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In this paper, a novel two-stage noise removal algorithm to deal with salt-pepper 

impulse noise is proposed. In the first stage, the decision-based recursive adaptive noise- 
exclusive median filter is applied to remove the noise cleanly and to keep the uncor-
rupted information as well as possible. In the second stage, the fuzzy decision rules in-
spired by human visual system (HVS) are proposed to classify image pixels into human 
perception sensitive class and non-sensitive class. A neural network is proposed to com-
pensate the sensitive regions for image quality enhancement. According to the experi-
mental results, the proposed method is superior to conventional methods in perceptual 
image quality as well as the clarity and the smoothness in edge regions of the resultant 
images. 
 
Keywords: salt-pepper, impulse noise, noise removal, fuzzy decision system, human 
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1. INTRODUCTION 
 

Images are often corrupted by impulse noise due to noisy sensors or channel trans-
mission errors. The objectives of noise removal are to suppress the impulse noise as well 
as to preserve the sharpness of edge and detail information. The standard median (SM) 
filter [1, 2] is a nonlinear filtering technique which has been extensively used and shown 
generally superior to linear filtering on suppressing impulse noise. However it tends to 
blur fine details and destroy edges while removing out the impulse noise. To achieve 
better performance, median filter has been modified in many ways, such as: center 
weighted median (CWM) filter [3], tri-state median (TSM) filter [4], multi-state median 
(MSM) filter [5], and recursive weighted median (RWM) filter [6], etc. 

On the other hand, the family of median filters with adaptive-size by using one-  
dimensional and two-dimensional adaptive algorithms was developed in [7]. The recur-
sive algorithm combined with median filter, which first replaces the gray level of each 
pixel with the output of the median filter before shifting the window to the next position, 
was proposed in [8] and [9]. In the decision-based scheme [10-12], median filtering is 
applied only to the pixels that are identified to be corrupted by noise. In addition, an 
edge-directed noise detection and suppression strategy has also been proposed in [13].  

In this paper, a novel two-stage framework for salt-pepper impulse noise removal is 
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proposed. In the first stage, we employ the gray-level histogram statistics to detect the 
range of the salt-pepper impulse noise adaptively. Then the simple decision-based recur-
sive adaptive median filter with 3 × 3 and 5 × 5 window sizes that only allows the clean 
pixel inside the window to participate in median processing is used to remove the im-
pulse noise entirely and efficiently. In the second stage, an image quality enhancement 
system is proposed to compensate the destroyed pixels after the process of the first stage. 
It consists of a fuzzy decision system based on human visual system (HVS) for image 
analysis and a neural network for compensation. 

This paper is organized as follows. Section 2 introduces system architecture of the 
proposed noise removal method. The decision-based recursive adaptive noise-exclusive 
median filter for noise removal is presented in section 3. The HVS-directed image analy-
sis method and the neural network for image compensation are proposed in section 4. 
Section 5 presents the experimental results for demonstration and section 6 gives the con-
clusions of this paper.  

2. SYSTEM ARCHITECTURE 

In order to remove the noise pixels in an image without blurring the edge, we divide 
the process of noise removal into two stages. Fig. 1 shows the process flow of the first 
stage, called the decision-based recursive adaptive median filtering scheme. The noise 
range estimation and decision-based rules decide whether the pixel is possibly corrupted 
by the noise, and the median filter is applied only to the possibly noise-corrupted pixels. 
The window size of median filter is chosen depending on how heavily the neighboring 
pixels are corrupted by noise such that we can remove the noise entirely without heavily 
destroying the details of the image. The recursive algorithm replaces the value of median 
filter before the window shifts to next possible noise pixel and the noise-exclusive 
scheme allows only the clean pixels inside the window to participate in median process-
ing such that we can remove the noise as clean as possible.  

The schematic block diagram of the image quality enhancement system in the sec-
ond stage is shown in Fig. 2. Based on the fuzzy decision, either the filtered value of the 
first stage or the result of adaptive neural-network compensation module is selected to 
compensate each noise corrupted pixel. When the adaptive neural-network compensation 
is actuated, the angle evaluation module will compute the dominant orientation of the 
original image located in the sliding block as the input data of the proposed neural net-
work. 

