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Group-Wise V-BLAST Detection in Multiuser
Space-Time Dual-Signaling Wireless Systems
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Abstract— This paper studies the V-BLAST detection in a
general multiuser space-time wireless system, in which each
user’s data stream is either (orthogonal) space-time block coded
(OSTBC) for transmit diversity or spatially multiplexed (SM)
for high spectral efficiency. The motivation behind this work is
that each user adopting a signaling scheme better matched to
his own channel condition proves to improve the individual link
performance but the resultant co-channel interference mitigation
problem is scarcely addressed thus far. By exploiting the alge-
braic structure of orthogonal code, it is shown that the V-BLAST
detector in the considered dual-signaling environment allows for
an attractive group-wise implementation: at each iteration a
group of symbols, transmitted either from an OSTBC station
or from an antenna of an SM terminal, are jointly detected.
The group detection property, resulting uniquely from the use
of orthogonal codes, potentially improves the dual-mode signal
separation efficiency, especially when the OSTBC terminals are
dense in the cell. The imbedded structure of the channel matrix
is also exploited for deriving a computationally efficient detector
implementation. Flop count evaluations and numerical examples
are used for illustrating the performance of the proposed V-
BLAST based solution.

Index Terms— Multiuser detection, spatial multiplexing, space-
time block codes, vertical Bell Labs layered space-time (V-
BLAST), multiple-input multiple-output (MIMO).

I. INTRODUCTION

A. Motivations

MULTIUSER space-time block coded (MU-STBC) sys-
tems [13]-[15], [23] can provide multiple fading-

resistant links but the co-channel user interference then be-
comes a crucial factor for system performance. In stead of
resorting to the computationally-intensive joint maximum-
likelihood (ML) decoding for signal recovery, there are various
proposals exploiting the algebraic structures of the orthogonal
ST block codes for facilitating interference mitigation, e.g., the
Naguib’s parallel interference cancellation (PIC) scheme [16],
and the Stamoulis’s decoupled-based method [19]. Recently it
is suggested in [11] and [24] to tackle the problem alternatively
via the ordered successive interference cancellation (OSIC)
approach, which is also known as the V-BLAST algorithm
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[7]. This is because the OSIC mechanism shows a different
approach as compared with [16], [19], and it is believed
to maintain a reasonable trade-off between performance and
complexity with respect to the joint ML decoding [6], [17].
In [24], the usage of the orthogonal codes is shown to have
an attractive impact on the V-BLAST detector: it allows a
user-wise group detection property. Such a V-BLAST based
detection is also considered in [3], [20], [22] to resolve multi-
antenna ST coded streams; the presented frameworks therein,
however, are mainly for ST trellis codes, and do not explicitly
exploit the codeword’s algebraic structures whenever block
codes are considered.

In this paper we consider a more general class of MU ST
wireless systems, in which each user’s data stream is either
orthogonal ST block coded (OSTBC) for transmit diversity
or spatially multiplexed (SM) for high spectral efficiency.
Such a system configuration has been suggested for future
MIMO uplink transmission: users nearby the base station
could usually send high-rate data due to relatively reliable
channel conditions, whereas the far-end users might sacrifice
data rate for transmit diversity in order to guard against the
channel impairments like large path-loss or the near-far effect
[5]. As reported in [5], [10], different signaling types can
also be adopted for improving individual user’s link reliability
against channel spatial correlations: spatial multiplexing in
general fits with independently fading channels, but transmit
diversity would be alternatively preferred for correlated low-
rank channels. The overall MU link performance in all cases,
however, crucially depends on effective interference rejection
mechanisms. To the authors’ best knowledge, there seems
to be yet no related discussions regarding a dual-signaling
system; in particular, an investigation of how the orthogonal
codes can facilitate the dual-mode signal separation. In this
paper, this problem will be addressed based on the V-BLAST
detection approach.

B. Design Challenge and Technical Contributions

For the dual-signaling environment, there is a unique re-
ceiver design challenge to be addressed. Observe that, since
some link users will send data via the OSTBC mode, the
base station will have to suffer a certain time latency for data
collection/detection so as to exploit the diversity benefit for
those OSTBC terminals. For example, if the Alamouti’s code
[1] is used, two symbol periods are the temporal latent cost
for realizing a diversity gain of order two. The inherent time
latency produces link robustness for the OSTBC users at the
expense of a reduced cell-wide data processing efficiency. This
is because, during the processing time required for diversity,
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Fig. 1. The schematic diagram of the transceiver.

the base station will receive extra independent source symbols
from other high-rate SM terminals: this can enlarge the overall
data processing dimension up to a factor equal to the latent
cost. As a result, there will be an unavoidable increase in
the detector complexity; the computational overload could be
significant, especially for the in general one symbol per-layer
detection strategy of the V-BLAST algorithm.

This paper proposes a group-wise V-BLAST detection
scheme that can effectively tackle such a design challenge.
Specifically, it is shown that, even though some users may
send the data via the SM mode, the usage of orthogonal
codes can induce a distinctive structure on the matched-filtered
(MF) channel matrix: it consists of orthogonal design [21]
block submatrices. This fact is then exploited for developing
a group-wise V-BLAST detector: at each processing step a
group of symbols, transmitted either from a particular OSTBC
station or from an antenna of an SM terminal during the latent
time, can jointly be detected. This result is a generalization
of the previous work [24] for MU-STBC systems to the more
general dual-signaling scenario. The established group-wise
detection property, which reduces the number of iterations,
tends to restore the algorithm complexity back, and hence
prompts an efficient receiver implementation, despite of the
system model expansion for dual-mode data processing. The
imbedded structure of the MF channel matrix is moreover
exploited for deriving a low-complexity algorithm realization.
It can further reduce computations from the following two
aspects. First, it is shown that inverting the “big” channel
matrix at the initial stage, which would often dominate the
overall cost, reduces to solving a set of linear equations of
relatively small dimensions. Second, the computation of the
initial channel matrix inverse turns out to be the only “direct”
inversion operations required; there is an elegant recursive
formula for computing the inverse matrix needed at each
iteration. Flop cost evaluations and numerical simulations are
given, showing the advantages of the proposed solution over
existing MU detection schemes applicable to the considered
systems. The rest of this paper is organized as follows. Section
II describes the system model. Section III specifies the MF

channel matrix. The result is then used for developing a
group V-BLAST detector in Section IV. Section V proposes a
computationally efficient detector implementation and Section
VI a simple two-stage processing for dual-mode signals.
Section VII shows the simulation results. Finally, Section VIII
is the conclusion. Most of the mathematical details required
in our discussions are relegated to the appendix.

II. SYSTEM MODEL

A. System Description and Basic Assumptions

Consider the MU ST wireless system over the flat fading
channels as shown in Fig. 1, in which N transmit antennas
are placed at each of the Q user terminals. The data stream
of the qth user sq(k) (1 ≤ q ≤ Q) can be either OSTBC [21]
for transmit diversity or SM [7] for achieving high data rate.
Let SD and SM be respectively the index sets of the OSTBC
and SM users, with QD � |SD| and QM � |SM | denoting
the respective cardinalities. Specifically, QD and QM are
respectively the numbers of the OSTBC users and SM users so
that Q = QD + QM . At each OSTBC terminal, consecutive
P symbols of the data stream are spatially and temporally
encoded according to [21], and are then transmitted across
N antenna elements over K time periods. During the same
signaling epochs each SM user then sends NK independent
symbols; there are thus in total

LT � PQD +NKQM (1)

data symbols transmitted from the Q users every K symbol
periods. The two ST signaling schemes in the considered sys-
tem can be completely described by the associated N×K ST
codeword matrices. A commonly used codeword description
is the linear matrix modulation representation [14, p-97]. Let
us divide the data stream of the qth user sq(k) into groups
of substreams as sq,l(k) � sq(Lqk + k − 1), 1 ≤ l ≤ Lq,
where the number of substreams Lq depends on the signaling
mode chosen for the qth user so that Lq = P if q ∈ SD and
Lq = NK if q ∈ SM . Then the codeword matrix of the qth
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user can be written as

Xq(k) �
2Lq∑
l=1

Aq,ls̃q,l(k), (2)

in which Aq,l ∈ CN×K is the ST modulation matrix, the split
real-valued symbols s̃q,l(k) � Re {sq,l(k)} for 1 ≤ l ≤ Lq

and s̃q,l(k) � Im
{
sq,l−Lq(k)

}
for Lq + 1 ≤ l ≤ 2Lq.

