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We describe quantitatively the combined effects of both the thermal fluctuations and of the
quenched disorder via the replica trick applied to the Ginzburg–Landau (GL) theory. We
show that the vortex state can appear in either of the three disordered phases: (i) unpinned
vortex liquid, (ii) amorphous vortex glass (pinned), and (iii) the crystalline (pinned but not
containing topological defects) Bragg glass. The formation of the vortex glass is associated
with the continuous replica symmetry breaking (RSB) reflecting the hierarchial structure of
the potential barriers in a vortex glass state. An earlier analysis in the framework of London
approximation have established that activation barriers controlling vortex dynamics obey the
extreme value statistics within roughly the same domain of the phase diagram. We show that
the disordered GL model in which only the coefficient at the quadratic term |ψ|2 is random,
first considered by Dorsey et al., exhibits, in the gaussian approximation, an additional non-
hierarchical state possessing certain glassy properties like nonzero Edwards–Anderson order
parameter. We associate this state with the “marginal glass phase” predicted in the earlier
work of one of the authors; the marginal glass state being characterized by the marginally
glassy dynamics. We show further that when the random component of the coefficient of the
quartic term |ψ|4 in GL free energy is taken into account, RSB effects appear. Application of
the obtained results to description of various disorder-generated phenomena in vortex matter
are briefly considered. The location of the glass transition line is determined and compared to
experiments. This line is clearly different from both the melting line and the second peak line
describing the translational and rotational symmetry breaking at high and low temperatures
respectively. The phase diagram is separated by these two lines into the four phases described
above.

1. INTRODUCTION

Any superconductor contains inhomogeneities
of either natural or artificial origin which affect both
its thermodynamic and dynamic properties. The
effect of inhomogeneities in the type II supercon-
ductors is described most often in terms of pinning
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of the vortex lines. These effects become especially
interesting in high-temperature superconductors
where the interplay between disorder and thermal
fluctuations gives rise to a wealth of thermodynamic
and dynamic phases. While in perfectly clean su-
perconductors, vortex system can be found in either
crystalline or vortex liquid state [1], disorder can
drive vortex system into a glass. Although naively
one can distinguish three generic vortex phases asso-
ciated with the dominance of one of the three basic
energies (elastic energy, pinning energy, and the
energy of thermal fluctuations), the actual vortex
phase diagram reveals much more of complex
diversity (see [2,3] for a review, and also [4,5]). In
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particular, there are experimental indications that
there may be two distinct vortex liquid states [6]);
vortex solid can form either low-field topological
defects free Bragg glass phase [7] or amorphous
(entangled) glassy phase [8,9]. The transition
lines themselves show more complicated picture
rather than simply three basic lines merging in the
tri-critical point (see, for example [4]). One can
summarize the existing experimental observations
on the phase diagram as follows.

1. The first-order [10,11] melting line seems
to merge with the so-called “second mag-
netization peak” line (which marks the
transition from Bragg glass to amorphous
glass [8,9]) [12,13]. At low temperatures, this
latter line depends strongly on disorder and
generally exhibits a positive slope (termed
also the “inverse” melting [14]), while in the
“melting” section it is dominated by thermal
fluctuations and has a large negative slope.
This is the first-order transition, and the sys-
tem shows entropy jump when crossing this
line. The maximum at this curve where the
magnetization and the entropy jumps vanish
was interpreted as either a tricritical point
[6,15] or a Kauzmann point [16]. This univer-
sal “order–disorder” transition line (ODT),
which was first observed in the strongly
layered superconductors (BSCCO [12]) was
extended to the moderately anisotropic
superconductors (LaSCCO [13]) and to the
more isotropic ones like YBCO [16,17]. At
this line, the spontaneous breaking of the
translation and rotation symmetry occurs.

2. The universal “order–disorder” line is
different from the “irreversibility line” or
the “glass” transition (GT) line, which is a
continuous transition [18,19]. The almost
vertical glass line clearly represents effects of
disorder, although thermal fluctuations affect
the location of the transition. Experiments in
BSCCO [20] indicate that the line crosses the
ODT line right at its maximum and continues
deep into the ordered (Bragg) phase. Note
that the proximity of the glass line to the
Kauzmann point is not too surprising, since
both of them mark the region of close com-
petition between disorder and the thermal
fluctuations effects. In more isotropic mate-
rials like LaSCO [21], the GT line is closer
to the “melting” section of the ODT line and

still crosses it. Most of the experiments [15]
indicate that the GT line terminates at the
“tricritical point” in the vicinity of the max-
imum of the ODT line. It is more difficult to
characterize the nature of the GT transition
as a “symmetry breaking.” The common
wisdom is that the “replica” symmetry is
broken in the glass (either via “steps” or via
“hierarchical” continuous process) as in the
most of the spin glasses theories [22].

Despite the remarkable progress achieved and
efforts expended [23–33] a lot of fundamental ques-
tions concerning the nature of the glass remain open
and many mechanisms and subtleties of the related
slow glassy dynamics are yet to be revealed, main-
taining the physics of glasses as one of the major chal-
lenges in the condensed matter physics. Vortex sys-
tems offer a unique testing ground for experimental
verification of theoretical concepts of glass dynam-
ics. To establish the connection between the vortex
glass and other kind of glasses (in particular, the spin
glass), we explore the Ginzburg–Landau (GL) model
in the presence of quenched disorder.

The application of the replica trick to the GL
functional and comparison with the extreme value
statistics-based phenomenological description of the
vortex glass enables us to elaborate on the unify-
ing picture of the glass dynamics and demonstrate
that glassy behavior is associated with the continuous
replica symmetry breaking (RSB). In the same RSB
domain of the phase diagram, the relevant activation
barriers obey the so-called Gumbel statistics, which
is the underlying reason for the glassy dynamics
(creep). This indicates the connection between the
vortex glass and other glass models (especially, the
models of the spin glass where the RSB is the inher-
ent property). Applying our results to the description
of vortex phase diagram, we determine the vortex
glass transition line, which appears different and well
separated from both the melting line and from the
so-called second peak lines and present a general pic-
ture of the phase transformations in vortex matter.

The straightforward approach of introducing
disorder via adding random components to all the
GL coefficients gives rise to still complicated model
requiring further simplifications to become treat-
able. Originally, the notion of vortex glass and the
continuous glass transition exhibiting the conduc-
tivity glass scaling was introduced by reducing the
GL description to the frustrated XY model (the
gauge glass) [24,34]. In this approach, one fixes the
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amplitude of the order parameter, and disorder ap-
pears as random component of the vector potential.
This model was studied by the various RG meth-
ods and has been extensively simulated numerically
[35,36]. In analogy to the theory of spin glass, the
replica symmetry is broken when crossing the GT
line. The model faced several problems (see [37] for
a review), in particular, for finite penetration depth λ

it does not exhibit any transition [38], also it is hard
to explain sharp Bragg peaks observed in the experi-
ments at low magnetic fields. The latter problem was
bypassed by exploring the London description of the
vortex state, which treats vortex system as an elas-
tic medium consisting of interacting line-like objects
subject to both the pinning potential and the thermal
Langevin force [33,39]. The resulting models can be
treated by the gaussian approximation [7,40] and RG
[34]. The theoretical observation then was that if the
dimensionality, D, of the vortex system 2 < D < 4,
there exists a transition into a glassy phase in which
the replica symmetry is broken following the “hi-
erarchical pattern” (in D = 2 the breaking is “one
step”). Despite considerable success, the applicabil-
ity of the descriptions of phase diagram based on the
London approximation can be questioned within the
fluctuational domain close to TC. This concerns es-
pecially highly anisotropic layered superconductors
like BSCCO where the fluctuational region is wide
and the very notion of the line-like vortices can be
hardly applied within the vortex-liquid domain (al-
though some of the aspects of the elastic medium
approximation may still hold [41]). This calls for a
more general approach based on the GL functional,
which does not necessarily invoke the concept of vor-
tex lines.