When an image has been processed in the first stage, the second-stage process starts. 
The image is firstly divided into the 4 × 4 sliding (overlapping) blocks. The weighted 
compensation is applied to the visual-sensitive region and can be presented as: 

2 2

1 1

( ,  ) ( ,  ) ( ,  ),
i j

F m n O m i n j W i jθ
=− =−

= + +∑ ∑                               (1) 

where O(m, n) is the reference pixel that possibly corrupted by noise, O(m + i, n + j)|i≠0, 

j≠0 are the neighborhoods of O(m, n) and Wθ are the weights of training results.  
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Fig. 1. The decision-based adaptive recursive 

median filtering scheme. 
Fig. 2. Schematic block diagram of the proposed  

image quality enhancement system. 

3. IMPULSE NOISE REMOVAL 

In the first stage, the goal is to remove the impulse noises and to keep the detailed 
information of the processed image as much as possible so that we can compensate the 
noise corrupted pixels well by using their neighbors in the second stage. The techniques 
used in the first stage are introduced as follows.  
 
3.1 Noise Range Estimation 
 

The noise model used in this paper is the additive salt-pepper impulse noise that is a 
popular and practical case in image processing. Conventionally, it assumes 0 for negative 
impulse (pepper noise) and 255 for positive impulse (salt noise). In a more practical 
situation, the noise pixels are corrupted by the noise with pixel values equal to or near the 
maximum or minimum value in the allowable dynamic range and this noise model is also 
adopted in this paper. In addition, if the original image is corrupted by the additive 
salt-pepper impulse noise with probability p, the probabilities of positive noise and nega-
tive noise are identical, i.e., p/2.  

According to histogram analysis, there is a gap between the gray values of noise 
pixels and gray values of the normal pixels. Therefore, we apply the gap detection to the 
histogram to estimate the noise ranges near the maximal and minimal gray levels adap-
tively. Defining ThL as the gap threshold for pepper noise (negative impulse) and ThH as 
the gap threshold for salt (positive impulse) noise, they can be calculated by  
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ThL = {h | max(His(h) − His(h + 1)), from h = 0 to 128},                   (2) 

ThH = {h | max(His(h + 1) − His(h)), from h = 255 to 128},                (3) 
 
where His(h) is the histogram of the noisy image at gray level h. The initial values of 
ThH and ThL are set as 256 and – 1 to deal with the case that images are corrupted with 
either salt or pepper noise. If the gray level of a pixel is within the noise range, which is 
smaller than ThL or greater than ThH, we classify it as a suspected noise pixel and exe-
cute noise removal process as shown in Fig. 1. 
 
3.2 Decision Rules 
 

As a matter of fact, most of the pixels in the noisy image are uncorrupted and pixel 
values should not be changed. In noise detection step, each pixel is classified into the 
possible noise pixel or the uncorrupted pixel. In our strategy, the pixels within the deter-
mined noise range are regarded as possible noise-corrupted pixels and they will be proc-
essed by the adaptive noise-exclusive median filter. The uncorrupted pixels are retained 
without any modification to avoid blurring caused by unnecessary processing. In such 
decision rule, noise pixels will be completely detected but the original pixels in these 
intervals will also be false identified as noise pixels. Although some pixels are falsely 
detected, most of them are in the smooth regions and their gray levels are very close to 
the nearby pixels, so the result of median filtering will not destroy the image quality too 
much. Even if the falsely detected pixels are in the edge area, our second stage, image 
quality enhancement, will compensate the jaggy edges well.  
 
3.3 The Adaptive Noise-Exclusive Median Filtering 
 

When images are highly corrupted with noise, several noise pixels may connect into 
noise blotches so that they cannot be removed by the median filter with small window 
size (such as 3 × 3). On the other hand, when the median filter with large window size 
(such as 5 × 5) is employed to image processing, it often causes edge blurring.  