We note that, for q ∈ SD , Xq(k) is an orthogonal design
[21] with1 Aq,lAH

q,l = IN and Aq,kAH
q,l + Aq,lAH

q,k = ON

for k �= l [14]. For q ∈ SM , there is no imbedded coding
structure in Xq(k), leaving each Aq,l an N ×K matrix with
only single nonzero entry equal to 1 or

√−1. Although the
OSTBC and SM schemes are quite different in nature, the
linear matrix modulation representation (2) does provide a
consistent description of the respective codeword matrices.
Moreover, the split of the source symbols into the real and
imaginary parts will also unify both the problem formulation
and the underlying analysis, regardless of the constellations.

We assume that M antenna elements are located at the
receiver. Let ym(k) be the received discrete-time data, sampled
at the symbol-rate, from the mth receive antenna and define
y(k) � [y1(k), . . . , yM (k)]T ∈ CM . Collecting y(k) over K
successive symbol periods, we have the following ST data
model (assuming that the Q users are symbol synchronized2)

Y(k) � [y(k) · · ·y(k +K − 1)] =
Q∑

q=1

HqXq(k) + V(k),

(3)
where Hq ∈ CM×N is the channel matrix from the qth user
terminal to the receiver, which is assumed to be static during
the K signaling periods, and V(k) ∈ CM×K is the channel
noise. The following assumptions are made in the sequel.
(a1) The symbol streams sq(k), 1 ≤ q ≤ Q, are i.i.d. with

zero mean and variance σ2
s .

(a2) The noise V(k) is spatially and temporally white, each
entry being with zero mean and variance σ2

v .
(a3) We assume that at least one user signals the data in the

STBC mode, hence QD ≥ 1.
(a4) We consider the case N ≤ 4 and hence, according to

[21], the symbol block length P ∈ {2, 4}. The proposed
approach is exclusively applicable to this scenario.

(a5) For 3 ≤ N ≤ 4 with complex-valued constellations, the
half rate codes [21, p-1464] are used.

(a6) The number of receive antennas is chosen so that M ≥
QD +NQM .

B. Vectorized Data Model

We note that the signal part in the matrix data model
(3) is a linear mixture of the Q codeword matrices. Toward
a compatible MU detection framework, it is common to
work with an associated equivalent vectorized linear model

1The notations (·)T , (·)H , Im , and Om respectively denote the transpose,
the complex conjugate transpose, the m×m identity matrix, and the m×m
zero matrix.

2Symbol synchronization is necessary in TDMA based cellular implemen-
tations, e.g., IS-136 and GSM, and 3G TDD CDMA systems such as time
division synchronous CDMA (TD-SCDMA). In the literature, this assumption
is commonly made when dealing with uplink interference cancellation in MU-
STBC systems [16], [18], [19].

that will “restore” each user’s symbol block. Specifically, let
sq(k) �

[
sq,1(k), . . . , sq,Lq(k)

]T
be the transmitted symbol

block of the qth user. Without loss of generality we assume
that, for each q ∈ SM , the NK symbols sq,l(k)’s are
renumbered so that the nth group of K symbols, namely,
sq,l(k) for (n − 1)K + 1 ≤ l ≤ nK , are precisely those
sent via the nth transmit antenna (1 ≤ n ≤ N ). Define
s̃q(k) �

[
Re
{
sT
q (k)

}
Im
{
sT
q (k)

}]T ∈ R2Lq and ỹ(k) �[
Re
{
yT (k)

}
Im
{
yT (k)

}]T ∈ R2M to be the split real-
valued symbol block of the qth user and the received vector.
Associated with the qth user’s channel matrix Hq, we form
the following augmented matrix

H̃q � IK ⊗
[

Re {Hq} −Im {Hq}
Im {Hq} Re {Hq}

]
∈ R2KM×2KN , (4)

where the notation ⊗ stands for the Kronecker product; also,
with a(j)

q,l denoting the jth column of the matrix Aq,l and

ã(j)
q,l �

[
Re
{
a(j)

q,l

}T

Im
{
a(j)

q,l

}T
]
∈ R2N , (5)

we define the 2KN × 2Lq real-valued ST modulation matrix

Ãq �

⎡
⎢⎢⎣

ã(1)
q,1 · · · ã(1)

q,2Lq

...
. . .

...

ã(K)
q,1 · · · ã(K)

q,2Lq

⎤
⎥⎥⎦ ∈ R2KN×2Lq . (6)

Then the matrix data model (3) can be rewritten, after some
manipulations, as the following equivalent vectorized linear
model

yc(k) �
[
ỹT (k) · · · ỹT (k +K − 1)

]T
= Hcsc(k) + vc(k),

(7)
where Hc �

[
H̃1Ã1 · · · H̃QÃQ

]
∈ R2KM×2LT is

the concatenated equivalent channel matrix, sc(k) �[
s̃T
1 (k) · · · s̃T

Q(k)
]T ∈ R2LT and vc(k) ∈ R2KM is the

corresponding noise component. Through linearly combining
the received data yc(k) with Hc, we can obtain the MF data
vector

z(k) � HT
c yc(k) = Fsc(k) + v̄(k), (8)

where F � HT
c Hc ∈ R2LT ×2LT is the MF channel matrix

and given by

F =

⎡
⎢⎣

ÃT
1 H̃T

1 H̃1Ã1 · · · ÃT
1 H̃T

1 H̃QÃQ

...
. . .

...
ÃT

QH̃T
QH̃1Ã1 · · · ÃT

QH̃T
QH̃QÃQ

⎤
⎥⎦ , (9)

and v̄(k) � HT
c vc(k). We will hereafter rely on the MF model

(8) for detection. To better manifest the core ideas, throughout
the context we will focus on the real-valued constellation case,
and hence K = P so that LT � PQD + PNQM . There are
essentially the same results (see Appendices II and IV) for our
reports whenever complex-valued constellations are used.

III. MATCHED-FILTERED CHANNEL MATRIX

For the particular MU-STBC system, it is shown in [24]
that all the P ×P block submatrices of MF channel matrix F
are orthogonal designs [21]. For the considered dual-signaling
platform, in which the SM signaling could induce severe
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coupling effects against the OSTBC signals, the structure of
the resultant F could largely deviate from that of the MU-
STBC system. As we will see in what follows, the matrix F
in the dual-signaling environment, however, does preserve the
appealing block orthogonal structure. This fact is primarily the
guts for developing a group-wise V-BLAST detector.

To characterize F, we should note that its diagonal subma-
trices (of appropriate dimensions) are basically the effective
MF signal components of the Q users’ streams, whereas
the off diagonal submatrices account for the inter-user signal
interference. In view of this observation, one can thus classify
the block submatrices of F based on these signal and inter-
ference “signatures”. As such, the linear matrix modulation
representation of the codeword matrices (2) will allow a
systematic way of computing these signature matrices and,
based on which, the structure of F can be readily determined.
Since each user sends data via either the SM or the OSTBC
mode, there are essentially two types of signal signatures,
one associated with a signaling scheme. Also, among all the
interference signatures there are only three distinct canonical
building blocks needed to be identified: two of which reflect
the interference between each pair of distinct users adopting
the same signaling strategy; the other is thus for the different-
signaling interference. To further specify these signatures, we
shall first determine the respective dimensions. Recall that
during consecutive K time slots (K = P for unity code
rate), the numbers of symbols sent from an OSTBC and an
SM terminal are, respectively, P and NP . As a result, if we
denote Fp,q the submatrix of F representing the interference
signature between the pth and the qth users’ streams, we then
have Fp,q ∈ RP×P for p, q ∈ SD, Fp,q ∈ RNP×NP for
p, q ∈ SM , and Fp,q ∈ RP×NP for p ∈ SD and q ∈ SM .
All such three Fp,q’s, together with the signal signature Fq,q

for either q ∈ SD or q ∈ SM , are described in the next
proposition, whose proof is given in Appendix I.

In the sequel, we denote by O(P ) the set of all P ×P real
orthogonal designs with constant diagonal entries as specified
in [21, p-1458].

Proposition 3.1: Let Fp,q be the submatrix of F describing
the mutual coupling between the pth and the qth users. Then
we have the following results.

(1) If p, q ∈ SD, then Fp,q ∈ O(P ). In particular, we have
Fq,q = αqIP for some scalar αq .

(2) If p, q ∈ SM , then each P × P submatrix of Fp,q ∈
RNP×NP is a scalar multiple of IP .

(3) If p ∈ SD and q ∈ SM , then each P × P submatrix of
Fp,q ∈ RP×NP belongs to O(P ).

