
An event-driven framework for inter-user

communication applications

Chien-Chih Hsu, I.-Chen Wu*

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

Received 16 June 2004; revised 20 May 2005; accepted 24 May 2005

Available online 10 August 2005

Abstract

This paper presents an event-driven framework for inter-user communication applications, such as Internet gaming or chatting, that require

frequent communication among users. This paper addresses two major blocking problems for event-driven programming for inter-user

communication applications, namely output blocking and request blocking. For the former, an output buffering mechanism is presented to

solve this problem. For the latter, a service requesting mechanism with helper processes is presented to solve this problem. The above two

mechanisms are incorporated into the framework presented in this paper to facilitate application development. In practice, this framework

has been applied to online game development.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Inter-user communication applications; Event-driven programming; Concurrent programming; Framework; Threads
1. Introduction

With the rapid growth of the Internet, applications

involving real-time communication among clients have

become increasingly important. These applications include

chat rooms such as Yahoo! Chat [44] and EFnet chat

network [11], Internet games such as Yahoo! Games [45],

Warcraft III [4], and Counter-strike [41], and present and

instant messaging systems such as ICQ [17] and MSN

Messenger [23]. Consider an example of chat room or game

system. One user types a message and others then can read

that message in real time. Since these applications involve

inter-user communication, this paper calls them inter-user

communication applications.

For inter-user communication applications, servers are

often used to handle inter-user communication. For

example, game servers receive player events (or messages)

and then respond (or pass messages) to other players. For

inter-user communication applications, server developers

generally must consider the following criteria.
0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.05.005

* Corresponding author. Tel.: C886 3 573 1855; fax: C886 3 573 3777.

E-mail addresses: jjshie@csie.nctu.edu.tw (C.-C. Hsu), icwu@csie.

nctu.edu.tw (I.-C. Wu).
1. Minimize the client response time. If the response time is

unexpectedly long, interactions may not evolve as

expected or users may run out of patience.

2. Ensure high server stability. Server crashes cause all

clients connected to that server to become disconnected.

3. Support as many clients concurrently as possible. For

example, support thousands of players on a single server.

The first criterion is essential for server programming

in inter-user communication applications. To respond to

users as rapidly as possible, servers usually hold

connections to clients. Servers thus must handle client

messages (or events) from all connections concurrently

and server developers must handle concurrent events

carefully.

Two main programming models exist for concurrent

event handling, namely threading and event-driven pro-

gramming. Threading is a general-purpose technique for

managing concurrency. The advantages of threading

compared to event-driven programming include: (a) support

of context switching among threads, and (b) support of

scalable performance on multiple CPUs.

However, some developers and researchers [27,32] have

also observed that threading has some drawbacks compared

to event-driven programming. Note that Ousterhout [27]

described the following drawbacks:
Information and Software Technology 48 (2006) 471–483
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483472
1. Difficult to program. Threads generally require synchro-

nous mechanisms (e.g. locks) to access shared data

safely. However, incorrect locking may cause dead-

locks, making independent module design difficult.

Besides, another problem that also increases program-

ming difficulty is that several standard libraries are not

thread-safe [24].

2. Hard to debug. For threading, it is difficult for

developers to debug the code due to data and timing

dependencies. Besides, another problem that also

increases debugging difficulty is that thread stack sizes

are normally limited [22,24], causing processes crash

when stacks overflow. In contrast, in event-driven

programming, the lack of context switching among

event handlers makes it quite easy to debug the code by

recording and then replaying the sequence of events.

3. Difficult to achieve good performance. Coarse-grain

locking yields low concurrency, while fine-grain locking

tends to increase lock operations and thus reduce

performance.

Since inter-user communication applications are often

used to facilitate heavy inter-user communication among

numerous clients (say, thousands of players in a game

system), it makes the above drawbacks even worse. The first

two drawbacks imply that it is hard for threading to satisfy

the second criterion (above) of the inter-user communi-

cation applications; and the third drawback indicates that it

is hard for threading to satisfy the third criterion. Thus, for

the application developers who are more concerned with the

second and third criteria and less concerned with the two

threading advantages (described above), the event-driven

programming model becomes attractive. Hence, this paper

is motivated to study and design an event-driven framework

for inter-user communication applications. Note that a

framework [13,33] is defined as a set of collaborative

classes that enable developers to reuse the architecture and

implementation of a generic program for a set of domain

specific applications.

Our framework is based on event-driven programming

(rather than threading) for the following reason. In inter-

user communication applications, the above three draw-

backs of threading (or the second and third criteria) are

important as described above, while the two drawbacks of

event-driven programming are less important because they

can be ignored or alternatively can be solved in this paper.

First, regarding the two drawbacks of event-driven

programming, this paper ignores the one, namely not

supporting scalable performance on multiple CPUs, because

for most inter-user communication applications servers can

be separated into several processes to achieve scalable

performance. In the case of casual games, such as Chess and

Bridge, servers can naturally be separated into several

processes, e.g. one for each game. Even for most massive

multiplayer online games (MMOGs), such as Ultima Online

[12], the server system can use several processes each
dealing with a single game scene. Second, this paper focuses

on overcoming the other drawback of event-driven

programming: the need to pay attention to the blocking

problem in event handling.