One of the most developed schemes in treating
the GL model is the lowest Landau level (LLL)
approximation valid close to the Hc2(T) line [42].
Dorsey et al. [27] studied the liquid phase adapting
the dynamic approach [43], and Tesanovic and
Herbut applied this scheme for study the effect of
columnar defects in layered materials using super-
symmetry considerations [44]. The goal of our work
is to study the glass transitions in the Abrikosov state
of type II superconductors using the replica treat-
ment of the GL functional with disorder represented
by the random component of the coefficients of the
free energy. The LLL model including only |ψ|2
disorder where RSB is absent within the gaussian
approximation but appears at the postgaussian level
was addressed in [45]. In this work, we do not go
beyond the gaussian approximation, but instead con-

sider the LLL model with the random component in
every GL model term. The most general hierarchical
homogeneous (liquid) ansatz [46] within the gaussian
approximation and its stability are considered to
obtain the glass transition line and to determine the
nature of the transition for various values of the
disorder strength of the GL coefficients. Then we
place the glass line on the phase diagram of YBCO
and compare our predictions with experiments and
other theories.

The present paper is organized as follows. The
general disordered GL model is introduced in Sec-
tion 2 and the gaussian variational replica method is
presented in Section 3. Next, in Section 4, we study
the model with either |ψ|2 disorder in some more de-
tail, or the |ψ|4 disorder in Section 5 and obtain the
phase transition lines in those two cases. In Section 6,
the general model containing both the |ψ|2 disorder
and the |ψ|4 disorder is treated briefly. In the second
part of the paper, we devote to discuss vortex dynam-
ics in complimentary framework in Sections 8 and 9.
In Section 10, we compare our results with the exper-
imental data, and conclude in Section 11 by summa-
rizing our results.

2. DISORDER EFFECTS IN THE
GINZBURG–LANDAU DESCRIPTION
OF THE TYPE II SUPERCONDUCTOR

2.1. Ginzburg–Landau Free Energy

We start from the Gibbs energy of the ideal ho-
mogeneous sample (no disorder):

G =
∫

dx3 h2

2m∗
||
|∂zψ|2 + h2

2m∗
⊥

| �Dψ|2 + a′ψ∗ψ

+ b′

2
(ψ∗ψ)2 + (H − B)2

8π
. (1)

Here a′ = α(T − Tc) and b′ are constant parameters,
�D ≡ (−ih∇ + e∗

c
�A) is the covariant derivative, �A is

the vector potential, the magnetic field �A = ∇ × �A, H
is the external magnetic field, m∗

⊥ and m∗
|| are the ef-

fective masses in directions perpendicular and par-
allel to the field respectively. Mesoscopic thermal
fluctuations are accounted for via Boltzmann weights

Z =
∫

ψ∗,ψ
exp

{
−G[ψ∗, ψ]

T

}
(2)

The model provides a good description of ther-
mal fluctuations as long as 1 − t − b � 1, where
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t = T/Tc, b = B/Hc2(h = H/Hc2), Hc2 = �0/(2πξ2)
and ξ is the coherence length. In this case, the
higher order terms like |ψ|6 can be omitted (de-
tail notation can be found in [47]). The three-
dimensional GL model describes materials with not
too high anisotropy (for a recent evidence of valid-
ity of this assumption in YBCO see [48]). In strongly
anisotropic materials, a model of the Lawrence–
Doniach type is more appropriate [2].

Within the GL approach, the point-like quen-
ched disorder on the mesoscopic scale is introduced
by making each of the coefficients a random variable
centered around a certain constant value given in
Eq. (2) with the final dispersion. For example, the
effective masses assume the form

m∗−1
⊥

U(x)U(y)

→ m∗−1
⊥ (1 + U(x));

= Pδ(x − y).
(3)

The parallel effective mass m∗
|| might also have the

random component which we neglect (it is relatively
small, since m∗

|| is typically very large), though it can
be incorporated with no additional difficulties. This
type of disorder is sometimes called the δl disorder,
since it originates in part from the inhomogeneity of
the electron mean free path l in Gor’kov’s derivation.
From the BCS theory, effective mass is

m∗ = 2me

(
1 + π3hvF

168ζ (3)Tcl

)

in the clean limit and

m∗ = 2me
7ζ (3)hvF

2π3Tcl

in the dirty limit. Relation to the notations of
[2, chapter II] is as follows: U is −δmab/mab and
P = γm/m2

ab. Note, however, that in addition to the
random distribution of l, disorder in vF and Tc (the
density of states and interaction strength) can also
affect m∗.

The other two parameters in the GL equations
are

α = 12π2Tc

7ζ (3)εF

and

b′ = 18π2

7ζ (3)NεF

(
Tc

εF

)2

.

The coefficient of the quadratic term is called δT dis-
order, since it describes a local deviation of the crit-
ical temperature. Introducing a random component

in |ψ|2 term:

a′ → a′(1 + W(x)); W(x)W(y) = Rδ(x − y). (4)

In notations of [2], the random field W(x) =
−δa/a, R = γa/a2. When thermal fluctuations of the
vortex degrees of freedom can be neglected, these
two random fields would be sufficient (they control
the two relevant scales ξ and λ). The reason is that
one can set the coefficient of the third term |ψ|4 to
a constant by rescaling. However, in the presence
of thermal fluctuations, the coefficient of |ψ|4 also
should be considered as having a random compo-
nent. It cannot be “rescaled out,” since it affects the
Boltzmann weights. Later we will see that at least
within the LLL approximation, this term is crucial in
inducing certain glassy properties of the vortex mat-
ter state. We, therefore, introduce its disorder via

b′ → b′(1 + V(x)); V(x)V(y) = Qδ(x − y). (5)

In unconventional superconductors, even with-
out disorder, the phenomenological GL model has
not been reliably derived microscopically. The coef-
ficients and their inhomogeneitics therefore should
be considered as phenomenological parameters to be
fitted to experiments. We assume that U, R, and Q
have weak dependencies on field and temperature.
The assumption of the weak temperature and field
dependence of the disorder strengths U, R, and Q,
as that of any parameter in the GL approach, should
be derived in principal from a microscopic theory as-
suming random chemical potential or should be jus-
tified by fitting to experiments. For simplicity, the
white noise distribution is considered

p[U, W, V] = exp
[
−
∫

x

U(x)2

2P
+ W(x)2

2R
+ V(x)2

2Q

]

for random components. The free energy of super-
conductor after averaging over the disorder is

F = − T
norm

∫
U,W,V

p[U, W, V] log
[ ∫

ψ

exp[−g[ψ]

−f dis[U, W, V, ψ]]
]

; (6)

g = G/T; f dis[U, W, V, ψ] = 1
T

∫
x

h2

2m∗
⊥

U(x)| →
D ψ|2

+ a′W(x) |ψ|2 + 1
2

V(x) |ψ|4, (7)

where
norm ≡

∫
U,W,V

p[U, W, V]

is a normalization factor.
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To make the physical picture clear, we rescale
the coordinates as x → ξx, y → ξy, z → ξz

γ
with

anisotropy parameter defined by γ = (m∗
‖/m∗

⊥)1/2.
The order parameter is scaled as ψ2 → 2αTc

b′ ψ2. The
dimensionless free energy becomes simpler looking:

g[ψ] = G/T = 1
ω

∫
x

1
2
|∂zψ|2 + 1

2
| →

D ψ|2 + t − 1
2

|ψ|2

+ 1
2
|ψ|4 + κ2(b − h)2

4
, (8)

where ω = √
2Giπ2t. The Ginzburg number is Gi ≡

32[πλ2Tcγ/(�2
0ξ)]2, where λ is the magnetic penetra-

tion depth. The last term can be ignored in calculat-
ing F as the κ is very big in high Tc superconductors
and the last term is order of 1

κ2 . Similarly, the random
component and the distribution become:

f dis[U, W, V, ψ] = 1
ω

∫
x

{
−1

2
U(x)ψ∗D2ψ + t − 1

2
W(x)|ψ|2

+ 1
2

V(x)|ψ|4
}

. (9)

p[U, W, V] = exp
[
− ξ3

γ

∫
x

(
U(x)2

2P
+ W(x)2

2R

+ V(x)2

2Q

)]
. (10)

The model, however, is highly nontrivial even with-
out disorder, and further approximation is needed to
make progress.