In this paper, an adaptive median filter is proposed to achieve superior performance 
of noise suppression as well as preserving more detailed information. We first analyze 
the neighboring 3 × 3 region of the possible noise pixels. If there are more than four 
other possible noise pixels in this block, it is identified as the highly corrupted region and 
the 5 × 5 median filter is applied for processing. Otherwise, the 3 × 3 median filter is 
applied to this pixel. In addition, the noise-exclusive scheme is also used in this paper to 
remove the noise cleanly. It allows only the clean pixels inside the window to participate 
in the median processing. 
 
3.4 Recursive Method 
 

The recursive algorithm replaces the value of the noise pixel with the processing 
output of the adaptive median filter before the window shifts to the next noise pixel [9]. 
It can efficiently reduce the number of noise pixels and remove the noise more cleanly. 
The drawback of the recursive algorithm is that it will blur the edges and detailed infor-
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Fig. 3. Visibility thresholds corresponding to different background luminance. 

mation. Therefore, the second stage of the proposed method, image quality enhancement, 
is necessary for compensation. 

4. IMAGE QUALITY ENHANCEMENT 

It is well known that conventional median filtering techniques often suffer from 
blurring details and cause artifacts around edges. In order to compensate the edge sharp-
ness, image quality enhancement is applied to the processed pixels. For image analysis, 
we make use of the properties of human visual system (HVS) to obtain the features of 
images such that we could realize which region is worth further quality enhancement, 
since human eyes are usually more sensitive to this region. An adaptive neural network is 
also proposed to compensate the pixels in the sensitive region for image quality en-
hancement.  
 
4.1 HVS-Directed Image Analysis 
 

Many researches have been made on discovering the characteristics of HVS for 
years. It was found that the perception of HVS is more sensitive to luminance contrast 
rather than the uniform brightness [14]. In addition to the magnitude difference between 
object and the background, different structures of images also cause different visual per-
ceptions for HVS. Many features have been proposed based on the block DCT in fre-
quency domain. In this paper, a novel fuzzy decision system inspired by HVS is pro-
posed to classify the image into human perception sensitive and non-sensitive regions in 
spatial domain. There are three input variables, visibility degree (VD), structural degree 
(SD), complexity degree (CD), and one output variable (Mo) in the proposed fuzzy deci-
sion system.  

The first input variable of the fuzzy decision system, VD, is related to the ability of 
human eyes to tell the magnitude difference between an object and its background de-
pending on the background luminance. Fig. 3 shows the actual visibility thresholds called 
just-noticeable-distortion (JND) corresponding to different background luminance and it 
was verified by a subjective experiment [14]. We can find that the visibility threshold is 
lower when the background luminance is within the interval from 70 to 150, and the visi-
bility threshold will rise if the background luminance becomes darker or brighter away 
from this interval. 

BL008.0BL03.066.20 ee +−
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In order to obtain the variable VD, two index parameters called background lumi-
nance (BL) and difference (D) are defined at first. BL is the average luminance of the 
sliding block proposed to approximate the actual background luminance and can be cal-
culated by 

2 2

1 1

1
( , ) ( , ),

23 i j

BL O i j B i j
=− =−

= ×∑ ∑                                         (4) 

where  

2 2 2 1
2 0 2 1

( , ) ,
2 2 2 1
1 1 1 1

B i j

 
 

=  
 
  

                                              (5) 

and the denominator 23 in Eq. (4) is the weighted sum of all elements in Eq. (5) for nor-
malization. Feature D is the difference between the maximum pixel value and the mini-
mum pixel value in the sliding block and can be calculated by 

D = max(O(i, j)) − min(O(i, j)).                                       (6) 

A nonlinear function V(BL) is also designed to approximate the relation between 
the visibility threshold and background luminance [14] (as shown in Fig. 3), and can be 
represented as:  

V(BL) = 20.66e-0.03BL + e0.008BL.                                       (7) 

VD is defined as the difference between D and V(BL) and can be represented as 

VD = D − V(BL).                                                  (8) 

If VD > 0, it means the magnitude difference between the object and its background 
exceeds the visibility threshold and the object is sensible. Otherwise, this object is not 
sensible.  