This paper addresses two major blocking problems and

presents solutions or guidelines. The two blocking problems

are described below.

1. Output blocking: This problem occurs on sending

messages to clients with corresponding full kernel

buffers. The buffer generally becomes full when network

traffic is jammed. This problem frequently is neglected

at the start of server development.

2. Request blocking: This problem occurs when a server

waits for responses after sending requests to other

servers. For example, when a game server attempts to

read several game records from a remote database

server.

This paper presents solutions for the above two blocking

problems. An output buffering mechanism is presented to

solve the output blocking problem, while a service

requesting mechanism is presented to solve the request

blocking problem. Meanwhile, for the second problem,

several system and library calls that may cause the problem

are also identified. Both mechanisms are incorporated into

the event-driven framework presented in this paper.

Practically, the event-driven framework has been used in

the CYC game system [39] that provides players with casual

games, such as Chess, Bridge, Mahjong, etc. Currently, the

CYC game system has supported up to 10,000 concurrent

players.

The rest of this paper is organized as follows. Section 2

reviews the event-driven programming model. Section 3

describes the output blocking problem and presents

solutions. Section 4 then describes the request blocking

problem and presents solutions. Section 5 presents our

experiments by applying our framework to the CYC game

system and some performance analysis. Finally, Section 6

summarizes our work.
2. Event-driven programming

This section reviews the event-driven programming

model. In this model, applications wait for specific events

and dispatch occurring events to appropriate handlers for

processing. In networked applications, event-driven based

servers generally handle both input and output events. Input

events occur when sockets are ready to read, while output

events occur when sockets are ready to write.

Most event-driven based servers in the Unix environment

use the select system call [10,18,34,36] to demultiplex

input/output events. The select-based event-driven

model has been induced as the Reactor design patterns in

[31,32]. In this pattern, the core component named

Fig. 1. Class diagram of the Reactor pattern.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 473
Reactor waits for input/output events synchronously.

When such events occur, the Reactor object identifies the

handlers of these events and then invokes the appropriate

methods of the handlers.

The Reactor pattern defines an event handler interface.

Concrete event handlers implement the event handler

interface to support application specific services. These

concrete event handlers are registered with the Reactor
object dynamically, and then are passively reacted to the

occurrences of designated events. Application developers

only need to implement concrete event handlers, when

reusing the dispatching mechanism of the Reactor object.

Fig. 1 shows the class diagram of the Reactor pattern.

Note that the shadowed classes are application-specific (that

is, application developers must implement these classes

only). The responsibilities of each class are detailed as

follows.

† Reactor is the core component of event-driven

applications and a process normally requires only one

Reactor object. Applications can register and remove

event handlers by calling register_handler and

remove_handler of this object, respectively. The

handle_events method in this object is invoked to

run the event-handling loop, in which the select
system call is used to wait for some specified input or

output events synchronously. As events occur, the

Reactor object dispatches those events to the

corresponding event handlers.

† Event_Handler is an abstract event handler class

that defines several hook methods [16,30]: handle_-
input, handle_output, and handle_close.
Concrete event handlers are application specific event

handlers that inherit the Event_Handler class. When

an input (or output) event occurs for some concrete event

handler, the handle_input (or handle_output)
method of the handler is invoked to process the event.

Before handler removal, the handle_close method

is invoked for application specific termination oper-

ations.

† A socket acceptor is a special concrete event handler that

is responsible for accepting new connections. The
handle_inputmethod of the socket acceptor accepts

a new connection from a client (by calling accept in

Unix), generates the corresponding concrete event

handler for the client and then registers this handler

with the Reactor object. Since a socket acceptor does

not output data and hold state, its handle_output
and handle_close are generally empty.

The above Reactor pattern forms a basis of the event-

driven framework presented in the remaining part of this

paper.
3. Output blocking problem and solution

This section discusses the output blocking problem for

event-driven programming in inter-user communication

applications. Section 3.1 describes the output blocking

problem, and Section 3.2 then presents a mechanism for

solving this problem.

3.1. Output blocking problem

In most TCP/IP implementations, each socket contains

both send and receive buffers [10,36] in the kernel. Both

buffers are tens of kilobytes in size in Unix. When the send

buffer of a socket in the kernel is full, output to the socket is

blocked, since by default all sockets are in the blocking

mode [36].

Output blocking is a serious problem in inter-user

communication applications. For example, in a game

system, it is common for a server to receive one message

from one player, say A, and then immediately send that

message to a set of players, say including player B.

However, if network traffic is jammed near or around

player B (but not elsewhere), the server blocks due to the

failure to send the buffer of the socket to B.

From our experience with the CYC game system [39],

the output blocking problem seriously degrades the

performances of inter-user communication applications,

since network traffic may be jammed unexpectedly. A more

serious situation is the following: if a client crashes or its

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483474
network wire is disconnected, the server may not detect the

disconnection by default for approximately 9 min [35].

Furthermore, since a server for a game system usually

serves thousands of players or more, it is easy to cause

server blocking as above and result in slow responses to all

clients.