2.2. Lowest Landau Level Approximation

The LLL approximation [42] is based on con-
straint −D2ψ = bψ. Over the years, this model has
been studied by various methods, analytic and nu-
merical [47,49,50]. The (effective) LLL model is ap-
plicable in a surprisingly wide range of fields and
temperatures determined by the condition that the
relevant excitation energy ε is much smaller than the
gap between Landau levels 2heB/(cm⊥) [16].

The free energy after further rescaling x →
x/

√
b, y → y/

√
b, z → z(25/2π/bω)1/3, ψ2 → (25/2π/

bω)2/3ψ2, simplifies within the LLL approxi-
mation to:

f LLL = 1
25/2π

∫
d3x
[

1
2
|∂zψ|2 + aT|ψ|2 + 1

2
|ψ|4
]

.(11)

Not surprisingly, the number of independent con-
stants in LLL is one less than in the general model.

This fact leads to the “LLL scaling” relations (of
course, the disorder terms will break LLL scaling).
As a result, the simplified model without disorder has
just one parameter—the (dimensionless) scaled tem-
perature:

aT = −
(

2π

bω

)2/3

(1 − t − b). (12)

The disorder term becomes:

f dis
LLL = 1

25/2π

∫
d3x
{
�(x)|ψ|2 + 1

2
V(x)|ψ|4

}
, (13)

in which only combination of W and U enters

�(x) = 1
2

[
2(t − 1)

(
2π

bω

)2/3

W(x)

− 2b
(

2π

bω

)2/3

U(x)
]
.

Its distribution is still gaussian

p̄(�, V) = exp
[
−
∫

x

�(x)2

2r′ + V(x)2

2q

]
(14)

with two variances

r′ =
√

2γπ

ωξ3
{(1 − t)2R + b2P} (15)

q′ = γ√
2ξ3

(
b2ω

2π

)1/3

Q.

To treat both the thermal fluctuations and dis-
order, we will use the replica method to inte-
grate over impurity distribution followed by gaussian
approximation.

3. REPLICA TRICK AND GAUSSIAN
APPROXIMATION

3.1. Replica Trick

We will use the replica trick to evaluate the dis-
order averages. The replica method is widely used
to study disordered electrons in the theory of spin
glasses [22], disordered metals and was applied to
vortex matter in the London limit [40,51]. Applying a
simple mathematical identity to the disorder average
of the free energy, one obtains:

F = −T lim
n→0

1
n

(Zn − 1). (16)
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The averages of Zn is the statistical sum over n iden-
tical “replica” fields ψa, a = 1, . . ., n:

Zn = 1
norm

∫
�,V

p[�, V]
∏

a

∫
ψa

exp{−f [ψa]

− f dis[�, V, ψa]}. (17)

The integral over the disorder potential is gaussian
and results in:

Zn =
∫

ψa

exp

[
−
∑

a

f (ψa)+ 1
2(25/2π)2

∑
a,b

f ab

]

(18)
f ab = r′|ψa|2|ψb|2 + q′

4
(ψ∗

aψa)2(ψ∗
bψb)2.

This model is a type of scalar field theory and the
simplest nonperturbative scheme commonly used to
treat such a model is gaussian approximation. Its va-
lidity and precision can be checked only by calculat-
ing corrections.

3.2. Gaussian Approximation

We have assumed that the order parameter is
constrained to the LLL and therefore can be ex-
panded on the basis of the standard LLL eigenfunc-
tions in Landau gauge:

ψa(x) = norm
∫

kz,k
ei(zkz+xk) exp

{
−1

2
(y + k)2

}
ψ
∼

a(k).

(19)
We now apply the gaussian approximation, which has
been used in disorder in the elastic medium approach
[40,51], following its use in polymer physics [52]. The
gaussian approximation was applied to the vortex liq-
uid within the GL approach in [42,50]. The gaussian
effective free energy is expressed via variational pa-
rameter [47,52] µab, which, in the present case, is a
matrix in the replica space. The correlator is param-
eterized as follows

〈ψ∗
a(k, kz)ψb(−k,−kz)〉 = Gab(Kz) = 25/2π

k2
z

2 δab + µ2
ab

(20)

The bubble integral appearing in the free energy is
very simple:

〈ψ∗
a(x, y, z)ψb(x, y, z)〉 =

√
2

π

∫
kz

1
k2

z
2 δab + µ2

ab

= 2µ−1
ab ≡ 2mab.

As a result, the gaussian effective free energy can be
written in a form:

n f eff =
∑

a

{
25/2π

(2π)3

∫
kz

[
log G−1(kz)

+
(

k2
z

2
+ ar

)
G(kz) − I

]

aa

+ 4(maa)2

}

−
∑
a,b

{
1

23/2π
r′|mab|2 +

√
2

π
q′ (|mab|4

+ 4maambb |mab|2
) }

(21)

= 2
∑

a

{µaa + aTmaa + 2(maa)2}

− 2
∑
a,b

{
r|mab|2 + q

(
1
4
|mab|4

+ maambb |mab|2
)}

,

where we discarded an (ultraviolet divergent) con-
stant and renormalization of aT and rescaled the dis-
order strength: r = [1/(25/2π)]r′, q = 25/2/πq′.

We start with a simple case in which only the
|ψ|2 type of disorder is present. More precisely,
we take q = 0 and return to the general case in
Section 4. This model has been already discussed
using different method (the Sompolinsky dynamic
approach) in the unpinned phase in [27].

4. NONZERO EDWARDS–ANDERSON
ORDER PARAMETER AND ABSENCE
OF THE REPLICA SYMMETRY BREAKING
WHEN ONLY THE |ψ|2 DISORDER
IS PRESENT

4.1. Hierarchical Matrices and Impossibility
of the Continuous Replica Symmetry Breaking

In this section, we neglect the |ψ|4 disorder term.
It is convenient to introduce real (not necessarily
symmetric) matrix Qab, which is in one to one linear
correspondence with Hermitian (generally complex)
matrix mab via

Qab = re[mab] + im[mab]. (22)

Unlike mab, all the matrix elements of Qab, are inde-
pendent. In terms of this matrix, the free energy can
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be written as

n
2

f eff =
∑

a

{(m−1)aa+aTQaa + 2(Qaa)2} − r
∑
a,b

Q2
ab.

(23)
Taking derivative with respect to Qab, gives the sad-
dle point equation for this matrix element:

n
2

δ f
δQab

= −1
2

[(1 − i)
(
m−2)

ab + c.c.] + aTδab

+ 4Qaaδab − 2rQab = 0. (24)

Since the electric charge (or the superconducting
phase) U(1) symmetry is assumed, we consider only
solutions with real mab. In this case, mab = Qab is a
symmetric real matrix. General hierarchical matri-
ces m are parameterized using the diagonal elements
m̃ and the Parisi’s (monotonically increasing) func-
tion mx specifying the off diagonal elements with
0 < x < 1 [52]. Physically different x represent time
scales in the glass phase. In particular, the Edwards–
Anderson (EA) order parameter is mx=1 = M > 0.

A nonzero value for this order parameter sig-
nals that the annealed and the quenched averages
are different. The dynamic properties of such phase
are generally quite different from those of the non-
glassy M = 0 phase. In particular, it is expected to ex-
hibit infinite conductivity [24,27]. We will refer to this
phase as the “ergodic pinned liquid” (EPL) distin-
guished from the “nonergodic pinned liquid” (NPL)
in which, in addition, the ergodicity is broken.

However, in the present model, RSB does not
occur. In terms of Parisi parameter m̃ and mx, the
matrix equation (24) takes a form:

−m̃−2 + aT + (4 − 2r)m̃ = 0

(25)
(m−2)x + 2rmx = 0.