The other two input variables, SD and CD, are used to indicate whether the pixels in 
the sliding block own edge structure.  

SD shows if the sliding block is a high contrast region and the pixels in the block 
can be obviously separated into two clusters. It is calculated by  

| max( ( ,  )) mean( ( ,  )) [mean( ( ,  )) min( ( ,  ))] |
SD ,

max( ( ,  )) mean( ( ,  ))

O i j O i j O i j O i j

O i j O i j

− − −=
−

         (9) 

where 
2 2

1 1

1
mean( ( ,  )) ( ,  ).

16 i j

O i j O i j
=− =−

= ∑ ∑                                     (10) 
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If SD is a large value, it means the numbers of pixels in these two clusters are not 
even. Thus the block may contain noise. On the other hand, if SD is small, the num-
bers of pixels in these two clusters are even and the block may contain edge or tex-
ture structure.  

Sliding block

       

Sliding block

 
(a)                                     (b) 

Fig. 4. Portions of (a) the sliding block containing texture structure, (b) the sliding block containing 
edge structure. 

 
Figs. 4 (a) and (b) show a texture structure and a delineated edge structure in a slid-

ing block, respectively. In these two plots, the numbers of pixels in these two clusters are 
the same. Therefore, the SD values corresponding to these two structures are close. Since 
the proposed neural network is used to compensate the sensitive regions such as Fig. 4 
(b), CD input variable based on differential process is employed to tell the delineated 
edge structure from texture structure. It is calculated by  

2 2

1 1

CD | 4 ( ,  ) [ ( 1,  ) ( 1,  ) ( ,  1) ( ,  1)] |,
i j

O i j O i j O i j O i j O i j
=− =−

′ ′ ′ ′ ′= − + + − + + + −∑ ∑   (11) 

where O′(i, j) is the binarized version of O(i, j). Assuming mean(O) is the mean gray 
level of the sliding block, O′(i, j) is defined as: 

1, if ( ,  ) mean( ),
( ,  )

0, otherwise.

O i j O
O i j

≥′ = 


                                  (12) 

In Eq. (11), each pixel in the 4 × 4 sliding block takes the 4-directional local gradi-
ent operation and CD is the summation of the 16 local gradient values. If CD is a large 
value, it means the block may contain texture structure. On the contrary, if CD is a small 
value, the block may contain delineated edge structure. 

In the proposed HVS-based Fuzzy decision system, the input variable VD has two 
fuzzy sets, N (negative) and P (positive). The input variable SD has three fuzzy sets S 
(small), M (medium), and B (Big). The input variable CD has three fuzzy sets, S (small), 
M (medium), and B (Big). The membership functions, corresponding to VD, SD, and CD, 
are chosen by experiments as shown in Figs. 5 (a-c), respectively. 

In order to determine the fuzzy membership functions, seven nature images were 
used to generate the model. The images were separated into smooth, texture and edge 
regions by the admission of the majority (seven of ten subjects). Then the ranges of VD,  
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Fig. 5. (a)-(d) Membership functions of fuzzy sets on input variables VD, SD, CD, and output vari-
able Mo, respectively. 

 
CD and SD proposed in Eqs. (8), (9) and (11) corresponding to these regions were evalu-
ated. Finally, the membership functions of VD, CD and SD could be designed according 
to the distribution ranges of the parameters in these regions, respectively. Mo is the out-
put variable and the membership functions corresponding to Mo are shown in Fig. 5 (d). 
It has two fuzzy sets, NN (neural network) and OP (original pixel). 

Seven fuzzy decision rules are used in the proposed fuzzy system and represented as 
follows: 

 
1. If VD is N then Mo is OP 
2. If SD is B then Mo is OP 
3. If CD is B then Mo is OP 
4. If VD is P and SD is S and CD is S then Mo is NN 
5. If VD is P and SD is S and CD is M then Mo is NN 
6. If VD is P and SD is M and CD is S then Mo is NN 
7. If VD is P and SD is M and CD is M then Mo is OP. 

