus,
b1z + b4, b14 + b15,b15 + b1e, b16 + b17,
bi7 + big, b1 + b1g, b1g + b2o, b2g + b21,
ba1 + baz, bao + bag, bag + baa, bos + bos]

B} =[bg + b1o, b1o + b11,b11 + b2, b1 + bus,
b1z + b1a,b14 + b1s, bg + b1o, by + b11,
bio + b12,b11 + b13, b1z + b4, b13 + b1,
bis + b1, b15 4 b17,b16 + big, bi7 + b1o]

BZ =1[by + bs, by + bs, by + be, bs + bz, bs + bs,
b7 + by, bs + b10,bg + b11,b10 + b12,
b1 + b13,b12 + b1, b13 + b1s, b14 + bie,
bis + b7, b1e + b1s, b17 + big]

Bt =[bg + b1, bio + b11,b11 + b12, b1a + bis,
b1z + b14, b14 + b1s, b + b1o, bg + 11,
bio + b12,b11 + b13, b1z + b1a, b13 + bis,
bo + by, b1 + bs, by + be, b3 + by]

BY =[ba + ba, bs + bs, ba + b, bs + b, bg + bs,
b7 + by, bs + b10, by + b11,b10 + b12,
bi1 + b1z, b12 + b4, b1z + b1s, bo + by,
by + bs, by + bg, b3 + by]

where B! is the word after applying (3) i times (R = i) for
some bits in B;. In this case, the Bf' and B{ are two solutions
that only use 2 bits in By. O
(iv) Using the bit operations in Bj as the logic operation in
output ports.
Example 4: We can derive the output ports and their opera-
tions as

[p():pl7p27p37p47p57p67p77p87p97p10;
P11, P12, P13, 4, p1s) = Bi or By,

O

This parallel architecture has the following properties.

1) Any number of parallel outputs can be designed from the
serial scrambler. Recursive equations are derived to do the
transformation.

2) If the number of inputs to the XOR of the serial scrambler
is S (two in Fig. 1) then the number of inputs to the XOR in
the parallel scrambler can also be S.

3) By applying recursion (3) different number of times,
there are several representations that have the above two
properties.

The relationships among N, D, M, and number of iterations
(R) of applying (3) are shown in Fig. 2 and are written in the
following propositions.

Proposition A: A parallel pseudorandom code generator with
M parallel outputs has three cases for the number of register
used according to the relationships of My.x = (N — D) - R,
Mumin = ((N + D) - R)/2 and R. i) One register at each port
and total M registers. ii) More than one register at some ports
and total N registers. iii) More than one D-register at some ports
and total W registers.

W in case iii) of Proposition A depends on the two situations:
HDW=R -Nif2M >R -Nand Q) W =[R'-N — (R’ -
N mod M)]if2M < R’ - N.In here R/ = 2M10s2(M/(N=D))],

Proposition B: A parallel pseudorandom code generator with
R equals to power of 2 has the property that each port only con-
sists of S — 1 XOR2 gates.

Example 5: For polynomial P(z) = X7 4+ X6 + 1, Myax,
M i and R are listed in Table I for R is power of 2. #

Example 6: P(z) = X7 + X* + 1 is another polynomial of
maximal length sequence of seven stage. In this case N =7,
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S23, XOR gate with Y-input, Y23

(b)

Fig. 2. (a) Total registers required. (b) Total XOR2 gates required.

XOR gate with S-input

TABLE I
P

D = 3(D > N/3).For M = 5, we have

By = [bg, b1, b2, b3, bs]
= [v6, x5, T4, T3, T2]
By =[bs, bg, bz, bs, bo]
Bl =[z1,20,bo + b3, b1 + ba, ba + bs]
BZ = [blO b117b12 b137b14]
B} =[bs + bg, by + bz, bs + bs, bs + by, bz + byo)
B2 [bs + bg, ba + b7, bs + bs, bg + bg, bo + bg].