Part (1) of Prop. 3.1 is known from [21] and is exploited
in [24] for developing a user-wise group V-BLAST detector
for the MU-STBC systems. The significance of Prop. 3.1 lies
in (2) and (3), which are more relevant to a dual-signaling
scenario. For p, q ∈ SM , it is easy to see that the (i, j)th
P × P submatrix of Fp,q , 1 ≤ i, j ≤ N , characterizes the
coupling effect between the data streams transmitted from
the ith antenna of the pth user and from the jth antenna
of the qth user; for p = q and i = j, this is precisely the
single-antenna SM signal signature. Since spatial multiplexing
does not impose any spatial and temporal coding structure
among the transmitted data, the interference between any pair

of SM streams sent from two different antennas, and the
respective signal components, would appear to be spatially
and temporally decoupled. Hence, as evidenced by (2), the
resultant signatures are diagonal matrices; the diagonal entries
are all equal since the propagation channels are assumed
to be static during K signaling instants. The independently-
distributed SM streams, on the other hand, might interfere
against the OSTBC signals to induce a coupling matrix that
is no longer orthogonal. Part (3) of Prop. 3.1 shows that
the resultant coupling signature is nonetheless block-wise an
orthogonal design. To interpret this result, we first note that a
single-antenna SM stream may only temporally interfere with
an OSTBC codeword. The temporally-decoupled nature of SM
data is likely to render the temporal correlation of OSTBC
streams unchanged, thus resulting in an orthogonal type signa-
ture. The above discussions show that the symbol stream from
a single SM antenna will introduce a set of diagonal blocks
(the coupling among the same SM type streams) and a set
of orthogonal design blocks (the coupling against the OSTBC
signals) in the MF channel matrix F. This result relies solely
on the multiplexing nature among all the NQM SM signals,
irrespective of the number of transmit antennas placed on each
SM terminal. In light of this observation, the asserted structure
of the matrix F will be preserved particularly when single-
antenna cell users are present, as long as each one transmits
independent symbols along his own antenna.

Since a matrix being a scalar multiple of IP is essentially
a P × P orthogonal design, Prop. 3.1 asserts that in the
dual-signaling case, the MF channel matrix F does consist of
orthogonal design based block submatrices. The presence of
SM terminals thus substantially preserves the block orthogonal
structure of F as seen in the MU-STBC case [24]. In the next
section this fact will be exploited for developing a group-
wise V-BLAST detector for the considered MU dual-signaling
system.

Remarks:

(a) As we will see in the next section, the proposed group-
wise detection property benefits uniquely from the dis-
tinctive structures of F specified as in Prop. 3.1. This
attractive property thus also holds whenever single-input
terminals exist (since the inherent structure of F is
preserved).

(b) For the complex constellations, there are analogue re-
sults as in Prop. 3.1, with possible modifications of the
matrix dimensions; these are included in Appendices II
and IV.

IV. GROUP-WISE V-BLAST DETECTION

For an MU-STBC system, it has been shown in [24] that the
V-BLAST detector can per iteration jointly detect a group of
P symbols associated with a particular user. By exploiting the
distinctive structure of the matrix F shown in Prop. 3.1, this
section proposes a group-wise V-BLAST detection scheme for
the considered dual-signaling system. As we will see, the V-
BLAST detector can per iteration jointly detect a group of
P symbols, transmitted either from an OSTBC terminal or
from a single antenna of an SM station. This implies that
only QD+NQM processing layers are required for separating
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the P (QD + NQM ) transmitted dual-mode symbol streams.
As a result, in a dual-signaling case, the “user-wise” group
detection property of the OSTBC signals is preserved, and
the “antenna-wise” detection for SM streams comes out as
a nice byproduct. The proposed group detection capability
can prevent significant computational overload due to the data
model expansion for processing the dual-mode signals.

A. V-BLAST Ordering

The V-BLAST algorithm resorts to certain ordering strategy,
depending on the criterion for signal recovery, for deciding the
best reliable symbol to be detected in each processing stage
[7]. Based on Prop. 3.1, in what follows we will show that the
V-BLAST ordering in each processing layer sorts the symbol
streams to be detected into a group-wise basis, which in turn
results in a group-wise detector realization.

1) Zero-Forcing (ZF) Criterion: In the ZF V-BLAST detec-
tion, the optimal detection order at each step is determined by
the index of the symbol decision statistics yielding maximal
post-detection SNR [7]. Based on the MF signal model (8),
the ZF decision vector in the initial stage is

sd(k) � F−1z(k) = sc(k) + F−1v̄(k). (10)

Equation (10) shows that, for 1 ≤ l ≤ LT , the lth symbol
decision statistics, that is, the lth component of F−1z(k), is
simply the desired symbol contaminated by the additive noise
eT

l F−1v̄(k), where el is the lth unit standard vector in RLT .
It is straightforward to compute the noise power as

σ2
l � E

{∣∣eT
l F−1v̄(k)

∣∣2} =
σ2

v

2
eT

l F−1el. (11)

Since all the transmitted symbols are of equal variance, (10)
and (11) imply that the (average) SNR in the lth decision
statistics is completely determined by the lth diagonal entry
of the noise covariance F−1. In particular, a small

[
F−1

]
l,l

(the lth diagonal entry of F−1) implies a large SNR, and
hence better detection accuracy attained by the lth branch.
As a result, the optimal detection order at the initial stage,
which specifies the symbol with slightest noise corruption, is
obtained by searching for the index 1 ≤ l ≤ LT at which[
F−1

]
l,l

is minimal. As a result, the optimal index can be
found as long as one can explicitly know the diagonal entries
of the inverse matrix F−1. In the next proposition we will
see that the matrix F−1 “inherits” the key features of F as
established in Prop. 3.1. This result directly alleviates the
efforts to search for the optimal index, and allows for a group-
wise detection strategy. Also, this will lead to a very efficient
procedure for computing the weighting matrices for recovering
the symbol groups.

We need the following notation. For a fixed symbol block
length P and a positive integer L, let us define F(L) to be
the set of all invertible real symmetric PL × PL matrices
such that, for X ∈ F(L), with Xi,j being the (i, j)th P × P
block submatrix, we have Xi,i = γiIP for some scalar γi,
and Xi,j ∈ O(P ), for i �= j, the set of P ×P real orthogonal
design with equal diagonal entries.

Proposition 4.1: Let F be the MF channel matrix as defined
in (8). Then the inverse matrix of F belongs to the set F(L),
where L � QD +NQM .

Proof: Prop. 3.1 shows that each P × P block off-
diagonal submatrix of F belongs to O(P ), and hence F ∈
F(QD +NQM). The following lemma (see Appendix III for
outlined proof) characterizes the inverse of the set of matrices
in F(L) and will be used for proving Prop. 4.1.

Lemma 4.1: If X ∈ F(L), then so is X−1.
Since F ∈ F(QD + NQM ), the result then follows

immediately from Lemma 4.1.
Proposition 4.1 asserts that the PL diagonal entries of F−1

assume L distinct levels only. It suffices to search among the L
values, one associated with a symbol group transmitted from
either an OSTBC user or from a single antenna of an SM
terminal, for the optimal detection order. At the initial stage,
the ZF V-BLAST ordering thus sorts the symbol to be detected
into a group-wise basis; all the P symbols within one group
are of equal detection priority. The V-BLAST detector can
then jointly detects a group of P symbols, either of a particular
OSTBC stream or of a single-antenna SM stream. The optimal
group detection index is

l̄ = argmin
l
βl, (12)

where βl is the ((l − 1)P + 1)th diagonal entry of F−1; the
ZF weighting matrices are determined from the corresponding
indexed columns of F−1.

The detected user’s signal is cancelled from the received
data (7), yielding a reduced-size data model containing the
yet-to-be-detected signals. With such a detect-and-cancel pro-
cedure followed by an associated linear combining of the
resultant signal as in (8), it can be directly verified that,
at the ith iteration, where 1 ≤ i ≤ L − 1, the noise
covariance matrix associated with ZF decision statistics vector
is F−1

i �
(
HT

c,iHc,i

)−1 ∈ R(LT −iP )×(LT −iP ), where Hc,i is
obtained by deleting i block(s) of P columns (corresponding
to the previously detected signals) from Hc. Since Fi =
HT

c,iHc,i ∈ R(LT −iP )×(LT −iP ) is simply obtained by deleting
the associated i block(s) of P columns and rows from F, the
matrix Fi exhibits the same algebraic structure as F. More
precisely, we have Fi ∈ F(L− i), and so is F−1

i by Lemma
4.1. This shows that the P (L − i) diagonal entries of F−1

i

take on only (L − i) different levels and, by following the
previous analysis, group-wise detection can thus be done at
each processing step.