 
The numerical value of Mo after COA defuzzification is compared with a threshold 

value, Th, where Th is preferably set as 5 by experiments. When Mo ≥ Th, the adaptive 
neural-network (NN) compensation module with angle evaluation would be chosen. Oth-
erwise, the original pixel (OP) value would be used. 

4.2 Angle Evaluation 
 

As Mo ≥ Th, the fuzzy system identifies the reference pixel as sensible delineated 
edge and the trained adaptive neural-network model is chosen for quality enhancement 
according to its corresponding edge angle. The angle evaluation shown in Fig. 6 is per-
formed to determine the dominant orientation of the sliding block. It firstly computes the 
orientation angle of each neighborhood of the original image pixel. The orientation angle 
of O(i, j) denoted as A(i, j) is computed by the following equations: 
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Fig. 6. Flow diagram of the angle evaluation. 

 
Dx (i, j) = O(i − 1, j − 1) + 2O (i − 1, j) + O(i − 1, j + 1)  

− (O(i + 1, j − 1) + 2O(i + 1, j) + O(i + 1, j + 1)),                 (13) 

Dy (i, j) = O(i − 1, j − 1) + 2O (i, j − 1) + O(i + 1, j − 1) 
− (O(i − 1, j + 1) + 2O(i, j + 1) + O(i + 1, j + 1)),                 (14) 

1180 ( ,  )
( ,  ) tan ,

( ,  )

Dy i j
A i j

Dx i jπ
−  

= −   
  

                                   (15) 

where − 1 ≤ i ≤ 2 and − 1 ≤ j ≤ 2. 
The obtained angle of each pixel in the sliding window is quantized into eight quan-

tization sectors such as θ = 22.5 × k degrees, where k = 0, 1, …, 7. We adopt the majority 
quantized angle in the sliding block regarded as the dominant orientation θ of the refer-
ence edge pixel. Finally, the corresponding weighting coefficient Wθ derived from the 
off-line training neural network is adopted for compensation. 
 
4.3 Neural-Network-Based Image Compensation 
 

The function of the proposed neural network is to obtain the weights Wθ defined in 
Eq. (1), where θ represents the quantized dominant orientation of the reference pixel. 
Thus, the proposed neural network is used to obtain 8 sets of weighting matrices through 
training. Each weighting matrix Wθ can be represented as  

1 1 10 11 12

0 1 00 01 02

1 1 10 11 12

2 1 20 21 22

( , ) .

w w w w

w w w w
W i j

w w w w

w w w w

θ

− − − − −

−

−

−

 
 
 =
 
 
  

                                (16) 
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In order to use supervised learning algorithms to train the proposed neural network, 
we have to obtain the desired input-output patterns such that the differences of network 
outputs and the corresponding desired outputs can be used to define the cost function as 
the goal to minimize. In this section, several clean image portions with dominant orienta-
tion are used as the training patterns. Assuming a clean image portion is denoted as I, the 
noise-corrupted version of I has been processed by the proposed noise removal method in 
the first stage and the filtered result is denoted as I′. Let I′(i, j) be the reference pixel, 
where O(m, n) = I′(i, j), and it is classified as an edge pixel with dominant orientation θ 
after angle evaluation. 
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Fig. 7. The proposed feed-forward neural network for image quality enhancement. 