3.2. Solution to the output blocking problem

Stevens (cf. Section 15.2 of [36]) demonstrated a simple

buffering method when discussing non-blocking I/O. Since

the buffer size is fixed to a small number, this method still

cannot solve the output blocking problem when the message

size is larger than the buffer size. Some event-driven based

web servers, such as thttpd [1] and mathopd [5], used the

sendfile system call [40] as well as non-blocking

sockets to avoid the output blocking problem upon sending

files. The Flash web server [28] also proposed a method that

can avoid the output blocking problem for sending web

pages. The above work solved the problem specifically for

their own applications. In this paper, we propose a reusable

framework for generally solving this problem.

In order to solve this problem in event-driven based

servers, this paper presents a mechanism, called an output

buffering mechanism, and incorporates it into our event-

driven framework. This mechanism sets all the sockets to

the non-blocking mode and extends event handlers to those

with extra dynamic output buffers. The buffers are used to

store unsent data that cannot be sent when the send buffers

of sockets are full, as described above. Namely, the unsent

data are stored into the extra output buffer when the socket

send buffers are full, and the buffered data then are sent out

whenever the send buffers have available space.

Fig. 2 shows the class diagram of the event-driven

framework with the output buffering mechanism. This paper

simply describes the extra classes and methods in this figure

when compared to Fig. 1, as follows:
Fig. 2. Class diagram of the event-driven framew
† disable_output_handling and enable_out-
put_handling are two new methods added to the

Reactor class. The former method disables handlers

from handling output events, while the latter method

enables handlers to handle output events. Output

handling is initially disabled for all event handlers.

† Buffered_Output_Handler is an abstract class

that partially implements the Event_Handler inter-

face. Specifically, Buffered_Output_Handler
uses the handle_output method to handle unsent

data, while leaving the two methods handle_input
and handle_close unimplemented. The classes of

concrete event handlers extend the class Buffere-
d_Output_Handler, rather than Event_Hand-
ler, and only need to implement the above two

unimplemented methods.

In order to hide output handling from application

developers, the Buffered_Output_Handler class

hides the method handle_output and provides

developers with the write_data method, rather than

the write system call. The write_data method

normally writes data out as the write system call, but

stores the unsent data into a buffer on output blocking

and thus enables output event handling.

† Memory_Buffer is a class of dynamic sized buffers.

Each concrete event handler allocates a single Memor-
y_Buffer object to store unsent data when the send

buffer of the corresponding socket of the handler is full.

Since send buffers in the kernel rarely become full, the

physical buffer spaces of the dynamic output buffers are

created only when required and are immediately freed

when not required. Normally, the maximum buffer size

is set to a large number, for example 1 MB. Since each

message in the inter-user communication applications is

generally small, overflowing of Memory_Buffer
usually implies that the network has been jammed for
ork with the output buffering mechanism.

Fig. 3. Sequence diagram for accepting a new client.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 475
a while. Thus, it is reasonable to claim connection failure

in such situations.

This paper now illustrates the following interactions in

more detail, including: (1) how to accept a new client, and

(2) how to handle output buffering. Note that the UML

sequence diagram [6] is used to demonstrate these

interactions.

First, the sequence diagram in Fig. 3 illustrates how the

socket acceptor accepts a new client. When invoked to

handle an input message (in Step 3), the socket acceptor

accepts a connection request (in Step 4) and creates a

concrete event handler (in Step 5). The concrete event

handler then sets the corresponding socket to the non-

blocking mode (in Step 6), registers itself for event handling

with the Rector object (in Step 7) and initially disables

output handling (in Step 8).

Second, the sequence diagram in Fig. 4 illustrates how

a concrete event handler, hs, writes messages to another

handler, hd, with a full send buffer while handling input
Fig. 4. Sequence diagram for h
messages. In this case, the messages (from hs) cannot be
sent out due to the send buffer of the corresponding socket

in hd being full (in Step 5). Subsequently, in hd, the

unsent data is stored into its own Memory_Buffer (in

Step 6) and output handling is enabled (in Step 7) to

output the unsent data later. When the socket has available

space for output, the handle_output method of hd (in

Step 9) is invoked to send the data in Memory_Buffer
out (in Steps 10 and 11). Finally, output handling for hd
(in Step 12) is disabled if all the data are sent out

successfully.
4. Request blocking problem and solution

This section investigates the request blocking problem

for event-driven programming in inter-user communication

applications. Section 4.1 introduces the request blocking

problem. Section 4.2 then presents a solution to solve
andling output buffering.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483476
the request blocking problem for HTTP requests only. Next,

Section 4.3 leverages the solution in Section 4.2 to solve the

request blocking problem for all other requests.
4.1. Request blocking problem

For event-driven programming, application developers

must also be careful about using possible blocking

operations in event handling. Besides the output blocking

operations in Section 3, blocking operations are classified

into two types: namely local blocking operations and

request blocking operations.

The former include explicit system or function calls that

may block execution locally, such as wait, sleep,
flock, and semop [34]. Developers should either prevent

from using these functions or use alternatives, instead.

Request blocking operations are involved in service

requests over network. For example, when a game server SG
needs to retrieve game records from (or store records into) a

database server SDB, SG generally performs the following

three steps: (1) create a connection to SDB; (2) send request

messages to SDB; (3) receive response messages from SDB.

However, the operation in Step (3) is clearly a blocking one.