2) Minimum Mean Square Error (MMSE) Criterion: The
MMSE V-BLAST ordering at each layer picks up the symbol
attaining the minimal mean square error for detection. At the
initial stage, the joint MMSE weight that minimizes the metric

ε � E
{∥∥sc(k) − WT z(k)

∥∥2

2

}
, (13)

is obtained as

W =
[
F +

σ2
v

2
ILT

]−1

. (14)

It is easy to compute the lth symbol mean square error, i.e.,
E
{∣∣eT

l

[
sc(k) − WT z(k)

]∣∣2}, as

ε = eT
l

[(
2
σ2

v

)
F + ILT

]−1

el. (15)
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TABLE I

ALGORITHM SUMMARY OF THE PROPOSED GROUP-WISE V-BLAST DETECTOR.

Initialization:
Hc,0 = Hc; F0 = F = HT

c Hc;
yc,0(k) = yc(k); z0(k) = z(k) = HT

c yc(k);
Recursion: For 0 ≤ i ≤ QD + NQM − 1

1. Qi =

�
F−1

i for ZF Criterion��
2/σ2

v

�
Fi + I(LT −iP )

�−1 for MMSE Citerion
2. l̄i = argmin1≤li≤QD+NQM−i βli , where βli is the ((li − 1) P + 1)th diagonal entry of Qi

3. Gi =

�
F−1

i for ZF Criterion�
Fi +

�
σ2

v/2
�
I(LT −iP )

�−1 for MMSE Citerion

4. Wi = Gi

�
e(l̄i−1)P+1 · · · e(l̄i−1)P+P

�
5. ŝc,l̄i

(k) = Q �
WT

i zi(k)
�

6. yc,i+1(k) = yc,i(k) − H̄c,l̄i
ŝc,l̄i

(k)

7. H̄c,l̄i
is obtained from Hc corresponding to sc,l̄i

(k)

8. zi+1(k) = HT
c,i+1yc,i+1(k)

9. Fi+1 = HT
c,i+1Hc,i+1

10. Hc,i is obtained by deleting i block(s) of P columns from Hc

Equation (15) shows that the optimal MMSE V-BLAST order-
ing is determined by the index of the minimal diagonal entry of
the matrix

[(
2/σ2

v

)
F + ILT

]−1
. Since F ∈ F(L) and adding

diagonal perturbation ILT to a scaled F essentially preserves
the block orthogonal structure, it follows immediately that[(

2/σ2
v

)
F + ILT

] ∈ F(L) and so is
[(

2/σ2
v

)
F + ILT

]−1
by

Lemma 4.1. The PL symbol mean square errors (diagonal
entries of

[(
2/σ2

v

)
F + ILT

]−1
) can thus be categorized into

L groups of constant elements, one associated with a symbol
group transmitted from either an OSTBC user or from a
single antenna of an SM terminal (as in the ZF case). This
thus warrants the group-wise MMSE detection in the initial
layer. Through the group detect-and-cancel process, it can be
checked that, at the ith iteration (1 ≤ i ≤ L− 1), the symbol
mean square errors are computed as the diagonal entries of
the matrix

[(
2/σ2

v

)
Fi + IP (L−i)

]−1
, where Fi = HT

c,iHc,i.

Since
[(

2/σ2
v

)
Fi + IP (L−i)

]−1 ∈ F(L− i), so is the inverse
matrix (again by Lemma 4.1). This shows that mean square
errors in the ith layer are sorted into the same group-wise
manner, hence allowing for a group-wise MMSE detection.

B. Algorithm Outline and Related Discussions

The proposed group-wise V-BLAST algorithm is outlined in
Table I (in Table I, H̄c,l̄i is the channel matrix obtained from
Hc corresponding to the l̄th group of data stream in the ith
iteration, and Q(·) is the slicing operation associated with the
adopted symbol constellation). Several discussions regarding
the proposed method are given as follows.

(a) The group-wise detection property benefits uniquely
from the use of the orthogonal codes. When non-
orthogonal codes are used, the PL diagonal entries of
F−1 in general will take on PL different levels: one has
to resort to a symbol-wise based algorithm realization.
Therefore, PL stages are needed for separating the PL
dual-mode signals; the resultant algorithm complexity,
however, could be large.

(b) It is noted that, even if orthogonal codes are used, the
appealing group-wise detection property does not hold
if the number of the transmit antennas of each user is
greater than four (for N > 4, the matrix F is observed

to lose the special structure as specified in Prop. 3.1).
The assumption N ≤ 4 is thus necessary regarding the
feasibility of the group-wise detection. This requirement
can usually be met in practice since, to reduce the
implementation cost and physical size, it is undesirable
to place too many antenna elements on the user handsets.

(c) In principle, the ZF metric aims for complete nulling
of the interference from other users but is subject to
possible noise enhancement, whereas the MMSE cri-
terion focuses on joint suppression of interference and
noise. Although the two design metrics resort to dif-
ferent strategies for symbol recovery, in the considered
scenario they both lead to the appealing group-wise de-
tection property. This is because the respective optimal
detection orders in each processing layer, as shown in
the above discussions, are determined by the diagonal
entries of certain structured matrices belonging to the
family F(L) (this is also a unique feature pertaining to
OSTBC).

(d) Another dual-signaling environment is seen in the mono-
link systems recently considered in [9], in which a subset
of antenna elements are selected for transmitting the
Alamouti coded streams, while the others are left for
spatial multiplexing. It is noted that, in this single-user
scenario, the (antenna-wise) symbol synchronization as-
sumption is typically satisfied, and the proposed group-
wise V-BLAST detector can be used for separating the
multi-antenna symbol streams.

C. Conservation of Spatial Resource: CDMA Based Imple-
mentation

In the current framework, the assumption on the number
of receive antennas M ≥ QD + NQM is needed since only
the spatial resource is employed for removing the multi-access
interference (MAI). This requirement seems critical in prac-
tice because M could be prohibitively large in a user-dense
environment. A typical approach to conserving the spatial
resource is to alternatively adopt the multi-access techniques,
e.g., CDMA, for MAI mitigation [13]. Basically, the MAI
can be effectively suppressed through chip despreading, as
long as all the cell user are assigned with distinct spreading
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(signature) codes; in this case, only M ≥ N receive antennas
are required in order to separate the symbol streams for each
SM user. However, since the code resource could usually
be limited, especially for the high-speed demand in which
small spreading gains are preferred, some users may have to
share the same code, such that the antenna resource is still
necessary for further MAI rejection. Hence, a conceivable
implementation allowing for a moderate spatial cost is to
incorporate CDMA, leverage the code resource to mitigate
MAI from the distinct-code users, and reserve the spatial
resource to tackle MAI among the remaining same-code users.
The assumption M ≥ QD +NQM , as a result, would not be
too severe since QD and QM merely account for the numbers
of the same-code OSTBC and SM terminals. The proposed
group-wise detection property remains true when separation
of the same-code user’s signals is considered.

Remark: It should be noted that, in a CDMA based
implementation, the cell-wide synchronization is no longer
necessary since the MAI among distinct-code users can be re-
jected through despreading. As a result, only the data streams
transmitted from the same-code users need to aligned for
further signal separation: symbol synchronization is required
merely within a user subset, namely, the same-code user group,
but not for all the user terminals.

V. LOW-COMPLEXITY ALGORITHM IMPLEMENTATION

By further exploiting the embedded structure of the MF
channel matrix F and its inverse, this section derives a low-
complexity detector realization. Since the ZF and MMSE
weighting matrices exhibit essentially the same algebraic
structure (namely, both fall within the class F(L) for some L),
the discussions will focus on the ZF case for notational sim-
plicity. In what follows it will be shown that the computation
of F−1, which would often dominate the cost, boils down to
solving a set of linear equations of relatively small dimensions.
Moreover, inverting the “big” F in the initial stage turns out
to be the only direct matrix inversion to be performed; the
inverse matrix F−1

i required at each subsequent stage can be
recursively computed based on the parameters available in
the previous stage. Flop count analysis is also provided for
complexity comparison with other competitive methods.

A. Computation of F−1

Recall from Prop. 4.1 that every P × P block off-diagonal
submatrix of F−1 is a P × P orthogonal design, and each
diagonal block is sparse (it is a scalar multiple of IP ). This
imposes certain structural redundancy in F−1 that should be
carefully tackled for avoiding the computation of duplicate
parameters. Indeed, since a P × P orthogonal design is
completely characterized by P independent variables [21], it
suffices to determine one column, say, the last one, for each
off-diagonal block submatrix; the rest columns can simply
be obtained from the last one through some known linear
transformations [21]. For each diagonal block, in particular,
only one unknown needs to be found. The aforementioned a
priori structural information shows that, to completely specify
F−1, we only need to find its (jP )th columns for 1 ≤ j ≤

L: this amounts to solving the linear equations of reduced
dimensions

FG = E, (16)

in which G and E are LT × L matrices whose lth columns
are, respectively, the (jP )th columns of F−1 and the identity
matrix ILT . To solve for the unknown G based on (16),
one can further take into account the sparse nature of G.
Specifically, for the jth column gj , we must have gi,j = 0 for
(j − 1)P + 1 ≤ i ≤ jP − 1; the imbedded P − 1 consecutive
zero entries in gj come from the last column of the jth P ×P
diagonal block of F−1. As a result, only the nonzero entries
are to be determined. Moreover, since F−1 is Hermitian, in
each gj , we only have to compute the entries lying below
gjP−1,j(= 0). In summary, for the jth column gj , only the
last P (L− j)+1 entries are to be determined. It is noted that
the number of unknowns is decreased by an amount of P as
the column index j increases to j + 1 (for the last column
gjP−1, only one unknown is yet to be computed).