Dynamically, if mx is a constant, pinning does not
results in the multitude of time scales. Certain time
scale sensitive phenomena like various memory
effects [53] and the responses to “shaking” [14] are
expected to be different from the case when mx takes
multiple values. If mx takes a finite different number
of n values, we call n − 1 step RSB. However, if mx

is continuous, the continuous RSB occurs.
In order to show that mx is a constant, it is con-

venient to rewrite the second equation via the matrix
µ, the matrix inverse to m:

(µ2)x + 2r(µ−1)x = 0. (26)

Differentiating this equation with respect to x, one
obtains:

2
[{µ}x − r({µ}x)−2] x

dµx

dx
= 0, (27)

where we used a set of standard notations in the spin
glass theory [52]:

{µ}x ≡ µ̃ − 〈µx〉 − [µ]x; 〈µx〉 ≡
∫ 1

0
dxµx;

[µ]x =
∫ x

0
dy(µx − µy). (28)

If one is interested in a continuous monotonic part
dµx/dx �= 0, the only solution of Eq. (27) is

{µ}x = r1/3 (29)

Differentiating this again and dropping the nonzero
derivative dµx/dx again, one further gets a contradic-
tion: dµx/dx = 0. This proves that there are no such
monotonically increasing continuous segments. One
can therefore generally have either the replica sym-
metric solutions, namely mx = M or look for a several
step-like RSB solutions [22]. We can show that the
constant mx solution is stable. Therefore, if a step-
like RSB solution exists, it might be only an addi-
tional local minimum. We explicitly looked for a one-
step solution and found that there is none.

4.2. Two Replica symmetric solutions
and the Third-Order Transition Between Them

4.2.1. The Unpinned Liquid and the “Ergodic Glass”
Replica Symmetric Solutions

Restricting to RS solutions, mx = M, the saddle
point equations (25) simplify:

−ε−2 + (aT + 4m̃) − 2rε = 0;

(30)
M(ε−3 − r) = 0,

where ε = m̃ − M. Energy of such a solution is given
by

f eff

2
= 2ε−1 − 2 − ε−2M + 2aTm̃ + 4m̃2

− 2r(ε2 + 2εM). (31)

The second equation (30) has a replica index in-
dependent (diagonal) solution M = 0. In addition,
there is a nondiagonal one. It turns out that there is a
third-order transition between them.
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For the diagonal solution ε = m̃, and the first
equation is just a cubic equation:

−m̃−2 + (aT + 4m̃) − 2rm̃ = 0. (32)

For the nondiagonal solution, the second equa-
tion gives ε = r1/3, which, when plugged into the first
equation, gives:

m̃ = 1
4

(
3r2/3 − aT

)
; M = 1

4

(
3r2/3 − aT

)− r−1/3.

(33)
The matrix m therefore is

mab = r−1/3δab + M, (34)

which results in the following value of the free
energy:

f = 6r1/3 − 1
4

(
3r2/3 − aT

)− r2.

The two solutions coincide for

aT = r−1/3(3r − 4). (35)

Since in addition to the energy, the first and sec-
ond derivatives of the energy, (d f /daT) = (2r−1/3)
and (d2f /da2

T) = −(1/2), respectively, coincide (the
fourth derivatives are different though), the transi-
tion is a third-order one.

4.2.2. Stability Domains of the Two Solutions

In order to prove that a solution is stable beyond
the set of replica symmetric matrices m, one has to
calculate the second derivative of free energy (called
Hessian in [22,54]) with respect to arbitrary real ma-
trix Qab defined in Eq. (22):

H(ab)(cd) ≡ n
2

δ2f eff

δQabδQcd

= 1
2

[
(m−2)ac(m−1

db ) − i(m−2)ad(m−1)cb
]

+1
2

[
(m−1)ac(m−2)db − i(m−1)ad(m−2)cb

]+ c.c.

+ 4δacδbdδab − 2rδacδbd. (36)

We will use a simplified notation for the product of
the Kronecker delta functions with more than two in-
dices: δacδbdδab ≡ δabcd. For the diagonal solution, the
Hessian is a very simple operator on the space of real
symmetric matrices:

H(ab)(cd) = cIIabcd + cJ Jabcd, (37)

where the operators I (the identity in this space) and
J are defined as

I ≡ δacδbd; J = δabcd (38)

and their coefficients in the diagonal phase are:

cI = 2(m̃−3 − r), cJ = 4 (39)

with m̃ being a solution of Eq. (32). The correspond-
ing eigenvectors in the space of symmetric matrices
are v(cd) ≡ Aδcd + B. To find eigenvalues λ of H, we
apply the Hessian on V. The result is (dropping terms
vanishing in the limit n → 0):

H(ab)(cd)vcd = A(cI + cJ )δab + B(cI + cJ δab)

= λ(Aδab + B) (40)

There are two eigenvalues: λ(1) = cI and λ(2) = cI +
cJ . Since cJ = 4 > 0, the sufficient condition for sta-
bility is:

cI = 2(m̃−3 − r) > 0. (41)

It is satisfied everywhere below the transition
line of Eq. (35), see Fig. 1 (aT, r phase diagram). The
analysis of stability of the nondiagonal solution is
slightly more complicated. The Hessian for the non-
diagonal solution is:

H(ab)(cd) = cVV + cUU + cj J, (42)
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uid with the |ψ|2 disorder only. aT is the LLL scaled temperature,
while r is the |ψ|2 disorder strength. The dotted line is the glass
transition line. Below the line, the state is described by a replica
diagonal matrix mab = mδab, while above line, the vortex state has
a nonzero Anderson Edwards parameter.
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where new operators are

V(ab)(cd) = δac + δbd; U(ab)(cd) = 1 (43)

and coefficients are

cV = −3Mr2/3; cU = 4M2r1/3; cJ = 4 (44)

In the present case, one obtains three different
eigenvalues [22, 54], λ(1.2) = 2(1 ± √

1 − 4Mr2/3) and
λ(3) = 0. Note that the eigenvalue of Hessian on the
antisymmetric matrices are degenerate with eigen-
value λ(1) in this case (we will come back later on
this eigenvalue). For M < 0, the solution is unsta-
ble due to negative λ(2). For M > 0, both eigenval-
ues are positive and the solution is stable. The line
M = 0 coincides with the third-order transition line,
hence the nondiagonal solution is stable when the
diagonal is unstable and vise versa. Figure 1 shows
phase transition between two liquids. We conclude
that there is no glass state in the vortex liquid without
the |ψ|4 disorder term. The transition does not corre-
spond to RSB. Despite this in the phase with nonzero
EA (NEA), M order parameter there are Goldstone
bosons corresponding to λ(3) in the replica limit of
n → 0. The criticality and the zero modes due to dis-
order (pinning) in this phase might lead to great va-
riety of interesting phenomena in statics and dynam-
ics. These have not been explored yet. However, as
we show in the next section, the random component
of the quartic term changes the character of the tran-
sition line: the replica symmetry is broken on the one
side of the line. For simplicity, in the next section, we
consider first a case with a random component of |ψ|4
and no random component of |ψ|2, and return to the
general case in Section 5.