In event-driven based servers, if a straightforward design

is used that directly bundles the three operations together

within a single input event handler, called a source event

handler here, this service request obviously becomes

blocked. Consequently, the performance of the game server

SG degrades.

Many developers usually notice the above example for

database requests before coding. However, unfortunately

many services are requested implicitly. For example, the

Harvest and Squid projects [7,43] noticed that the DNS-

related function call, gethostbyname, may issue a

request to a DNS server and wait for the response from

that server. Thus, for event-driven programming, it becomes

crucial for application developers to identify more

operations with remote service requests, as listed below.

† DNS-related functions. For example, accessing DNS

servers via some library calls such as gethostby-
name, gethostbyaddr, getaddrinfo, and get-
nameinfo [10,36].

† Database-related functions. For example, accessing

database servers via JDBC [14,38] or ODBC [21]

drivers.

† LDAP-related functions. For example, accessing the

servers of OpenLDAP via its client library [26].

† HTTP access. For example, making HTTP requests via

libwww [25].

† Remote file access. For example, accessing a file

mounted on a remote host via the NFS service [9,10].

Note that the last operation involving remote file access

may also block event-driven based servers for inter-user
communication applications, because traffic to the remote

file server may also be jammed.

Regarding local file access, the research in [28] indicates

that most local file operations generally cannot be integrated

with the select system call. Namely, select cannot be

used to detect the completion of these operations.

Furthermore, some of these operations, such as open and

stat, may still be blocking. The above blocking problem is

critical for the HTTP server applications [28] because HTTP

servers generally require frequent accessing of local files.

However, this paper is less concerned with local file access,

since inter-user communication applications generally

process messages on the fly without frequently accessing

local files. For example, a game server generally does not

need to save player chat messages into local files. If a game

server does need to access files frequently for some reason,

the server can use database, instead, and the solution

presented in the remainder of this section remains useful.

In order to solve the request blocking problem in event-

driven applications, the Harvest and Squid projects [7,43]

used helper processes to resolve DNS queries without

incurring blocking. However, they did not design a reusable

software architecture for this problem.

For solving this problem in a reusable way, this paper

first presents a service requesting mechanism for dealing

with HTTP requests in Section 4.2. Then, in Section 4.3, this

mechanism is applied to all the other service requests with

blocking operations.
4.2. Solutions for HTTP access requests

This section presents a mechanism, called the service

requesting mechanism, for dealing with HTTP requests, and

incorporates this mechanism into the event-driven frame-

work in this paper. In this mechanism, an event handler,

called the source event handler, creates another event

handler, called the service requestor here, to send an HTTP

request to a remote service provider and wait for the

response. After receiving the response, the service requestor

transfers the response back to its source event handler.

These activities are performed without any blocking.

Fig. 5 modifies the class diagram of the framework in

Fig. 2 by adding two classes, Service_Requestor and

concrete service requestor, detailed below:

† Service_Requestor is an abstract class that

extends Buffered_Output_Handler for service

requesting.

This class provides application developers with a

request method that is used to establish a connection

to a server, such as an HTTP server, and forward an

HTTP request to the server. A concrete event handler (or

the source event handler as defined in Section 4.1)

requires the following parameters to invoke this method:

(1) server IP address and port; (2) the pointer back to the

source event handler; and (3) the HTTP request message.

Fig. 5. Class diagram of the event-driven framework with service requestors.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 477
† Concrete service requestors are application-specific

classes implementing the Service_Requestor.
A concrete service requestor object is created by a source

event handler to handle one and only one HTTP request.

After requestor creation, the source event handler

invokes the request method of the requestor to

connect to the corresponding HTTP server and then

registers the requestor with the Reactor object. When

the server replies, the Reactor object invokes the

handle_input of the requestor to process the

response.

Next, the following interactions are illustrated in more

detail: (1) how to establish a connection to a remote service

provider and send an HTTP request to that provider, and (2)

how to handle service provider responses.
Fig. 6. Sequence diagram for establishing a co
First, the sequence diagram in Fig. 6 illustrates how a

concrete event handler, EH, establishes a connection to

a remote service provider, SVCP, and forwards an HTTP

request to that provider. When making an HTTP request, EH
creates a service requestor, SR (in Step 4) and then call the

request method of SR (in Step 5). This method connects

to SVCP in a non-blocking manner (in Step 6), registers SR
itself with the Reactor object (in Step 7) and stores the

request message in the Memory_Buffer (in Step 8). The

stored request message is sent (in Step 10) immediately

upon connection establishment.

Second, the sequence diagram in Fig. 7 illustrates how

the service requestor, SR, handles the responses from the

service provider, SVCP. On receiving responses from SVCP
(in Steps 2 and 3), SR processes those responses and may

invoke some callback functions of EH (in Step 4). Once
nnection and sending an HTTP request.

Fig. 7. Sequence diagram for handling responses.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483478
the response has been completely received, SR destroys

itself (in Step 5).

4.3. Solutions for other service requests

The previous subsection presents a service requesting

mechanism for dealing with HTTP requests in the event-

driven programming model. Since HTTP and its tools are

pervasive, for example, web servers like Apache [2] and IIS

[20], and web programming tools like PHP [29], JSP [37]

and ASP [19], a straightforward solution for all the service

requests would be to leverage the above solution based on

the HTTP servers directly.