To incorporate the above structural information for solving
(16), let F = LLT , where L is an LT × LT lower triangular
matrix, be a Cholesky factorization [8, p-144] of the matrix
F; such a factorization is typically required for inverting a
nonsingular square real symmetric matrix [8, p-141]. In terms
of columns of G and E, (16) can thus be equivalently rewritten
as

LLT gj = ej , 1 ≤ j ≤ L. (17)

Since L is lower triangular and hence LT is upper triangular,
a standard approach to solve for the unknown column vector
gj in (17) is the forward and back substitutions [8, p-121]:
for each j, it first solves Luj = ej , where uj � LT gj ,
by forward substitutions for the intermediate vector uj and
then backward solves LT gj = uj for the desired unknown
gj . As long as the intermediate vector uj is obtained, the
back substitution process successively computes the elements
in gj one after another, starting from the last entry (since
LT is upper triangular). Since the unknowns to be determined
in each gj all lie below the entry gjP−1,j(= 0), the back
substitution procedure simply terminates as long as gjP,j

is computed; the remaining entries on top of gjP−1,j are
redundant since F−1 is Hermitian.

Remark: In the MMSE V-BLAST case, an alternative for
computing the initial MMSE weight

[(
2/σ2

v

)
F + ILT

]−1

is to decompose F = HT
c Hc into a sum of LT rank-

one matrices, each being an outer-product of a row of the
channel matrix Hc, and then uses the Sherman-Morrison
formula to recursively obtain the solution [2, p-1725]. Such
a recursive procedure does not seem to be a good choice
for the considered structured inverse computation. This is
because the recursive formulation, each time incorporating a
“piece” of the channel matrix component, renders it difficult to
exploit the structural information (seen based on the “whole”
channel matrix) for discarding the redundant coefficients for
computational reduction. In the proposed algorithm [2] (see
(28) in [2, p-1725]), the adopted recursive computation of F−1

at each step needs to perform the PM dimensional matrix
and vector operations. After performing PL steps, the total
number of flop counts is thus 7

2P
3L2M + 5

2P
2LM , where

M is the number of receive antennas with M ≥ L. For
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the proposed method, according to [8, p-144], the number
of flop counts3 of performing the Cholesky factorization of
F is 1

3N
3Q3

M +N2P 2QDQ
2
M + 1

2N
2Q2

M +NP 2Q2
DQM −

2NP 2QDQM +3NPQDQM + 1
3P

2Q3
D. The number of flop

counts of the forward substitution for solving uj , 1 ≤ j ≤ L,
is 1

3N
3P 2Q3

M+ 1
2N

2P 2QDQ
2
M−N2PQ2

DQM+ 1
3NP

2Q3
D+

3
2NP

2Q2
DQM − 1

2NP
2QDQ

2
M − 4NPQDQM . To solve gj ,

1 ≤ j ≤ L, by the backward substitution, we will need
1
3N

3P 2Q3
M + 3

2N
2P 2Q2

M − 2N2PQ2
D + 1

2NP
2Q2

DQM −
2NP 2QDQM +NP 2Q3

D − 1
2P

2Q2
D flop counts. As a result,

the total number of flop counts for solving F−1 is

Cinitial =
2
3
N3P 2Q3

M +
1
3
N3Q3

M +
3
2
N2P 2QDQ

2
M

+
3
2
N2P 2Q2

M −N2PQ2
DQM − 2N2PQ2

D

+
1
2
N2Q2

M +
1
3
NP 2Q3

D +
3
2
NP 2Q2

DQM

−4NP 2QDQM −NPQDQM +NP 2Q3
D

+
3
2
NP 2Q2

DQM − 1
2
NP 2QDQ

2
M +

1
3
P 2Q3

D

−1
2
P 2Q2

D. (18)

It can be seen that the proposed method requires less compu-
tation.

B. Recursive Computation of F−1
i

Recall from Section IV that, at the ith stage, the inverse
matrix F−1

i �
(
HT

c,iHc,i

)−1
, where Hc,i is obtained by

deleting i block(s) of P columns from Hc, is required for
determining the optimal detection order and the associated
weighting matrix. With F−1 obtained in the initial stage, in
what follows we will show how F−1

i at each stage can be
recursively computed based on Fi−1 and F−1

i−1.
It is noted again that, at the ith processing stage, 1 ≤ i ≤

L − 1, the matrix Fi = HT
c,iHc,i is simply obtained from

Fi−1

(
= HT

c,i−1Hc,i−1

)
by deleting one block of P columns

and the corresponding indexed block of P rows. Without loss
of generality, we may assume that the last column and row
blocks of Fi−1 are to be deleted; otherwise we can simply
permute those to be discarded to the right and bottom ends of
Fi−1 to fit the prescribed form. As a result, we can partition
Fi−1 as

Fi−1 =

⎡
⎢⎢⎣ Fi Bi−1

BT
i−1 Di−1

⎤
⎥⎥⎦ , (19)

where Bi−1 ∈ R(LT −iP )×P and Di−1 = di−1IP for some
scalar di−1 are to be deleted. Denote by F̄i−1 the (LT −iP )×
(LT − iP ) principle submatrix of F−1

i−1 obtained by deleting
its last iP columns and last iP rows; the matrix F̄i−1 is thus
available from the (i−1)th stage. From (19) and by using the

3The low-order terms which are insignificant to the total count are ne-
glected.

inversion lemma for block matrix4, F̄i−1 can be expressed in
terms of Fi, Bi−1, and Di−1 as

F̄i−1 =
(
Fi − Bi−1D−1

i−1B
T
i−1

)−1

=
(
Fi − d−1

i−1Bi−1BT
i−1

)−1
, (20)

where the second equality in (20) follows since Di−1 =
di−1IP . Equation (20) links the matrix Fi, which is to
be inverted at the ith step, to the elements of Fi−1 and
F−1

i−1, which are available from the previous iteration. In
particular, it follows immediately from (20) that Fi = F̄−1

i−1 +
d−1

i−1Bi−1BT
i−1, and we can use the matrix inversion lemma

[14, p-246] to obtain

F−1
i =

(
F̄−1

i−1 + d−1
i−1Bi−1Bi−1

)−1

= F̄i−1 − F̄i−1Bi−1

(
BT

i−1F̄i−1Bi−1 + di−1IP

)−1

×BT
i−1F̄i−1. (21)

From (21), we can see that the computation of the (LT −iP )×
(LT − iP ) inverse matrix F−1

i is relieved into inverting the
P × P matrix BT

i−1F̄i−1Bi−1 + di−1IP , which is of a lower
dimension. In fact, the efforts to invert this P ×P matrix can
be reduced even further. To see this, we need the next result.

Proposition 5.1: Let Bi−1 and F̄i−1 be defined in (19)
and (20), respectively. Then it follows that BT

i−1F̄i−1Bi−1 =
λi−1IP for some scalar λi−1.

Proof: For a fixed i, let us define J � L − i. For 1 ≤
k, l ≤ J , denote by Uk,l the (k, l)th P × P block submatrix
of F̄i−1. We drop the index indicating the dependency of J
and Uk,l on the number of iteration i−1 to simplify notation.
Let us write Bi−1 =

[
BT

1 · · ·BT
J

]T
, where Bk ∈ O(P ); then

it follows immediately that

Bi− 1T F̄i−1Bi−1 =
J∑

k,l=1

BT
k Uk,lBl

=
J∑

k=1

BT
k Uk,kBk

+
J∑

k,l=1, k �=l

BT
k Uk,lBl. (22)

Since F̄i−1 ∈ F(J), we have by definition Uk,k =
ηkIk for some scalar ηk: the first summation on the
right-hand-side of the second equality in (22) thus simpli-
fies as

∑J
k=1 BT

k Uk,kBk =
∑J

k=1 ηkBT
k Bk = ηIP for

some scalar η. On the other hand, it can be shown that
BT

k Uk,lBk ∈ O(P ) [21], and this implies BT
k Uk,kBl +

BT
l Ul,kBk = αk,lIP for some scalar αk,l. As a result, we

have
∑

k,l=1, k �=l B
T
k Uk,lBl = η̃IP for some scalar η̃, and

the assertion follows.
Proposition 5.1 implies

BT
i−1F̄i−1Bi−1 + di−1IP = ci−1IP , (23)

4Assume that W =

�
X Y
YT Z

	
with X and Z invertible. By

compatibly partitioning the inverse matrix as W−1 =

�
X̄ Ȳ
ȲT Z̄

	
, we

then have X̄ =
�
X − YZ−1YT

�−1.