 
A new neural network as shown in Fig. 7 is proposed for image compensation. It is 

a 4-layer network with two hidden layers. The input of the neural network is defined as θ, 
and the network output is the compensated pixel value of I′(i, j). When the input-output 
patterns are given, the following task is to train a neural network to match the in-
put-output relations. The second layer (1st hidden layer) consists of M nodes denoted as 
g(zi), where M is 200 in our experiments, and the bipolar sigmoid function is used as the 
activation function. The weighting vector between the first and the second layers is de-  
noted as .U  The third layer (2nd hidden layer) includes 16 nodes and the bipolar sig-
moid function is also used as the activation function. The weighting vector between the  
second and the third layers is denoted as .V  The output value of each node in the third 
layer is denoted as y(sl) and represents an element of the weighting matrix Wθ given in 
Eq. (16), where y(sl) = wij, l= 4i + j + 6, 1 ≤ l ≤ 16, − 1 ≤ i ≤ 2, and − 1 ≤ j ≤ 2. The fourth 
layer is the output layer with one output node and its output value represents the com-  
pensated pixel value of I′(i, j). The vector between the third and the fourth layers is de- 
noted as .Iθ′  It represents the vector of the sixteen neighborhood pixels of the reference 
pixel I′(i, j) with dominant orientation θ as follows:  

1

2

3

4

5

16

( 1, 1)

( , 1)

( 1, 1)

.( 2, 1)

( 1, )

( 2, 2)

I I i j

I I i j

I I i j

I I I i j

I I i j

I I i j

θ

θ

θ

θ θ

θ

θ

′ ′ − −   
   ′ ′ −   
 ′  ′ + −
   ′ ′ ′= = + −   
   ′ ′ −
   
   
   ′ ′ + +     

� �

                                        (17) 
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Then the estimated output of the system can be calculated by 

'
16

1

I )( l
l

lsyY θ∑
=

⋅=                                                    (18) 

and the corresponding desired output D can be obtained by 

D = I(i, j).                                                        (19) 

It should be noted that the weighting vectors need to be updated in the training stage  
are only V  and .U  If a reference pixel I′(i, j) is given, the neighborhood pixel vector  
Iθ′  of I′(i, j) can be regarded as an extra input vector for compensation.  

In the training stage, the updating rules of weights, vab ∈ ,V  ub ∈ ,U  can be de-
rived by the back-propagation learning method as 

vab(t + 1) = vab(t) + η (D − Y)[I′θa (1 + y(sa))(1 − y(sa))/2] × g(Zb),           (20) 

16

1

(1 ( ))(1 ( ))
(   1) ( ) ( )( )

2

                 [(1 ( ))(1 ( )) / 2] ,

i i
b b i ib

i

b b

y s y s
u t u t D Y I v

g Z g Z IP

θη
=

 + −  ′+ = + −  
   

× + − ×

∑
             (21) 

where η = 0.2 is the learning constant which determines the learning rate and IP is the 
input of the network. Thirty nature images were used to train the proposed neural net-
work for image compensation. The goal is to reduce the cost function (MSE) to 1% of 
the intensity range, i.e. 255⋅0.01 ≅ 2.5. When the training process is finished, 8 different 
input values, θ, can be inputted to the trained network, and the corresponding weighting 
matrices Wθ can be obtained to build a look up table for image compensation to reduce 
the computational cost.  

5. EXPERIMENTAL RESULTS 

The performance of the proposed method has been examined on a variety of testing 
images corrupted with various noise densities and quantitatively measured by the peak 
signal-to-noise ratio (PSNR). In our experiments, the proposed algorithm is compared 
with five existing methods including median filter [1], recursive median filter [2], Center 
Weighted Median (CWM) Filter [3], Tri-State Median Filter [4], and Li’s method [13].  

The testing results of Lena with 40% impulse noise are shown in Fig. 8. According 
to Figs. 8 (c) and (d), we can find the recursive median filter removes the noise well but 
also blurs the edge, so the recursive algorithm cannot balance the noise removal and edge 
sharpness well. In Figs. 8 (e) and (f), the Tri-State Median can retain more edge sharp-
ness than the CWM, but both of them cannot remove the noise very well in some highly 
noise-corrupted area. In Fig. 8 (g), Li’s method might misjudge some noise pixels as the 
edge and then increase the size of some noises. It shows that the proposed method can 
effectively remove the noise and keep the edge sharpness well. 
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(a)                  (b)                  (c)                 (d) 

    
(e)                  (f)                  (g)                  (h) 

Fig. 8. (a) Original Lena image; (b) Lena with 40% of impulse noise; (c) The 3 × 3 standard me-
dian filter; (d) The 3 × 3 recursive standard median filter; (e) The recursive CWM filter 
with weight = 3; (f) The recursive Tri-state median filter with threshold = 25; (g) Li’s 
method with threshold = 32; (h) Our proposed method. 