For example, if a source event handler (defined in

Section 4.1) needs to access database servers or get the IP

address of a given hostname, the handler makes an HTTP

request to a web server, and the corresponding web page

programs (say in PHP) then return database records or the IP

address. Since it is easy to write the code of service

requestors, as described in Section 4.2, and the correspond-

ing web page programs (in PHP, JSP, or ASP), application

developers can easily develop the above service request.

Note that web page languages such as PHP, JSP, or ASP are

usually sufficiently general and high-level to program

service requests such as those listed in Section 4.1.

However, leveraging the HTTP technologies as above

may incur significant overhead for web page processing (in

PHP, JSP, or ASP). For example, accessing a database or

getting the IP address of a given hostname in PHP generally

may include process forking and page interpretation.

Since the incurred overhead may become significant, this

paper designs additional helper processes for handling

requests directly. The idea of helper processes has been used

by the researchers in [7,28,43] for calling DNS-related

functions and disk I/O access. However, they do not design
Fig. 8. Handling database requ
a reusable software architecture for helper processes, as this

paper does.

Consider the example of accessing database servers. A

helper process contains an acceptor thread and a pool of

worker threads, as illustrated in Fig. 8. The acceptor thread

repeats to accept new connection requests from application

servers (such as game servers) and then queues the sockets

corresponding to these connection requests. Each worker

thread then repeats the following steps:

1. Retrieve one socket from the queue.

2. Receive the request message (including the URL and the

parameters) from the socket.

3. Identify the request and then create the corresponding

service handler to process that request. For example,

for a database request, the corresponding service

handler sends the requests to the database servers,

receives the response messages and then returns the

results to the game server. Meanwhile, for a DNS

request, the corresponding service handler simply

calls the DNS library and returns the results to the

application servers.

The class diagram in Fig. 9 shows the components of the

helper processes. The class responsibilities are described as

follows:

† Acceptor_Thread is the thread that waits to accept

incoming connections. The sockets corresponding to

accepted connections are placed in a Socket_Queue
(described below).

† Socket_Queue is the queue that stores socket

descriptors.

† Worker_Threads are threads that process requests in

the Socket_Queue. Each Worker_Thread object
ests using multi-threads.

Fig. 9. Class diagram of helper processes.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 479
creates a concrete service handler (described below) for

application specific services.

† Service_Handler is a class of service handler

interface that defines a hook method: handle_ser-
vice. Classes of concrete service handlers that inherit

Service_Handler implement this method for appli-

cation specific services, such as database access services.

Fig. 10 shows the interaction of handling services in a

helper process. The UML collaboration diagram is used to

show this interaction:

† The acceptor thread Ta repeats the following two steps.

In Step a1, it accepts a new socket, and in Step a2, it
places accepted sockets in the Socket_Queue. If one
or more worker threads are waiting in the queue, one of

them is woken up.

† A worker thread, Tw, repeats the following steps. In Step
w1, Tw attempts to obtain a socket from the Sock-
et_Queue. Tw waits in this queue until the Sock-
et_Queue becomes not empty. In Step w2, Tw reads

the request message from the socket. In Step w3, Tw
invokes the handle_service method of its own

concrete service handler by passing the request message

as an argument. In Step w3.1, the method invokes

library calls, such as gethostbyname, for the request.
Finally, in Step w3.2, the method returns the result to

the application server.

Note that the above helper process has also an additional

advantage, solving the following problem, called the limited

service problem in this paper. Consider that a database

server generally supports a limited number of service

connections. The problem can be easily solved in the helper
Fig. 10. Collaboration diagram of hand
process designed here by simply limiting the number of

worker threads to the number of connections to the database

server and letting each thread hold a single connection. For

example, if a database server supports only 20 connections,

the helper process dedicated to all requests to the database

server has a maximum of 20 worker threads.

In fact, the advantage of the helper process described

above also applies to the processing of HTTP requests, for

the following reason. A web server such as Apache

generally limits the number of daemon processes for

simultaneous requests [2]. When the number of concurrent

HTTP requests exceeds the limited number, some of the

additional HTTP requests may fail to establish connections

or suffer from long latency [42]. Consequently, the helper

process can be used simply to limit the number of worker

threads to being the same as the number of HTTP daemon

processes and thus let the service handler work like a HTTP

proxy. For example, if an Apache server only allows 100

daemons, the helper process that is dedicated to all HTTP

requests to the Apache server also has a maximum of 100

worker threads. The helper process thus can hold thousands

of HTTP requests in the socket queue via the acceptor

thread, while guaranteeing that 100 HTTP daemons in the

Apache server are always available for the helper process.

The above thread pool can actually be implemented more

efficiently, as described in [32,42]. Briefly, when worker

threads are idle, some of these threads can be dynamically

removed to reduce the overhead of context switching. The

details can be read in [42] and are omitted here.

From the above, this paper suggests that helper processes

be deployed as follows. For each server with limited service

resources (e.g. an Apache server with a limited number of

daemons or a database server with a limited number of

connections), one helper process is dedicated to the server.
ling services in a helper process.