1904 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 7, JULY 2006

and, from (21), we reach the following key equation for
inverting the matrix F−1

i

F−1
i = F̄i−1 − c−1

i−1F̄i−1Bi−1BT
i−1F̄i−1. (24)

Given Fi−1 and F−1
i−1, equation (24) provides a simple recur-

sive formula for computing F−1
i without any direct matrix

inversion operations. The proposed recursive approach for
computing F−1

i is basically a block based implementation
of the method in [2, p-1726] introduced for the conventional
symbol-wise V-BLAST algorithm. A distinctive feature of our
scheme, nonetheless, is the attractive simplification of (21)
to (24), with which the computation of the P × P inverse
matrix

(
BT

i−1F̄i−1Bi−1 + di−1IP

)−1
in (21) boils down to

finding the scalar parameter c−1
i−1 (this benefits from the usage

of orthogonal codes). To roughly assess the associated saving
in flop cost, it is noted from (23) that the scalar parameter
ci−1 is completely determined by the (constant) diagonal
entries of the matrix BT

i−1F̄i−1Bi−1. This implies that the
computation of ci−1 amounts to evaluating a quadratic form
bT

i−1F̄i−1bi−1, where bi−1 denotes an arbitrary column of
Bi−1. The required number of flop counts is no more than
2P 2 + P − 1, which is substantially small than that required
for inverting a P × P matrix.

C. Complexity Comparisons with Other Multiuser Detection
Schemes

This subsection compares the algorithm complexity of the
proposed group-wise V-BLAST detector with two typical
signal detection schemes for MU ST coded wireless systems,
namely, the Naguib’s PIC scheme [16] and the Stamoulis’s
decoupled-based method [19].

It should be noted that the two comparable methods, orig-
inally tailored for the MU-STBC environment, rely on the
orthogonality property specific to the associated MU channel
matrix. In the considered dual-signaling case, this structural
requirement is not seen in the dual-mode MU channel matrix
Hc (owing to the presence of high-rate SM streams) but
can be “restored” through ST matched filtering (cf. Prop.
3.1). As a result, the two alternative schemes can fit the
considered dual-signaling systems based on the MF signal
model (8). To evaluate the flops, one should note that, for a
dual-signaling system with QM SM terminals, there are totally
(NQM )2 signature blocks of the form αIP imbedded in the
MF channel matrix F. These diagonal block submatrices will
impose certain sparse structure distributed over F, making it
difficult to compute the accurate flop counts. We thus assume
without loss of generality that the symbol groups of the QM

SM users are permuted to the top end of the MU symbol
vector sc(k); in this way all the sparse blocks will cluster
in the upper left corner of F (each P × P block of the
first PNQM × PNQM principle submatrix of F is a scalar
multiple of IP ). Such a “centralized” sparse structure of F
can simplify the process of flop evaluations. It is also noted
that, for a system with QM SM users and QD OSTBC users,
there are totally (QD + NQM )!/[(QD)!(NQM )!] dissimilar
group V-BLAST orderings. Due to the imbedded sparse nature
of F, the required flop counts will be different for distinct
sorting sequences. A reasonable complexity measure of the
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Fig. 2. Flop counts of the proposed group-wise V-BLAST detection as a
function of QD for an MU dual-signaling system, with Q = 16, QM =
Q − QD and N = 2.

V-BLAST detector, therefore, would be the mean flop counts,
averaged over all the possible orderings, but this turns out
to be highly intractable. A sensible approximation to the
exact mean flop counts is the average of the minimal and
maximal costs. Toward this end, we shall first determine the
orderings associated with the two extreme cases. The detection
orders allowing for the least computational effort must entail
an utmost benefit from the sparse structure in per layer
processing. The solutions are therefore the sorting sequences
in which exactly all the QD OSTBC streams are to be detected
in the initial QD layers; as such, all the dense blocks in F
resulting from the QD diversity users will be removed after
the first QD iterations and, meanwhile, the sparse structure
is retained as much as possible in each processing layer. The
detection orders incurring the highest complexity demand, on
the other hand, will be the particular choices which decide to
recover all the NQM SM signals in the initial NQM stages.
This will leave as many as possible the dense blocks in each
Fi for i > 1, hence the smallest possible sparse region to
be exploited for computational reduction. The average flop
cost of two extreme cases is listed in Table II (the results of
the Naguib’s and Stamoulis’s methods are also obtained in
essentially the same manner).

Example 5.1: Considering the QPSK modulation (i.e.,
D = 2) and choosing N = 2 (thus P = K = 2),
QD = QM = 2, L = 6, we have the result: CNaguib ≈ 4336,
CStamoulis ≈ 6648 and CGroup ≈ 1083, and this yields the
approximate ratio of complexity of 4 : 6 : 1 for Naguib’s two-
step method, Stamoulis’s method and proposed group-wise V-
BLAST method. As we can see, the proposed solution requires
less computation.

VI. TWO-STAGE PROCESSING OF DUAL-MODE SIGNALS

Let us consider a dual-signaling platform with Q users, each
equipped with N = 2 transmit antennas (Alamouti’s code for
diversity). In case that all the Q cell users are in the SM
mode, there will be totally NQ = 2Q transmitted symbols
during one signaling period, and one can use the conventional
symbol-wise V-BLAST detector to separate the 2Q coupled
symbol streams. Assume that there are 1 ≤ QD ≤ Q users
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TABLE II

FLOP COUNTS OF DIFFERENT DETECTION METHODS (D: CONSTELLATION SIZE).

Method Flop Counts

Group-Wise V-BLAST 2N3P 2Q3
M + 1

6
N3PQ3

M + 1
3
N3Q3

M + 19
6

N2P 2QDQ2
M +N2P 2Q2

M −N2PQ2
DQM −

2N2PQ2
D+N2PQDQ2

M + 3
2
N2PQ2

M + 4
3
NP 2Q3

D+ 11
2

NP 2Q2
DQM − 1

2
NP 2QDQ2

M −
12NP 2QDQM + 1

3
NPQ2

DQM + 4
3
P 2Q3

D

Stamoulis’s Method 25
12

N4P 2Q4
M + 23

3
N3P 2QDQ3

M− 19
6

N3P 2Q3
M + 25

2
N2P 2Q2

DQ2
M− 23

2
N2P 2QDQ2

M−
5
4
N2P 2Q2

M + 7
4
N2PQ2

M + 25
6

NP 2Q3
DQM − 23
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Fig. 3. Average BER performances of various detection schemes as a function
of SNR for a four-user MU-STBC system, with N = 2 and M = 4. The
Alamouti’s code with 8-PSK modulation is used for each user.

otherwise choosing the OSTBC mode. To realize a two-fold
diversity gain for the QD OSTBC links, the receiver has to
spend two time periods for data buffering, during which there
are totally 4(Q−QD)+2QD independent symbols sent from
all the users: 4(Q−QD) are from the SM users and 2QD are
from OSTBC users. Since 4(Q−QD)+2QD > 2Q whenever
1 ≤ QD ≤ Q, the presence of QD users switching to the
OSTBC mode does augment the data processing dimension (to
an excess of 2(Q−QD) over the full high-rate case). For Q =
16, Fig. 2 shows the required flop counts of the group-wise V-
BLAST detector as QD increases from 0 to 16. The QD = 0
case, with the most compact data model, serves as the inherent
benchmark cost. As the figure shows, the proposed group-wise
V-BLAST scheme tends to prevent significant excessive flop
counts over the QD = 0 case, and there is even a save in the
counts for QD ≥ 3. It is noted that the count reaches the peak
when QD = 1, and monotonically decreases with QD. This
is not unexpected, and is indeed true in general, since the
excess data processing dimension over the benchmark case
is 2(Q − QD), which attains the maximal when QD = 1.
For the full diversity case (Q = QD = 16), in which the
number of symbols to be detected is the same as the full
high-rate case (= 2Q), the proposed method achieves largest
flop count reduction. Based on these observations, the “joint”
processing of the dual-mode signal could entail more excess
flops over the benchmark performance when a few OSTBC

users are present. In such a case, a plausible approach for
complexity reduction is to first detect the OSTBC streams,
since they may potentially be more robust. By removing the
contributions of the detected OSTBC symbols from the data
model, one can resort to a symbol-wise V-BLAST algorithm
to recover the remaining SM streams over a relatively small
data model dimension. Since the detection order in this way
may violate the actual optimal sorting, such a “two-stage”
processing strategy can reduce computation at the expense of
a possible performance drop. The computational cost of such
an approach is also included in Table II, based on which the
amount of flop reduction with respect to the original method
can be found as

CΔ � (flop counts of original appraoch)

−(flop counts of two-stage approach)

= 2N3P 2Q3
M +

1
6
N3PQ3

M +
1
6
N2P 2QDQ

2
M

+N2P 2Q2
M −N2PQ2

DQM − 2N2PQ2
D
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2
N2PQDQ

2
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2
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2
N2Q3
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3
NP 2Q3
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2
NP 2QDQM − 1

2
NP 2QDQ

2
M

−6NP 2QDQM − 1
6
NPQ2

DQM +
1
3
P 2Q3

D. (25)

Given the system parameters considered in Example 5.1,
the two-stage approach reduces about a 47% computational
complexity associated with the original method with optimal
ordering.