In B4, by generated at cycle 1 uses b5 in the same cycle, thus
it can not be implemented with only one XOR2 gate and one
register. Thus, bits in B; are required to be stored as initial con-
ditions

B(,) = Bo@Bl = [.13'6@5171,1135@1'07174@(:66 + IC3)7

$3@($5 + QEQ),$2@($4 + 1171)]
[P07p17p27p37p4] = B%

where @ means cascade. With M = 5, it consists of five XOR2
gates with ten registers for storing initial conditions. However,
the critical path is still one XOR2 gate and one register. O

Fig. 3(a) shows a parallel pseudorandom code generator with
M equals 16 of the serial scrambling shown in Fig. 1 using B}
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Fig. 3. Parallel pseudorandom code generators with A/ = 16. (a) Maximal
fanouts of 5. (b) Maximal fanouts of 3.
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Fig. 4. Parallel pseudorandom code generators with M = 16 of P(x) =
X114+ X9 + 1 used in IEEE1394.

D
72

in Example 3. Each output port consists of one XOR2 gate cas-
caded by one register and the number of fan-outs is from 2 to 5.
This kind of parallel scrambler architecture is very regular and
has the potential for high-speed operation. If maximal number of
fanouts is very important, we can try to use Bf/ in Example 3 to
reduce the maximal number of fanouts as shown in Fig. 3(b). As
you can see, the maximal number of fanouts is reduced from 5 to
3. Fig. 4 shows another example of P(z) = X! + X + 1 used
in IEEE1394b. Each output port only consists of one XOR2 gate
cascaded by one register and the maximum number of fan-outs
is 5. Fig. 5 shows the example used in Example 6 with five par-
allel outputs. Although each port required two registers, the crit-
ical path is still one XOR?2 gate and one register. Fig. 6(a) shows
the design example proposed in [5, Fig. 4] and Fig. 6(b) shows
the one derived here. The comparisons are listed in Table II. Due
to the reduction of two XOR2 to one XOR2, the proposed archi-
tecture can be used in higher operational speed.

III. ARCHITECTURE AND CIRCUIT DESIGN

In the parallel pseudorandom code generator, the basic cir-
cuit block is XOR2 gate cascaded by D-register. If single edge
triggered (SET) D-registers are used, the operational frequency
is fs/M. As we know, high-speed clock buffers consume lots
of power due to the stringent timing requirement of rise/fall
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Fig. 5. Example used in Example 6 with 5 parallel outputs.

T T 1

So S7 8 Sz

[\}T}T}T}‘Tﬂ}

Py

(b)
Fig. 6. P(x) = X7+ X+ 1 with M = 8. (a) Circuit proposed in
[, Fig. 4 1. (b) Circuit proposed in this brief.

TABLE II
COMPARISONS OF TWO DESIGNS OF P(z) = 2" + 2 + 1 ANDM =8
ré\i(l)st(:; I\\I((;)gl Critical path Fanouts
gisters 3

o (s one D-register and -
Fig.5(a) 7 8 two XOR?2 gate 4 (Max.)
- one D-register and
Fig.5(b) 8 8 one XOR2 gate 4 (Max,)

and delay time. Thus, we use double edge triggered (DET)
D-register which provides data sampling at both rising and
falling edges of clock. In this way, the clock frequency is only
half of that used for SET D-register. Fig. 7(a) and (b) shows
two conventional DET D-registers [6]. DET-TSPC merges two
SET-TSPC D-registers but improves the design by reducing the
number of clocked transistor to six instead of eight. It suffers
from the same problems of TSPC-based register such as output
dip, charge sharing, etc. DET-C?MOS is a safety design and
has low input loading (one pMOS and nMOS) as compared to
DET-TSPC (two pMOS and two nMOS). Thus, it is ideally
suited for two phase clock systems. The XOR circuit shown
in Fig. 8(a) is a frequently used CMOS circuit. The critical
path delay is only a pMOS or nMOS. The output is driven by
signal source and is not driven by VDD and GND. This is one
disadvantage of this XOR circuits. It will cause delay problem
if such XOR’s are cascaded. However, in here, no XORs are
cascaded so it shall be no problem.

Table III shows the HSPICE simulation results of serial
scrambler using the DET-TSPC or DET-C2MOS cascaded by
XOR2. The technology used is TSMC 0.18-um 1.8-V CMOS
process. The operational clock cycle (T¢) is limited by

Tey2 > Te—q + Txor + Tsetup “)

VDD VDD VDD

Ino—y

CLK o

(b)
Fig. 7. (a) DET-TSPC. (b) DET-C2MOS.