5. THE GLASS TRANSITION FOR THE |ψ|4

DISORDER

5.1. Continuous Replica Symmetry
Breaking Solutions

In this section, we neglect the r|ψ|2 term disor-
der. Although it is always present, as we have seen in
the previous section, at least within the gaussian ap-
proximation, it does not cause RSB. Therefore, one
expects that although it certainly influences proper-
ties of the vortex matter, for example, the melting
transition line to lower fields and temperatures [16],
its role in qualitative understanding of RSB effects
is minor. The only other disordered term within the
LLL approximation considered in this paper is the

|ψ|4 disorder term. As was discussed in Section 2,
at least within the BCS theory, it is expected to be
smaller than the |ψ|2 disorder, q � r. Even it could
be very small, however, as we show here, it leads to
qualitatively new phenomena in vortex matter. The
r = 0 free energy after integration over kz becomes:

n
2

f eff =
∑

a

{
(m−1)aa + aTmaa + 2(maa)2}

− q
∑
a,b

(
1
4
|mab|4 + maambb |mab|2

)
(45)

In terms of the real matrix Qab defined in Eq. (22),
the free energy can be written as

n
2

f eff =
∑

a

{
(m−1)aa + aTQaa + 2(Qaa)2} (46)

− q
∑
a,b

(
1
8

Q4
ab + 1

8
Q2

abQ2
ba + QaaQbbQ2

ab

)
(47)

Taking a derivative with respect to Qab gives the sad-
dle point equation for this matrix:

n
2

δ f
δQab

=

⎡
⎢⎢⎢⎣

− 1
2 [(1 − i)(m−2)ab + cc] + aTδab

+ 4Qaaδab

− q( 1
2 Q3

ab + 1
2 QabQ2

ba + 2QabQaaQbb

+ δab�eQec(Q2
ae + Q2

ea))

⎤
⎥⎥⎥⎦ = 0 (48)

Using the hierarchical symmetric matrix parametri-
zation of its symmetric part (the antisymmetric will
not be important for most of our purposes), it takes a
form

−m̃−2 + aT + 4m̃ − q(3m̃3 + 2m̃2m̃) = 0 (49)

(m−2)x + q
(
m3

x + 2m̃2mx
) = 0. (50)

As in the previous section, it is convenient to
rewrite the second equation in terms of µ, the inverse
matrix of m:

(µ2)x + q
[
((µ−1)x)3 + 2m̃2(µ−1)x

] = 0. (51)

Differentiation of this equation with respect to x,
leads to:
{
2{µ}x − q

[
3((µ−1)x)2 + 2m̃2] ({µ}x)−2} x

dµx

dx
= 0.

(52)
For a continuous segment (dµx/dx) �= 0 one solves
Eq. (52) for (µ−1)x in terms of {µ}x getting now a
more complicated result:

(µ−1)x =
√

2
3

[q−1({µ}x)3 − m̃2] (53)
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Differentiating this equation with respect to x again,
one obtains:

1
({µ}x)2

=
√

2
3q [({µ}x)3 − qm̃2]

({µ}x)2 x. (54)

Instead of solving this for {µ}x, we present x as func-
tion of {µ}x:

x =
√

3q [({µ}x)3 − qm̃2]
2({µ}x)8

. (55)

Thus, the solution will be given by Eq. (55) in
the segment if (dµx/dx) �= 0 and constant µx in the
other segments. In principle, this would allow for
a numerical solution. One could actually solve the
equation near the transition line using the method in
[46]. The situation is completely different compared
to that of the |ψ|2 disorder. In the present case, a
stable RSB solution exists. We will turn first how-
ever to the replica symmetric solutions and deter-
mine their region of stability. In the unstable region
of the replica symmetric solutions, the RSB solution
of Eq. (55) will be the relevant one.

5.2. Two Replica Symmetric Solutions

5.2.1. Solutions

Here, we briefly repeat the steps leading to the
RS solutions for the |ψ |2 disorder omitting details.
The saddle point equations Eq. (25) for the RS ma-
trices mx = M are:

−ε−2 + (aT + 4m̃) − q[5m̃3 − M3 − 2M2m̃ − 2m̃2M] = 0

M[2ε−3 − q(M2 + 2m̃2)] = 0
(56)

(57)

where ε ≡ m̃ − M. Energy of such a solution is given
by

f
2

= ε−1 − ε−2M + aTm̃ + 2m̃2

− q
4

(5m̃2 − M2)(m̃2 + M2). (58)

For the diagonal solution M = 0, ε = m̃, and the first
equation takes a form:

−m̃−2 + aT + 4m̃ − 5qm̃3 = 0. (59)

The nondiagonal solution in the present case is more
complicated, but the condition determining the tran-
sition line between the two (equivalently the appear-
ance of the nonvanishing EA order parameter) is still
very simple: ε = q−1/5 as M = 0 on the line. Along the

line, the scaled temperature is:

ad
T = 2(3q2/5 − 2q−1/5). (60)

It is still the third-order transition line similar to
the |ψ|2 disorder case, and one has zero modes in
NEA sector, while no such modes exist in the M = 0
phase. The stability analysis with respect to config-
urations which are replica symmetric however gives
completely different results compared to that of the
|ψ|2 disorder.

5.2.2. Stability Rgion of the Rs Solutions

The Hessian now has several additional terms

H(ab)(cd) ≡ n
2

δ2f
δmabδmcd

= (m−2)ac(m−1)ab

+ (m−1)ac(m−2)ab + 4δabcd (61)

−q

⎛
⎜⎜⎝

3
2 δacδbdQ2

ab + 1
2 (δacδbdQ2

ba + 2δadδbcQabQba)

2(δacδbdQaaQbb + δbcdQabQaa + δacdQabQbb)

+δab[δcd(Q2
ac + Q2

ca) + 2(δacQadQdd + δadQcaQcc)]

⎞
⎟⎟⎠

For replica symmetric solutions Qab = mab =
εδab + M, the Hessian can be represented as

H = c+I+ + c−I− + cUU + cVV + cJ J + cKK + cNN,

(62)
where new operators I±, K, N are defined as

I± ≡ 1
2

(δacδbd ± δadδbc); K ≡ δabδcd;
(63)

N = δabc + δabd + δacd + δbcd.

The coefficients are

c+ = 2ε−3 − q(3M2 + 2m̃2);

c− = 2ε−3 − q(M2 + 2m̃2);

cU = 4M2ε−5; cV = −3Mε−4; (64)

cJ = 4 − q[5(m̃2 − M2) + 8m̃(m̃ − M)];

cK = −2qM2; cN = −2qm̃M.

Generally, the Hessian have four different eigenval-
ues [54]:

λ(1,2) = c+ + 1
2

(
cJ + 4cN ±

√
cJ (cJ + 8cV + 8cN)

)
;

λ(3) = c+, λ(4) = c− (65)

Note that there are new matrices like I+, I− when
q �= 0. In the case of q = 0, c+ = c−, so that only
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operator I = I+ + I− appears in this case. Actually,
there is λ(4), which is the eigenvalue of Hessian on
the antisymmetric matrices. However, λ(4) = c− ≥ 0
is always hold on the RS solutions so that it can be
ignored in determining the instabilities of those RS
solutions. Since the stability analysis is quite compli-
cated, we divide it into several stages of increasing
complexity.

5.2.3. Stability of the States on the Diagonal–Off
Diagonal “Transition” Line

The easiest way to see that the RS solutions can
be unstable is to look first at the transition line ad

T,
Eq. (60). On the transition line, one has

c± = cU = cV = cN = 0; cJ = 4 − 13q3/5; (66)

and the eigenvalues simplify to

λ(3) = 0; λ(1,2) = 4 − 13q3/5. (67)

Therefore, it is unstable for q > q t

q t =
(

4
13

)5/3

(68)

marginally stable at a single point

at
T = −28

13

(
13
4

)1/3

≈ −3.2 (69)

and stable for q < q t. We studied numerically the sta-
bility on both sides of this line, see Fig. 2. The diag-
onal (liquid) solution is stable below the line (ad

T =
2(3q2/5 − 2q−1/5)) for q > q t. The line when q > q t,
the phase transition line (liquid to glass) is changed
to a different line which will be discussed in the next
section.

5.2.4. Stability of the Diagonal Solution

Equation for m̃, coefficients in Hessian, and
eigenvalues are:

−m̃−2 + aT + 4m̃ − 5qm̃3 = 0; (70)

c+ = 2m̃−3 − 2qm̃2; cJ = 4 − 13qm̃2; (71)

λ(1,3) = c+; λ(2) = c+ + cJ = 4 + 2m̃−3 − 15qm̃2.