VII. SIMULATION RESULTS

In this section we use several numerical simulations to
illustrate the performance of the proposed group-wise V-
BLAST detector. Each user’s channel is quasi-static: it re-
mains constant over each packet of 100 symbol blocks and
independently varies between packets. Also, perfect channel
knowledge at the receiver is assumed. In all simulations, the
transmit power of all users are set to be equal; the number of
receive antennas M is set to meet the minimal requirement,
i.e., M = L = QD +NQM .

A. MU-STBC Systems with Alamouti’s Code

This simulation considers the special MU-STBC case (with
Alamouti’s code) and evaluates the performances of the pro-
posed method with the Stamoulis’s method [19] and the
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Naguib’s method [16], both being tailored for the MU-STBC
systems. Fig. 3 compares the detection performances of the
three families of methods in a four-user system over i.i.d.
Rayleigh fading channels (with 8-PSK modulation) in terms
of the average bit error rates (BERs) (averaged over the
four detected streams). The results show that the group-wise
MMSE V-BLAST attains a better performance. The Naguib’s
two-step method [16] yields a comparable performance when
SNR is low but it degrades in the medium-to-high SNR
regime. It is noted that, in the Naguib’s two-step method,
the detection accuracy in the second stage hinges entirely
on the reliability of all the initial signal estimates. Accord-
ingly, each user’s symbol stream, detected via the PIC based
mechanism, would be subject to an essentially equal risk
of error propagation resulting from the incorrect decisions
in the initial stage. The V-BLAST solution, on the other
hand, can provide a layer-wise increase in receive diversity
to limit the effect of possible decision error leakage: this
would account for the superiority average performance over
the Naguib’s approach. The Stamoulis’s method [19], with or
without ordering, gives a relatively poor performance among
the three families; this is because, as compared with the other
two alternatives, the decoupled-based formulation also does
not induce an increase in receive diversity as the iteration goes
on. Detailed comparisons of the three competitive methods
for MU-STBC systems, in terms of algorithm operations and
complexities, are referred to [24].

B. Symbol Detection in Dual-Signaling Systems

We consider a system with four users, two experiencing
correlated channels described by the Ricean model [4] and the
other two being over i.i.d. Rayleigh fading channels (two trans-
mit antennas are placed at each user terminal) The Alamouti
and SM schemes, respectively, are used for data transmission
over Ricean and Rayleigh channels; the symbol constellations
used are QPSK for SM terminals and 16-QAM for OSTBC
terminals so that the bit data rates are the same. The first
experiment compares the performances of the above three
detection schemes in the dual-signaling environment. Fig. 4
(a) (b), respectively, show the average BER of the two detected
OSTBC users (the κ-factors in the two Ricean channels are
both set to be κ = 10, which corresponds to a medium eigen-
value spread = 5.3) and the two SM users. Compared with
Fig. 3, we can see that the BER curves in the dual-singling
case exhibit similar tendency as in the MU-STBC systems;
the proposed MMSE group-wise V-BLAST achieves the best
performance as long as SNR is above 10 dB. It is noted that
the performance of the proposed two-stage processing scheme
(for further computational reduction) is comparable to that of
the Naguib’s two-step method; however, it incurs a 3 dB loss
in SNR at BER = 10−3 for OSTBC users and 1.5 ∼ 2 dB
for SM users as compared with the original method (with
optimal ordering). The second experiment simulates the BER
performances of three representative detection schemes (the
ordered Stamoulis’s method, the Naguib’s two-step method,
and the proposed group-wise MMSE V-BLAST) at different
channel correlation tendencies. For the two Ricean channels,
we consider five different Ricean κ-factors: 0, 1, 10, 30, and
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Fig. 4. BER performance of various detection schemes as a function of SNR
for a four-user dual-signaling system, with QD = QM = 2, N = 2, M = 6
and κ = 10. 16-QAM and QPSK modulations are used for OSTBC signaling
and SM signaling, respectively. (a) Average BER of the two detected OSTBC
users. (b) Average BER of the two detected SM users.

100 (large κ implies severe correlations; the extreme selections
κ = 0 and κ = 100, respectively, render the channel to be
independent fading and almost light-of-sight). Figs. 5 (a) (b)
show the average BER of the two classes of detected streams
for different κ factors. It can be seen that the performances
in all cases deteriorate as κ increases. This is not unexpected
since the OSTBC scheme may lose the diversity gain over
the correlated channels, and large κ factor thus incurs large
BER degradation. The performance drop of the SM scheme
may result from the increased amount of error propagation due
to the poorly detected OSTBC streams caused by the loss in
diversity gain over low-rank channels. The figure also shows
that, for a fixed SNR, the proposed group-wise MMSE V-
BLAST seems to incur less BER spread as κ increases. This
could benefit from the V-BLAST mechanism, in which the
detect-and-cancel process induces more receive diversity and
improves detection accuracy in each layer, leading to better
average performance against severe spatial correlation.

VIII. CONCLUSION

Co-channel interference mitigation in multiuser space-time
wireless systems is of great importance for maintaining a
good link quality. The originality of the presented study is the
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Fig. 5. BER performance of three detection schemes in a four-user dual-
signaling system for different Ricean κ-factors, with QD = QM = 2, N = 2
and M = 6. 16-QAM and QPSK modulations are used for OSTBC signaling
and SM signaling, respectively. (a) Average BER of the two detected OSTBC
users. (b) Average BER of the two detected SM users.

investigation of the impact of orthogonal ST block codes on
the V-BLAST based detection in a multiuser dual-signaling en-
vironment. The proposed group-wise detection property, based
on exploiting the block-orthogonal structure imbedded in the
matched-filtered channel matrix, potentially reduces computa-
tions and the overall decoding load. Our flop count analysis
shows that, with a medium number of OSTBC users in the
cell, the complexity of the proposed solution is comparable
to that of the conventional symbol-wise V-BLAST algorithm
in a pure SM signaling environment: our solution is thus an
attractive receiver candidate for a dual-signaling platform. The
distinctive structure of the channel matrix also leads to a low-
complexity detector realization, which affords relatively low
computational cost when compared with existing methods.
Numerical simulations demonstrate the effectiveness of the
proposed V-BLAST based solution: it compares favorably with
existing reported interference mitigation schemes for multiuser
space-time coded systems.

APPENDIX I
PROOF OF PROPOSITION 3.1

Assume that real-valued constellations with unit-rate codes
(K = P ) are used for STBC terminal. Part (1) of the

proposition has been shown in [11]. It only needs to prove
(2) and (3).