 

Table 1. Quantitative comparisons of different noise removal methods applied to the 
images with various percentages of impulse noise. 

Images Corrupted with 40 % Impulse Noise 
Filters 

Lena Peppers Sailboat Baboon Aerial Boat 
Median 19.13 18.70 18.28 17.31 17.79 18.67 

R-Median 26.86 25.79 23.45 20.69 22.01 24.84 
CWM 3 [3] 20.18 19.54 19.02 18.30 18.64 19.56 
Tri-State [4] 20.26 19.55 19.13 18.43 18.74 19.65 

Li [13] 22.02 21.47 20.73 19.12 19.94 21.22 
After our 1st- stage  

processing 
34.05 32.80 30.10 24.96 27.57 31.71 

The complete processing 
of our method 

35.66 33.69 30.55 25.20 28.05 32.78 

    
(a)                  (b)                 (c)                 (d) 

Fig. 9. (a) Original Lena image; (b) Lena with 40% of impulse noise; (c) Resultant image after the 
processing of the 1st stage (impulse noise removal); (d) Resultant image after the process-
ing of 2nd stage (image quality enhancement). 
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Fig. 9 and Table 2 show the indispensability of the noise removal stage to remove 
the noise well and the image quality enhancement stage to compensate the blur and jaggy 
edge. Because we take the advantages of noise-exclusive scheme and the median filter 
with adaptive-size well, the proposed first-stage processing is so powerful in removing 
the impulse noise. The noise-exclusive scheme that allows only uncorrupted pixels inside 
the window to participate in median processing effectively improves the noise suppres-
sion ability. When images are highly corrupted by the noise, several pixels may connect 
into noise blotches. Therefore, more 5 × 5 median filter is employed to remove the noise 
pixels. 

The hardware and software environment that we implement the algorithms for speed 
comparison are described as follows: all the algorithms are implemented in Matlab Lan-
guage on a 1.8G Hz Pentium IV-based PC with 256 MB RAM. Table 3 shows the aver-
age computation time in second for various algorithms applied to different kinds of noise 
corrupted images. The time consuming of the proposed algorithm is quite reasonable 
compared with other methods. 
 

Table 2. Compensation ability of our adaptive median filter in the 1st stage and the im-
age quality enhancement system in the 2nd stage with respect to Lena. 

Impulse Noise Ratio 5 % 10 % 20 % 40 % 
Percentage of 5 × 5 Median filter used in the 1st stage 0% 0.05% 0.31% 3% 
PSNR after the processing of the 1st stage 45.60 42.12 38.40 34.05 
PSNR after the processing of the 2nd stage 46.26 43.08 39.74 35.66 
Total pixels of Mo>Th 8595 16525 33428 65651 
Total pixels corrupted by the noise 13218 26007 52813 104868 

Table 3. Speed comparison for various algorithms (unit: sec). 

Algorithm Median R-Median CWM 3 TRI Li’s The Proposed 

Ave. Time 
(sec.) 

52 54 53 100 700 120 

6. CONCLUSIONS 

In this paper, a novel two-stage noise removal algorithm for salt-pepper impulse 
noise removal is proposed. In the first stage, the adaptive decision-based recursive me-
dian filter is applied to remove the noise cleanly and to keep the uncorrupted information 
as well as possible. In the second stage, the fuzzy decision rules inspired by human visual 
system (HVS) are proposed to classify pixels of the image into human perception sensi-
tive class and non-sensitive class. According to the experiment results, the proposed 
method is superior to the existing methods in both the quantitative and the visual qualita-
tive performance. In addition, the proposed fuzzy decision rules combined with the neu-
ral network can balance the trade-off between speed and quality for different applications 
by just adjusting a threshold parameter. 
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