Fig. 11. Case of deploying helper processes.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483480
Meanwhile, other services such as DNS services can be

grouped into one or more helper processes, depending on

the situation. Fig. 11 illustrates a case of deploying helper

processes.

Finally, one may ask why the event-driven model is not

used for the helper processes. Surely, the event-driven

model can be used to implement the helper processes.

However, the fact that these requests must wait for

responses complicates helper process design. On the other

hand, since threads in helper processes are almost

independent, developers can easily maintain and debug

the code in the thread model.
5. Experiments

Practically, we have implemented an event-driven

framework with the output buffering mechanism and the

service requesting mechanism, described in Sections 3 and

4, respectively. Section 5.1 briefly mentions the CYC game

system [39] that was built on top of our event-driven
Fig. 12. The deployment of t
framework. Section 5.2 presents the performance analysis

for using the output buffering mechanism. The performance

analysis for using the service requesting mechanism is

similar and therefore is omitted in this paper.

5.1. Brief description of the CYC game system

The CYC game system [39] provides players with casual

games, such as Chinese Chess, Bridge, Mahjong, etc. The

system, popular in Taiwan and Hong Kong, has supported

up to 10,000 concurrent players.

Fig. 12 shows the architecture of the CYC game system.

This system includes a set of game servers (processes

running on the FreeBSD operating system [15]), each of

which can serve up to 1000 players. All game servers are

connected to a coordinator (a process running on FreeBSD)

that coordinates the communication among these servers

and record the numbers of players handled by game servers

(used to find the appropriate game severs for players). Game

servers are also connected to database helpers and DNS

helpers when accessing database and DNS servers. Note that
he CYC game system.

Fig. 14. The averaged top-100 response time.

Fig. 13. The deployment of the evaluating the output buffering mechanism.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 481
game servers need to access database servers for players’

game playing records and DNS servers for players’ host

domain names.

The coordinator, game servers, and helpers were

developed based on our event-driven framework. The initial

version of the system without our framework suffered from

the blocking problems as described in Sections 3 and 4. The

subsequent versions were revised based on our framework.

The new versions elegantly solved these blocking problems

by simply implementing event handlers and service

handlers, as in the shadowed classes in Figs. 5 and 9. In

addition, the extra helper processes also solved the limited

service problem (as described in Section 4.3).
5.2. Performance analysis for the output blocking problem

This subsection presents the performance analysis on the

experiments related to the output blocking problem. From
Fig. 15. The averaged top-100 response tim
the CYC game system, we logged all the events of some game

server with about 300 players for 10 min. The log contains

28,573 received messages and 142,570 sent messages that

represent the activity of the game server during that period.

For performance analysis, we simulated the activity of

the log as follows. Let one host simulate the 300 clients

(players) and the other simulate the game server following

the messages indicated in the log. Both hosts ran on

FreeBSD 5.3 and each of them was equipped with an AMD

Athlon XP 2000C CPU, 512 MB RAM, 80 GB hard disk,

and a 100 Mb Ethernet card. Besides, they were connected

to a 100 Mb switch hub directly.

In our experiment, we only consider the response times

of the messages among clients (players), e.g. the messages

for chatting or playing cards. Namely, for each of such

messages among clients, add into the message M the time

when sending M from the sender. When receiving M, the

recipient measures the traveling time of M from the sender.

Normally, the response times are short, unless the server is

overloaded or the network traffic is jammed or blocked.

From the log, we chose one client, called C1, as shown in

Fig. 13, who entered the system at the 93rd second. Then,

we blocked all messages to client C1 for a period of time T

starting at the 93rd second to simulate that the network

between C1 and the game server G was jammed or blocked,

as shown in Fig. 13. We used the technique of divert sockets

[3,8] to simulate the blocking network.

For each T, we measured the averaged top-100 response

times in the two cases that (1) the output buffering

mechanism was used and (2) the mechanism was not.

Note that the averaged top-100 response time is the average

of the highest 100 response times among all the messages.

The top-100 response times reflect the worst response times

among clients. In the case that T is sufficiently large, the

averaged top-100 response time is the average of the

response times of the first 100 messages after C1’s send

buffer gets full, as shown in Fig. 14.

Fig. 15 shows our experiment results. Consider the

second case that the mechanism is not used. When T%2 s,
es vs. the blocking times in Fig. 13.

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483482
the averaged top-100 response times are still very low

because in the FreeBSD kernel the send buffer (with about

32 kB) from the game server to client C1 is not overflown

and the whole game system therefore is not blocked, except

for client C1. However, when TO2 s, the send buffer is

overflown and the whole game system is blocked for the rest

period of time T. Thus, the averaged top-100 response times

grow nearly linear as T in this case. If the output buffering

mechanism is used, the averaged top-100 response times

become all very low as shown in Fig. 15. That is, the

performance is greatly improved in this case.
6. Summary

Event-driven programming is a widely used technology

for concurrent programming. However, the major drawback

of event-driven programming is: the need to pay attention to

the blocking problems in event handling. This paper

addressed two major blocking problems in inter-user

communication applications, namely output blocking and

request blocking. For the former problem, this paper

presents an output buffering mechanism to solve this

problem. Meanwhile, for the latter problem this paper

presents a service requesting mechanism with helper

processes to solve this problem.