Proof of (2): We first note from (3) and (4) that the effective
signal component (priori to matched filtering) of the stream
from the nth transmit antenna of the pth SM user is H̃p,nÃ(n)

p ,
where H̃p,n ∈ R2MP×2P denotes the matrix consisting of
the (2P (n− 1) + l)th columns of H̃p (see (4)), for 1 ≤ l ≤
2P , Ã(n)

p ∈ R2P×P denotes the real-valued ST modulation
matrix of the nth antenna at the pth SM user as defined
in (4). Accordingly, the MF coupling signature between this
stream and that from the dth antenna of the qth SM user is(
Ã(n)

p

)T

H̃T
p,nH̃q,dÃ

(d)
q , whose (i, j)th entry, 1 ≤ i, j ≤ P ,

is directly computed as

f (i,j)
p,q (n, d)

=
P∑

k=1

(
ã(k)

p,i (n)
)T

H̄T
p,nH̄q,dã

(k)
q,j (d)

=
K∑

k=1

Re
{(
a
(k)
p,i (n)

)∗
hH

p,nhq,da
(k)
q,j (d)

}

= Re

{
M∑

m=1

(
h(m)

p,n

)∗
aH

p,i(n)aq,j(d)h
(m)
q,d

}
(26)

where ã(k)
p,i (n) �

[
Re
{
a
(k)
p,i (n)

}
Im
{
a
(k)
p,i (n)

}]T
∈ R2 with

a
(k)
p,i (n) being the nth entry of a(k)

p,i , (the kth column of the
ST modulation matrix Ap,i),

H̄p,n �
[

Re {hp,n} −Im {hp,n}
Im {hp,n} Re {hp,n}

]
∈ R2M×2, (27)

with hp,n �
[
h

(1)
p,n, . . . , h

(M)
p,n

]T
∈ CM being the nth column

of Hp, and aT
p,i(n) is the nth row of Ap,i. Recall that Ap,i is

simply a P × P zero matrix except that the rth row is equal
to eT

s , where i = (r − 1)P + s with 1 ≤ r ≤ N , 1 ≤ s ≤ P ,
and es is the sth standard unit vector in RP . As a result,
it is easy to check that for 1 ≤ i, j ≤ P , aH

p,i(n)aq,j(d) =
1 if i = j, but aH

p,i(n)aq,j(d) = 0 whenever i �= j. The
above analysis thus shows that, for p, q ∈ SM , we always

have
(
Ã(n)

p

)T

H̃T
p,nH̃q,dÃ

(d)
q = αIP for some scalar α.

Proof of (2): It suffices to verify that the MF coupling
signature between the pth STBC stream and the SM stream
transmitted from the nth antenna of the qth SM terminal is a
P × P orthogonal design. It is easy to see that the effective
signal coupling matrix is ÃT

p H̃T
p H̃q,nÃ(n)

q , where Ãp is the
real-valued ST modulation matrix of the pth user, with the
(i, j)th entry, 1 ≤ i, j ≤ P , being computed as

f (i,j)
p,q (n) =

P∑
k=1

(
ã(k)

p,i

)T

H̄T
p H̄q,nã(k)

q,j (n)

= Re

{
M∑

m=1

(
h(m)

p

)H

Ap,iaq,j(n)h(m)
q,n

}
(28)

where
(
h(m)

p

)T

is the mth row of Hp, and

H̄p �
[

Re {Hp} −Im {Hp}
Im {Hp} Re {Hp}

]
∈ R2M×2N . (29)
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TABLE III

SUMMARY OF STRUCTURES OF THE MF CROSS-COUPLING MATRIX Fp,q FOR COMPLEX-VALUED CONSTELLATIONS.

N = 2(K = 2) N = 3 or 4(K = 8)

p, q ∈ SD
p = q: Fq,q = αqI4

p �= q: Fp,q ∈ O(4)

p = q: Fq,q = αqI8

p �= q: Fp,q ∈ U(8)

where U(1,1)(8) = U(2,2)(8) ∈ O(4)

U(1,2)(8) = U(2,1)(8) = O4

p, q ∈ SM

p = q: Fq,q ∈ R8×8

F
(n,n)
q,q = αq,nI4

F
(n,d)
q,q ∈ V(4), 1 ≤ n, d ≤ 2

p �= q: Fp,q ∈ R8×8

F
(n,d)
p,q ∈ V(4), 1 ≤ n, d ≤ 2

where V(1,1)(4) = V(2,2)(4) = c1I2

V(1,2)(4) = −V(2,1)(4) = c2I2

p = q: Fq,q ∈ R16N×16N

F
(n,n)
q,q = αq,nI16

F
(n,d)
q,q ∈ V(16), 1 ≤ n, d ≤ N

p �= q: Fp,q ∈ R16N×16N

F
(n,d)
p,q ∈ V(16), 1 ≤ n, d ≤ N

where V(1,1)(16) = V(2,2)(16) = c1I8

V(1,2)(16) = −V(2,1)(16) = c2I8

p ∈ SD , q ∈ SM
Fp,q ∈ R4×8

F
(1,n)
p,q ∈ O(4), 1 ≤ n ≤ 2

Fp,q ∈ R8×16N

F
(1,n)
p,q ∈ D(8, 16), 1 ≤ n ≤ N , where

D(1,1)(8, 16) = D(1,2)(8, 16) = D(2,3)(8, 16)

= −D(2,4)(8, 16) ∈ O(4)

D(2,2)(8, 16) = D(1,3)(8, 16) = D(1,4)(8, 16)

= −D(2,1)(8, 16) ∈ O(4)

In (28), aT
q,j(n) is the nth row of Aq,j , whereas the OSTBC

ST modulation matrix Ap,i is directly determined by the
construction of the orthogonal codewords (see [21]). For the
p = 2 with real-valued constellation case (assuming n = 1
without loss of generality), we have

Ap,1 =
[

1 0
0 1

]
, Ap,2 =

[
0 1
−1 0

]
;

Aq,1 =
[

1 0
0 0

]
, Aq,2 =

[
0 1
0 0

]
;

(30)

From (28)-(30), it can be easily checked that f (1,1)
p,q (1) =

f
(2,2)
p,q (1) and f (2,1)

p,q (1) = −f (1,2)
p,q (1), which immediately im-

plies that ÃT
p H̃T

p H̃q,nÃ(n)
q belongs to O(2). For P ∈ {3, 4},

the results can be shown by first identifying the respective
families of Ap,i’s and aT

q,j(n)’s and by following the same
procedures.

APPENDIX II
MATCHED-FILTERED CHANNEL MATRIX:

COMPLEX-VALUED CONSTELLATION CASE

We present the analogue results of Prop. 3.1 when the
complex-valued symbols are used. It is noted that, in this case,
the available code rate depends on the number of transmit
antennas N [21]: full-rate code for N = 2 (hence K = P =
2), and half-rate code for N = 3 or 4 (K = 8, P = 4).
The results are summarized in Table III. The derivations are
to first identify in each case the ST modulation matrices; each
signature matrix is then computed to verify the result (the
detail is referred to [12]. Note that in Table III, A(i,j) is the
(i, j)th block submatrix of A with proper matrix dimension.

APPENDIX III
PROOF OF LEMMA 4.1

The proof is based on a crucial fact about the orthogonal
designs [21]. Specifically, it can be checked by analytic

computations that, if M1,M2 ∈ O(P ), then so are M1 +M2

and M1M2, that is,
Fact 1: The set O(P ) is closed under addition and multi-

plication. Moreover, for any M1 ∈ O(P ), it is easy to see
that M1 + MT

1 = γIP for some γ.
Based on Fact 1, the result can be shown by induction on

L.
For the L = 1 case, the result is obvious since F = αIP .

Assume that the result is true for an arbitrary L > 1, that is,
F ∈ F(L) implies F−1 ∈ F(L) for such an L. We have to
check that F−1 ∈ F(L+ 1) whenever F ∈ F(L+ 1). To see
this, let us partition an arbitrary F ∈ F(L+ 1) as

F =

⎡
⎢⎢⎣ A B

BT D

⎤
⎥⎥⎦ , (31)

where A ∈ RPL×PL, B ∈ RPL×P , and D ∈ RP×P . We
note that, since F ∈ F(L + 1), we have (a) A ∈ F(L) and
hence A−1 ∈ F(L) by assumption, (b) D = cIP for some
scalar c, and (c) if we write B =

[
BT

1 · · ·BT
L

]T
, where Bi ∈

RP×P , then we have Bi ∈ O(P ). Let us similarly write

F−1 =

⎡
⎢⎢⎣ Ā B̄

B̄T D̄

⎤
⎥⎥⎦ , (32)

where Ā ∈ RPL×PL, B̄ ∈ RPL×P , and D̄ ∈ RP×P . To
show that F−1 ∈ F(L+ 1), it suffices to check that (1) Ā ∈
F(L), (2) B̄ =

[
B̄T

1 · · · B̄T
L

]T
, where B̄i ∈ RP×P , is such

that each B̄i ∈ O(P ), and (3) D̄ = dIP for some scalar d.
Properties (1)-(3) can be shown based on the inversion formula
for block matrices, and by exploiting Fact 1. The detail is
referred to [24].
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APPENDIX IV
GROUP-WISE V-BLAST DETECTION: COMPLEX-VALUED

CONSTELLATION CASE

The group-wise V-BLAST detection for complex-valued
constellation case can similarly be established if we observe
from Table III that the MF channel matrix F does consist
of orthogonal design block submatrices. By going through
essentially the same arguments as what we have done in
the real symbol case, we can similarly derive a block based
ZF/MMSE V-BLAST detector (2P real symbols are detected
for an STBC user and 2K real symbols for an antenna of an
SM user per iteration). Since the derivations are basically the
same as those in the real symbol case, we will not go them
through but only refer the detail to [12].
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