TABLE III
PERFORMANCE COMPARISONS OF SERIAL SCRAMBLERS

XOR-DET-
C*MOS
Speed (Gbps) 3.60

Power (mW) 22.30

Power/speed : 6.19

where Tictup, Teik—@» and Txor is the set up time, clock to
output delay time of D-register, and delay time of XOR gate.
We can reduce Ixor + Zsetup by embedding the XOR opera-
tion into the master stage of DET-C?MOS X0R-DET-C?MOS
as shown in Fig. 8(b). By doing so, not only the number of tran-
sistors is reduced by two but the delay path of XOR and set up
path of DET-C2MOS are merged. The XOR operation can not
be merged into the DET-TSPC in the same way and need a
much complicated structure. Table III also shows the simula-
tion results of the serial scrambler using the proposed circuits.
It can work up to 3.6 Gbps (1.8 GHz) and is 1.4 times faster than
the conventional XOR cascaded by DET-C2MOS. By using the
proposed XOR-DET-C2?MOS circuit in the parallel scrambler
[Fig. 3(a)], because the maximum fan-out number is 5 instead
of 2 in serial scrambler, pre-layout simulations show that the op-
erational clock can only work at 2.7 Gbps per port.

If a one-dimensional array like the one shown in Fig. 3(a) is
implemented, the post-layout simulation shows that it can only
work up to 2.4 Gbps. The decreasing of operational speed is due
to a long interconnect of several hundreds of micrometers. We
carefully redo the layout in a rectangular format (scrambler I)
as shown in Fig. 9 to reduce the interconnect length. Post-layout
simulation shows that it can work at 2.55-Gbps per port. Parallel
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Fig. 9. Layout of the proposed parallel pseudorandom code generator.
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Fig. 10. Test circuit diagram.

scramblers designed by using XOR cascaded by DET-C?MOS
[Fig. 7(b), scrambler II] are also designed and implemented in a
rectangular format. The post-layout simulation results show that
thescrambler Il canonly workupto 1.76-Gbps per port. A testchip
is implemented by using TSMC 0.18-um 1.8-V CMOS process
for both scrambler I and scrambler II as shown in Fig. 10. A di-
vide-by-2 dividerisusedtohave clock signal with 50% duty cycle.
Dueto the characteristic of the parallel scrambler, it has a periodic
pattern every 127 output cycles. So we design a decision circuit
that will be triggered each time this patternis matched. Thus, when
the output of the T-FF has a stable clock frequency of fs, then
we know the parallel scrambler can work in f s*254*16 bps. The

Fig. 11. Chip photo.

TABLE 1V
CHIP SUMMARY AND COMPARISONS

Post-Simulation Measured Results

Scrambler 1 | Scrambler 2 | Scrambler 1 | Scrambler 2

Data Rate

(Gbps) 2.55 1.76 2.50 1.72

150 x 90 285 x 125 150 x 90 285 x 125

Area(um?®)

27.61@
27Gbps

34.12@
40Gbps

29.04@
27Gbps
40.49@
40Gbps

Power
(mW)

3247
@ 27Gbps

33.91@
27Gbps

chip photois shownin Fig. 11. The measurement results are listed
in Table IV and quite match the post-layout simulation results.
The measured maximum T-FF output frequency is 9.8448 MHz.
Thus, the proposed parallel scrambler and new circuits can wok
at 40 Gbps. The results show that the proposed circuits can work
1.5 times faster than the conventional one with smaller layout area
and less power consumption.

IV. CONCLUSION

A very systematic parallel scrambler design methodology is
proposed. The structure of the parallel scrambler is very regular
andthecritical pathdelayisonly one D-registerand one XOR2 gate.
Moreover, by applying the recursive equations different number
of times on different parallel output ports, we can have several
representations of parallel scrambler with different number of
fanouts and interconnect length. A new XOR-DET-C2?MOS
cell is proposed to speed up the operation speed of the circuits.
Measurement results show that the circuit is superior in speed
than other designs. Design example shows that 40 Gbps with 16
outputs can be achieved by using 0.18-m CMOS process.
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