Based on the output buffering and service requesting

mechanisms, this paper designs an event-driven framework

for inter-user communication applications, as shown in

Figs. 5 and 9. Application developers can apply this

framework to develop their servers simply by implementing

some event handlers and service handlers, as in the

shadowed classes in Figs. 5 and 9. Therefore, based on

this framework, they can easily avoid blocking problems.

Practically, the event-driven framework presented in this

paper has been applied to the CYC game system in [39],

which has been supported up to 10,000 concurrent players.

The initial version of the game system was implemented

based on a simple event-driven framework, but not on our

framework. The blocking problems presented in this paper

were not solved in this version. Since the authors served as

consultants and incorporated our framework into the game

system, the following problems have been gracefully

solved:

† The output blocking problem.

† The request blocking problem. Since game records need

to be maintained on remote servers sometimes, this

problem becomes significant.

† The limited service problem (as described in Section 4.3).

When the game system has thousands of concurrent

players, HTTP requests for updating records may be

missing sometimes due to the limited numbers of HTTP

daemon processes on Apache servers. The extra helper

processes described in Section 4.3 can be used to help

solve this problem.
The above practical experience demonstrates that our

event-driven framework can be easily used to develop and

maintain a reliable and efficient game system. In fact, our

framework can also be applied to other applications. For

example, event-driven based HTTP servers, such as Zeus

[46], mathopd [5], and thttpd [1], can be implemented on top

of this framework by putting file access operations into

helper processes.
Acknowledgements

The authors would like to thank ThinkNewIdea, Inc. [39]

for offering required data for this research. The authors

would also like to thank the anonymous referees for their

valuable comments, which help to improve the presentation

of this paper.
References

[1] ACME Laboratories, thttpd, http://www.acme.com/software/thttpd/

(last access: May 2005).

[2] The Apache Software Foundation, The Apache HTTP Server Project,

http://httpd.apache.org/ (last access: May 2005).

[3] I. Baldine, Divert Sockets mini-HOWTO, http://www.faqs.org/docs/

Linux-mini/Divert-Sockets-mini-HOWTO.html (last access: May

2005).

[4] Blizzard Entertainment, Inc., Blizzard Entertainment—Warcraft III,

http://www.blizzard.com/war3/ (last access: May 2005).

[5] M. Boland, Mathopd, http://www.mathopd.org/ (last access: May

2005).

[6] G. Booch, I. Jacobson, J. Rumbaugh, The UnifiedModeling Language

User Guide, Addison-Wesley, Massachusetts, 1998.

[7] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, K.J.

Worrell, A hierarchical internet object cache, Proceedings of the 1996

USENIX Technical Conference, San Diego, CA, USA, 1996, pp. 153–

163.

[8] A. Cobbs, Divert, http://www.freebsd.org/cgi/man.cgi?queryZdivert

(last access: May 2005).

[9] D.E. Comer, Internetworking with TCP/IP, fourth ed., Principles,

Protocols, and Architecture, vol. 1, Prentice Hall, New Jersey, 2000.

[10] D.E. Comer, D.L. Stevens, Internetworking with TCP/IP, second ed.,

Client-Server Programming and Applications—BSD Socket Version,

vol. 3, Prentice Hall, New Jersey, 1996.

[11] EFnet chat network, EFnet—The Original IRC Network, http://www.

efnet.org/ (last access: May 2005).

[12] Electric Arts, Inc., ORIGIN—Ultima Online, http://www.uo.com/

(last access: May 2005).

[13] M.E. Fayad, D.C. Schmidt, R.E. Johnson, Build Application Frame-

works: Object-Oriented Foundations of Framework Design, Wiley,

New York, 1999.

[14] M. Fisher, J. Ellis, J. Bruce, JDBC API Tutorial and Reference, third

ed., Addison-Wesley, New Jersey, 2003.

[15] The FreeBSD core team, The FreeBSD project, http://www.freebsd.

org/ (last access: May 2005).

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley,

Massachusetts, 1995.

[17] ICQ, Inc., ICQ.com, http://web.icq.com/ (last access: May 2005).

http://www.acme.com/software/thttpd/
http://httpd.apache.org/
http://www.faqs.org/docs/Linux-mini/Divert-Sockets-mini-HOWTO.html
http://www.faqs.org/docs/Linux-mini/Divert-Sockets-mini-HOWTO.html
http://www.blizzard.com/war3/
http://www.mathopd.org/
http://www.freebsd.org/cgi/man.cgi?query=divert
http://www.efnet.org/
http://www.efnet.org/
http://www.uo.com/
http://www.freebsd.org/
http://www.freebsd.org/
http://web.icq.com/

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483 483
[18] M.K. McKusick, K. Bostic, M.J. Karels, J.S. Quarterman, The Design

and Implementation of the 4.4BSD Operation System, Addison-

Wesley, Massachusetts, 1996.

[19] Microsoft Corporation, Active Server Pages, http://msdn.microsoft.

com/library/default.asp?urlZ/library/en-us/dnanchor/html/active-

servpages.asp (last access: May 2005).

[20] Microsoft Corporation, Internet Information Services, http://www.

microsoft.com/WindowsServer2003/iis/default.mspx (last access:

May 2005).