While λ(1) is positive, λ(2) is positive only below
the line defined parametrically via

aT = 5 − 8m̃3

3m̃2
; q = 4m̃3 + 2

15m̃5
, (72)
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Fig. 2. Phase diagram with the |ψ|4 disorder only in the aT − q
plane. The dotted line marks the RSB glass transition. The up-
per part above the “tri-critical” point of this line is given by Eq.
(72), while the lower part below the “tri-critical” point of the line
is given by Eq. (60). The dashed line is also given by Eq. (60) but
does not correspond to a phase transition line. It is just a bifurca-
tion line between two replica symmetric (the diagonal and the off
diagonal) states.

marked by dotted line in Fig. 2, and this line is the
phase transition line (liquid to glass) when q > q t.
The former diagonal–off diagonal line above the tri-
critical point is not a phase transition and is left as a
light dashed line to show that slope of the line below
tri-critical point and that of the real transition line
is different. It turns out that the line of Eq. (72) is
a transition line into a RSB state, namely the irre-
versibility line.

5.2.5. Stability of the Off Diagonal Solution

The equations take a form:

−ε−2 + aT + 4m̃ − q[5m̃3 − M3 − 2M2m̃

− 2m̃2M] = 0 (73)

2ε−3 − q(M2 + 2m̃2) = 0. (74)

The coefficients in the expansion of Hessian are: Un-
like the case of the |ψ|2 disorder, λ(1) < 0 for each
such a solution. Therefore, the diagonal state directly
goes over into a RSB glass state. It follows however
two lines. Equation (72) above the tri-critical point
and Eq. (60) below it, see Fig. 2.
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6. GENERAL CASE RSB

6.1. General Hierarchical Gaussian
Variational Ansatz

The free energy

f
2n

=
∑

a

{(m−1)aa + aTmaa + 2(maa)2}

−
∑
a,b

{
2rm2

ab − q
4

(
m4

ab + 4maambbm2
ab

)}
(75)

leads on the replica symmetric sector to the following
equations:

−ε−2 + aT + 4m̃ − 2rε − q[5m̃3 − M3

− 2M2m̃ − 2m̃2M] = 0, (76)

M[2ε−3 − 2r − q(M2 + 2m̃2)] = 0.

For the diagonal solution M = 0, one obtains

−m̃−2 + aT + 4m̃ − 2rm̃ − 5qm̃3 = 0. (77)

The off diagonal solution on the bifurcation line
obeys

m̃−3 − r − qm̃2 = 0. (78)

Hessian for the general RS solution takes a form
of Eq. (62) with coefficients

c+ = 2ε−3 − 2r − q(3M2 + 2m̃2);

c− = 2ε−3 − 2r − q(M2 + 2m̃2);

cU = 4M2ε−5; cV = −3Mε−4;

cK = −2qM2; (79)

cN = −2qm̃M;

cJ = 4 − q[5(m̃2 − M2) + 8m̃(m̃ − M)].

On the bifurcation line, it simplifies:

c± = 2m̃−3 − 2r − 2qm̃2;

cU = cV = cK = cN = 0; cJ = 4 − 13qm̃2. (80)

The eigenvalues are

λ(1,2) = c+; λ(3) = c+ + cJ . (81)

Therefore, the Hessian vanishes λ(1,2) = λ(3) = 0 for
the tri-critical (branch) point defined by

r =
(

13q
4

)2/3

− 4
13

. (82)

6.1.1.1. Stability of the Diagonal Solution. In this
case, Hessian and eigenvalues are:

c± = 2m̃−3 − 2r − 2qm̃2;

cJ = 4 − 13qm̃2; (83)

λ(1,2) = c±;

λ(3) = c± + cJ = 4 + 2m̃−3 − 2r − 15qm̃2.

Below the tri-critical point, we solve equation λ(1) =
0 perturbatively in q:

m̃ = r−1/3
(

1 − q
3

r5/3
)

+ O(q2) (84)

and substitute m̃ into Eq. (77) to determine the
“weak disorder” part of the glass transition line:

ag1
T = −4 − r

r1/3
+
(

5
r

+ 4r4/3

3

)
q + O(q2). (85)

Above the tri-critical point, namely for larger disor-
der, one solves the equation λ(3) = 0 perturbatively
in q around the tri-critical point of Eq. (82),

q t(r) = 4
13

(
r + 4

13

)3/2

:

m̃ =
(

r + 4
13

)−1/3 (
1 − 10

24 + 13r
�

)
+ O(�2);

� = q
qt(r)

− 1. (86)

The NEA RS solution is unstable everywhere as c+ <

0 (c+ < c− = 0). We, therefore, obtain the glass tran-
sition line with RSB in the general case. To compare
it with experiment, one has to specify phenomeno-
logically the precise dependence of the GL model pa-
rameters on temperature.

7. TWO-DIMENSIONAL
GINZBURG–LANDAU THEORY

Similarly, the disordered GL is

F = Lz

∫
d2x

h2

2m∗ (1 + U(x))(−ψ∗ �D2ψ)

+ a′(1 + W(x)) |ψ|2 + b′

2
(1 + V(x)) |ψ|4

+ (B − H)2

8π
,



Hierarchical Nature of the Vortex Matter in Type II Superconductors 381

where Lz is the layer distance and this model is
obtained from the reduction of three-dimensional
model, and the disorders are introduced via

m∗−1 → m∗−1(1 + U(x)); (87)

U(x)U(y) = Pδ(x − y).

The other two parameters in the GL equations
are α and b′. The coefficient of the quadratic term
is called δT disorder, since it describes a local devi-
ation of the critical temperature. Introducing a ran-
dom component in |ψ|2 term:

a′ → a′(1 + W(x)); W(x)W(y) = R′δ(x − y).

(88)

b′ → b′(1 + V(x)); V(x)V(y) = Qδ(x − y).

(89)

In unconventional superconductors, even with-
out disorder, the phenomenological GL has not been
reliably derived microscopically. The coefficients and
their inhomogeneitics therefore should be consid-
ered as phenomenological parameters to be fitted
to experiments. We assume that U, R, and Q have
weak dependencies on field and temperature. The as-
sumption of the weak temperature and field depen-
dence of the disorder strengths U, R, and Q, as that
of any parameter in the GL approach, should be de-
rived in principal from a microscopic theory assum-
ing random chemical potential or should be justified
by fitting to experiments. Assuming, for simplicity,
the white noise distribution

p[U, W, V] = exp
[
−
∫

x

U(x)2

2P
+ W(x)2

2R′ + V(x)2

2Q

]

for random components, the free energy of supercon-
ductor after averaging over the disorder is

F̄ = − T
norm

∫
U,W,V

p[U, W, V] log
[ ∫

ψ

exp[−g[ψ]

− f dis[U, W, V, ψ]]
]

;

g = G/T, f dis[U, W, V, ψ] = Lz

T

∫
x

h2

2m∗
⊥

U(x)| �Dψ|2

+ a′W(x) |ψ|2 + 1
2

V(x) |ψ|4, (90)

where norm = f U,W,V p[U, W, V] is a normalization
factor.

We rescale the length and field as in three
dimensions:

g = F
T

= 1
ω

∫
d2x
[

1
2

(−ψ∗ �D2ψ
)− 1 − t

2
|ψ|2

+ 1
2
|ψ|4 + κ2(b − h)2

4

]
. (91)

f dis[U, W, V, ψ] = 1
ω

∫
d2x
[

U(x)
2

(−ψ∗ �D2ψ
)

− 1 − t
2

W(x) |ψ|2 + 1
2

V(x) |ψ|4
]

(92)

p[U, W, V] = exp
[
−ξ2

∫
x

U(x)2

2P
+ W(x)2

2R′ + V(x)2

2Q

]

(93)

where the two-dimensional Ginzburg number

Gi =
(

8πe2λ2Tc

e2h2Lz

)2

and

ω =
√

2Giπ2.

The model without disorder then simplifies due to
the LLL constraint,

−D2

2
ψ = h

2
ψ.

to:

g ≡ F
T

= 1
ω

∫
d2x
[

− 1 − t − b
2

|ψ|2

+ 1
2
|ψ|4 + κ2(b − h)2

r

]
. (94)

This reduced model exhibits the LLL scaling.
Rescaling again x → x/

√
b, y → y/

√
b, and |ψ|2 →

|ψ|2√bω/4π, one obtains

g = 1
4π

∫
d2x

[
aT|ψ|2 + 1

2
|ψ|4 +

(
bω

4π

)−1
κ2(b − h)2

4

]
,

where the two-dimensional LLL-reduced tempera-
ture

aT ≡ −
√

4π

bω

1 − t − b
2

(95)

is the only parameter in the theory [42,50]. In total,
we have done the rescaling

|ψ|2 → |ψ|2
(

2αTc

b′

)(√
bω

4π

)
,

x → ξx/
√

b, y → ξy/
√

b. (96)
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Including the disorder, one obtains:

f dis[U, W, V, ψ] = 1
4π

∫
d2x
[
�(x)|ψ|2 + 1

2
V(x)|ψ|4

]

(97)

and the disorder correlations are given as

p[�, V] = p̄(�, V) = exp
[
−
∫

x

�(x)2

2r′ +V(x)2

2q′

]

q ′ = Q
b
ξ2

, r ′ = π

ξ2ω
[b2P + (1 − t)2R′].

(98)

Again, as in three dimension, using the replica
trick and expanding ψ (x) on the basis of the
LLL wavefunctions with quasimomenta k, ψa(x) ∝∫

dkϕk(x)ψa(k), the gaussian effective free energy can
be expressed via the variational matrix parameters
mab(k) = 〈ψ∗

a(k)ψb(−k)〉,

Ḡ ∝
∑

a

[− log m + aTm − rm2

−q(m̃)2m2]aa − q
4

∑
a,b

m4
ab, (99)

where the dimensionless parameters are: the LLL
temperature

aT = −
(

btπ
√

2Gi
)−1/2

(1 − t − b),

disorder variances

r = b2P + (1 − t)2R′

4π2ξ2
√

2Gi
,

q = 4bQ
πξ2

.

In the homogeneous phase, the matrix m(k) in two
dimensional case is independent of k within gaus-
sian approximation (the Landau degeneracy), while
in three-dimensional case, there is the k2

z contribution
to inverse propagator, m̃ is the diagonal matrix ele-
ment. The glass state is characterized by the loss of
ergodicity and reversibility with respect to dynamic
processes. This is expressed, formally, by sponta-
neous breaking of the replica permutation symmetry
(RSB). It was shown by Parisi, in the context of the
spin glass theory, that the correct solution for the the-
ory of this type is given by the subclass of the matri-
ces mab which has a hierarchical structure and can be
parameterized by the Parisi function m(x), 0 < x < 1.

Fig. 3. Generic phase diagram of the vortex matter. The order–
disorder line (red) separates the crystalline phase from the ho-
mogenous phase. The glass transition line (blue) separates the
glass from the weakly pinned phases, while the pink line is a
crossover between two homogeneous phases, locally pinned liq-
uid I and essentially unpinned liquid II. The left inset shows well-
defined vortex lines pinned by impurities in Bragg glass region and
the right inset shows the distribution of the order parameter in the
Abrikosov lattice near the melting line.

In particular, the well-known EA glass order param-
eter corresponds to m(x = 1). The label x reflects the
“hierarchy level” and corresponds to the overlap be-
tween different “valleys” in the potential landscape
[55]. Figure 3 shows the generic phase diagram. We
find that in the disordered liquid (domain to the right
of the irreversibility line in Fig. 3) the replica sym-
metric solution is stable, while in the glassy phase
(the left side of the line) a nontrivial Parisi function
describes a continuous RSB. The irreversibility line
for small q is given by

ag
T = 2

√
2
(
r1/2 − r−1/2)+ 2 + 5r

2
√

2r5/2
q + O(q2), 2D.

(100)

8. CONNECTION WITH THE EXTREME
ORDER STATISTICS AND DYNAMICS

Now we make connection to the vortex dynam-
ics. Bouchaud and Mezard [56] have demonstrated
that for several models of glasses, in particular, the
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random energy model, the one step RSB solution
corresponds to the extreme-value statistics for the
energy barriers. We remind now, reiterating results
of [31], that the extreme-values statistics can be de-
rived for barriers controlling creep vortex motion es-
tablishing thus the connection between the replica
description of GL functional and phenornenologi-
cal vortex dynamics. The stationary dynamics of the
vortex glass driven by the applied force F is con-
trolled by thermally activated jumps of correlated
regions of the vortex elastic manifold over the pin-
ning energy barriers separating different metastable
states into neighboring states favored by the applied
drive.

8.1. Dynamics of Clastic Manifolds

The energy of an elastic manifold driven through
a disordered medium can be written as [23,26]

F =
∫

x

[
C
2

(
∂u
∂x

)2

+ V(x, u) − F · u

]
, (101)

where u(x, t) is the n-dimensional displacement vec-
tor describing long-wavelength deformations of the
medium, with x a D-dimensional vector labeling the
internal coordinates of the manifold, which in turn
is embedded in a d-dimensional space. Also, C is an
elastic stiffness and F the external drive. Equation
(101) describes, for instance, a vortex line (D = 1)
in two (n = 1, d = 2) and three (n = 2, d = 3) di-
mensions, or a vortex lattice in a superconducting
film (n = 2, D = 2, d = 2) or in bulk (n = 2, D = 3,
d = 3). The disorder is described by a random poten-
tial V(x, u) of range ξ, zero mean, 〈V〉 = 0, and vari-
ance �0,

〈V(x, u)V(x′, u′)〉 = �2
0δ

D(x − x′)g (|u − u′|/ξ) ,

(102)
with g(s) a dimensionless function that decays rapidly
for s > 1.

For simplicity, we will refer specifically to the
case of a directed elastic string in d = 2 or d =
3 dimensions, a generalization onto arbitrarily di-
mension elastic system is straightforward. This is
the problem of a directed polymer in a random
medium whose static properties have been studied
extensively in recent years. In d = 3 and in the ab-
sence of external drive, the elastic string is in a
disorder-dominated pinned state for all temperatures
and pinning strengths. In this pinned state (zero-
temperature, strong-disorder fixed point), the string

adjusts to the random landscape and traverses the
medium along an optimal path determined by bal-
ancing the elastic and the pinning energies. This opti-
mal path is characterized by its roughness, defined as
the mean square displacement for a deformation that
extends over a linear size L,

w(L) = 〈[u(x + L) − u(x)]〉1/2, (103)

where 〈· · ·〉 denotes the average over both thermal
fluctuations and the disorder potential. If the rough-
ness w(L) is less than the range ξ of the random po-
tential, the corresponding segment of size L is pinned
coherently by disorder. This defines the collective
pinning length Lc above which the roughness exceeds
the range ξ of fluctuations in the random potential, as
w(Lc) = ξ. The collective pinning length Lc can be
estimated via dimensional analysis. The elastic en-
ergy cost of a deformation where the elastic manifold
is displaced a distance w over a length L is,

〈(�Ec)2〉1/2 ∼ C
w2

L2
LD. (104)

The pinning length Lc is determined by balancing
the elastic energy cost of a deformation with w ∼ ξ

against the corresponding gain in pinning energy,

〈E2
p〉1/2 ∼ �0LD, (105)

where Ep = ∫x V(x, u) denotes the fluctuating pin-
ning energy, with the result

Lc =
(

Cξ2

�0

)2/(4−D)

. (106)

The corresponding collective pinning energy is given
by Eq. (105) for L = Lc ,

Uc = �0LD
c . (107)

The collective pinning energy represents the mini-
mum energy barrier between neighboring metastable
configurations of the pinned string. Similarly, Lc rep-
resents the shortest length scale over which nonvan-
ishing energy barriers between metastable states ex-
ist for F = 0.