[21] Microsoft Corporation, MSDN: ODBC, http://msdn.microsoft.com/

library/default.asp?urlZ/library/en-us/vccore98/HTML/_core_odbc.

asp (last access: May 2005).

[22] Microsoft Corporation, MSDN: Thread Stack Size, http://msdn.

microsoft.com/library/default.asp?urlZ/library/en-us/dllproc/base/

thread_stack_size.asp (last access: May 2005).

[23] Microsoft Corporation, MSN Messenger, http://messenger.msn.com/

(last access: May 2005).

[24] B. Nichols, D. Buttlar, J.P. Farrel, Pthreads Programming: A POSIX

Standard for Better Multiprocessing, Reilly, California, 1996.

[25] H. Nielsen, T. Berners-Lee, J. Groff, Libwww—the W3C Sample

Code Library, http://www.w3.org/Library/ (last access: May 2005).

[26] OpenLDAP Foundation, OpenLDAP Software Man Pages: ldap,

http://www.openldap.org/software/man.cgi?queryZldap (last access:

May 2005).

[27] J. Ousterhout, Why threads are a bad idea (for most purposes), invited

talk at the 1996 USENIX Technical Conference, San Diego, CA,

USA, 1996, see also http://home.pacbell.net/ouster/threads.pdf (last

access: May 2005).

[28] V. Pai, P. Druschel, W. Zwaenepoel, Flash: an efficient and portable

web server, Proceedings of USENIX Annual Technical Conference,

Monterey, CA, USA, 1999, pp. 199–212.

[29] The PHP Group, PHP: Hypertext Preprocessor, http://www.php.net/

(last access: May 2005).

[30] W. Pree, Design Patterns for Object-Oriented Software Development,

Addison-Wesley, Massachusetts, 1995.

[31] D.C. Schmidt, Reactor: An Object Behavioral Pattern for Concurrent

Event Demultiplexing and Event Handler Dispatching, in: Pattern
Languages of Program Design, Addison-Wesley, Massachusetts,

1995. pp 529–545.

[32] D.C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented

Software Architecture, Patterns for Concurrent and Networked

Object, vol. 2, Wiley, New York, 2000.

[33] S. Srinvasan, Design patterns in object-oriented frameworks, IEEE

Computer 32 (2) (1999) 24–32.

[34] W.R. Stevens, Advanced Programming in the UNIX Environment,

Addison-Wesley, Massachusetts, 1992.

[35] W.R. Stevens, TCP/IP Illustrated, The Protocols, vol. 1, Addison-

Wesley, Massachusetts, 1994.

[36] W.R. Stevens, UNIX Network Programming, second ed., Network-

ing API: Sockets and XTI, vol. 1, Prentice Hall, New Jersey,

1998.

[37] Sun Microsystems, Inc., JavaServer Pages Technology, http://java.

sun.com/products/jsp/ (last access: May 2005).

[38] Sun Microsystems, Inc., JDBC Technology, http://java.sun.com/

products/jdbc/ (last access: May 2005).

[39] ThinkNewIdea, Inc., CYC Game League, http://cycgame.com/ (last

access: May 2005).

[40] J. Tranter, Exploring the sendfile system call, Linux Gazette, Issue 91,

June 2003.

[41] Valve Corporation, The official Counter-Strike web site, http://www.

counter-strike.net/ (last access: May 2005).

[42] M. Welsh, D. Culler, E. Brewer, SEDA: an architecture for well-

conditioned scalable internet services, Proceedings of the 18th ACM

Symposium on Operating Systems Principles, Alberta, Canada, 2001,

pp. 230–243.

[43] D. Wessels et al., Squid Web Proxy Cache, http://www.squid-cache.

org/ (last access: May 2005).

[44] Yahoo!, Inc., Yahoo! Chat, http://chat.yahoo.com/ (last access: May

2005).

[45] Yahoo!, Inc., Yahoo! Games, http://games.yahoo.com/ (last access:

May 2005).

[46] Zeus Technology Limited, Zeus Web Server, http://www.zeus.co.uk/

products/zws/ (last access: May 2005).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://www.microsoft.com/WindowsServer2003/iis/default.mspx
http://www.microsoft.com/WindowsServer2003/iis/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_odbc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_odbc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_odbc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/thread_stack_size.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/thread_stack_size.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/thread_stack_size.asp
http://messenger.msn.com/
http://www.w3.org/Library/
http://www.openldap.org/software/man.cgi?query=ldap
http://home.pacbell.net/ouster/threads.pdf
http://www.php.net/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
http://cycgame.com/
http://www.counter-strike.net/
http://www.counter-strike.net/
http://www.squid-cache.org/
http://www.squid-cache.org/
http://chat.yahoo.com/
http://games.yahoo.com/
http://www.zeus.co.uk/products/zws/
http://www.zeus.co.uk/products/zws/

	An event-driven framework for inter-user communication applications
	Introduction
	Event-driven programming
	Output blocking problem and solution
	Output blocking problem
	Solution to the output blocking problem

	Request blocking problem and solution
	Request blocking problem
	Solutions for HTTP access requests
	Solutions for other service requests

	Experiments
	Brief description of the CYC game system
	Performance analysis for the output blocking problem

	Summary
	Acknowledgements
	References