At distances L � Lc , it is found numerically that
the roughness scales as w(L) ∼ Lζ, with ζ< 1 the
roughness exponent. For an elastic string in three di-
mension, ζ ∼ 0.6, a value larger than the correspond-
ing value for a string in the presence of thermal fluc-
tuations, but no disorder. The free energy differences
between two metastable configurations on scale L >

Lc are distributed with zero mean and variance given
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by Eq. (104) for w ∼ Lζ,

〈[�F(L)]2〉1/2 ∼ CLθ, (108)

with θ = 2ζ+ D − 2. The barriers separating such
neighboring metastable states are distributed with
mean

U(L) = 〈Û(L)〉∼ �0Lψ (109)

and variance 〈[�Û(L)]2〉1/2 ∼ �0Lψ(with likely loga-
rithmic corrections) that also grows with the size of
the excitation. If the motion occurs via continuous
deformation of an elastic medium, without the in-
troduction of topological defects, one expects ψ ≥ θ.
Values of ψ< θ are also possible in principle when
the motion is along percolating low-energy channels.
In general, it is assumed that ψ = θ. This assumption
has been confirmed for the case of a string in d = 2, 3
via a combination of analytical and numerical argu-
ments [30,57]. The question of whether ψ = θ for all
elastic media remains, however, open. When a driv-
ing force F is applied, at zero temperature, the string
starts to slide when the force F can depin a region
of linear size Lc. This corresponds to the condition
FξLD

c ∼ Cξ2LD−2
c , which yields a threshold for sliding,

Fc ∼ Cξ2/L2
c . At finite temperatures and for driving

forces below FT, the manifold can cross from one lo-
cal minimum to another via thermal activation over
the free energy barriers U(L) ∼ �0Lψ. The low-lying
excitations consist of displacements of a portion of
string of length L by a transverse distance w in the
direction of the applied force. Such excitations can
be described as directed vortex loops (Fig. 4), when
viewed with respect to the ground state configura-
tion. Dynamics then occurs via the nucleation and
growth of vortex loops and scaling arguments can be
used to infer the response to the applied force. The
loop has free energy F ∼ CLθ. An applied force can
create vortex loops of typical size LF , determined by
balancing the energy of the loop, CLθ, against the en-
ergy provided by the external force, FLζ+D. This gives
LF = (F/C)1/(ζ−2). To obtain these loop excitations
from the ground state, the vortex line has to pass over
a free energy barrier U(L) ∼�0Lψ. Motion then oc-
curs via thermal nucleation of loops of size LF at a
rate proportional to e−U(LF )/kBT. The resulting mean
velocity of the medium is given by

υ ∝ exp
[
−Uc

T

(
Fc

F

)µ]
, (110)

with µ = ψ/(2 − ζ). If one assumes that ψ = ζ, then
µ = (2ζ+ D − 2)/(2 − ζ).

L

w

F

Fig. 4. The low-temperature dynamics is dominated by thermally
activated transitions between “neighboring” metastable states
(i.e., ones with free energy separation� E � kBT) separated by
large barriers (U � kBT).

To summarize, the stationary dynamics of the
vortex glass driven by the applied force F is con-
trolled by thermally activated jumps of correlated
regions of the vortex elastic manifold over the pin-
ning energy barriers separating different metastable
states into neighboring states favored by the applied
drive. The pinning length, Lc, is the smallest scale
on which barriers between metastable states exist
at F = 0. The minimum average energy barrier be-
tween adjacent metastable positions of a pinned seg-
ment Lc is Uc = Cξ2/LD−2

c , sets the energy scale for
the vortex system, and Fc ∼ Uc/ξ (ξ is the scale of
the random potential) is the threshold pinning force.
In the thermally activated (creep) regime, the mean
velocity is highly nonlinear [23]: υ = exp[−U(F)/T],
where U(F) ∼ Uc(Fc/F)µ is the energy barrier sep-
arating low lying metastable states of the vor-
tex array, µ = (2ζ+ D − 2)/(2 − ζ), and ζ is the
roughening exponent. Creep dynamics is the result
of all the possible thermally activated jumps averaged
with the appropriate distribution function of energy
barriers. The important note is that the length LF sets
the maximum spatial scale at which pinning still ex-
ists; accordingly, U(F) is the largest possible creep
barrier corresponding to this length.

8.2. Extreme Events Statistics
and the Stability Postulate

Equation (110) is viewed as an operational defi-
nition of the glassy state as a state where the linear re-
sponse to the infinitesimal force is absent, reflecting
the hierarchical nature of the glass configurational
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space and, as a result, the multiple spatial/temporal
scales present. The renormalization group (RG) pic-
ture provides a natural framework for discussing
equilibrium properties and relaxation in systems
characterized by many length and time scales, and in-
deed, recently the result (110) was re-derived using
the refined RG approach [32]. A new insight into the
origin of glassy behavior can be derived from com-
bining RG and scaling ideas with the theory of ex-
treme order statistics relating the statistics of energy
levels in glassy systems [31,56,58] and that of spatial
disorder in random media [59], see also [60].

The idea of combining scaling ideas with ex-
treme statistics goes back to the pioneering works by
Fisher and Tippett and of Frechet [61,62], which, hav-
ing transliterated into a contemporary terminology
contain all the basic ideas of the spatial renormaliza-
tion group approach. The aforementioned authors
were to identify the “universal” properties of the
distribution functions of the largest (smallest) value
of a large set of the independent identically dis-
tributed random variables xi, i = 1, 2, . . . , n. For the
sake of completeness, we will give a brief review of
the necessary results of the extreme order statistics
concepts following [61] (see also [63,64] for a good
introduction into the ideas of extreme statistics and
stable distributions). Let F1(x) be the probability that
any of the random variables xi be less than x and let
f (x) = F ′

1(x) ≡ (dF1/dx) with support in [a, b], be the
normalized probability density, henceforth called the
initial distribution. The probability that the largest
value of the set {x1, x2, . . . , xn} be less than x is simply
the probability that all of the xi

, s fall short of x.
Since the variables are independent, this is given by

P
(

max
1≤i≤n

{xi} ≤ x
)

≡ Fn(x) = [F1(x)]n. (111)

If the initial distribution f (x) is known, then the dis-
tribution of the extreme values is easily calculated.
The questions that raised much interest starting in
the early part of the century were whether asymp-
totic distributions of extreme values of a large sample
of independent random variables exist, how quickly
the asymptotic forms are approached, and how these
could be calculated given little or no knowledge of
the initial distribution.

The first derivation of such asymptotes is due to
Fisher and Tippett [61,62]. Following these authors,
we consider a system of size N and divide it in m
identical parts, each of size n, with N = nm. The idea
now is to look for self-similarity between the whole

system (composed of N = nm units) and each of its
m parts when n, for fixed m. The central assump-
tion made by Fisher and Tippett is that in the limit
m → ∞ the distribution of the largest (or smallest)
values in each sample of size m will tend to the same
fixed point (provided such a fixed point exists) as the
distribution of largest values in the sample of size nm.
Using the fact that a linear transformation of the ar-
gument x does not change the form of the probabil-
ity distribution Fn(x), as can be seen from Eq. (111),
it can be shown that, under rather general assump-
tion for the initial distribution f (x), there exist two
sequences σn and µn, such that

lim
n→∞ Fn(x) = lim

n→∞ Fn(σnz + µn)

= lim
n→∞ Hn(z) = H(z), (112)

where we have defined

Hn(z) = Fn(σnz + µn), (113)

and H(z) is an asymptotic distribution function.
Fisher and Tippett assumed that the distribution

of the largest value in a sample of size N = nm should
be the same as the distribution of the largest value
in each part of size n when n → ∞, except for a lin-
ear transformation. This assumption is referred to as
the stability postulate. The asymptotic distribution
for the sample of size N = nm is defined by

lim
n→∞ Fnm(x) (114)

= lim
n→∞ Fnm(σnmz + µnm)

= lim
n→∞ Hmn(z) = H(z). (115)

We can also write

lim
n→∞ Fnm(x) (116)

= lim
n→∞ Fnm(σnmz + µnm)

= [ lim
n→∞ Fn(σnmz + µnm)

]m

=
[

lim
n→∞ Hn

(
σnm

σn
z + µnm − µn

σn

)]m

= [H(amz + bm)]m, (117)

where

am = lim
n→∞

σnm

σn
,

(118)

bm = lim
n→∞

µnm − µn

σn
.
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The stability postulate requires that Eqs. (112) and
(116) be equal, or

H(z) = [H(amz + bm)]m, (119)

which provides a functional equation for the asymp-
totic probability H(z).

There are three solutions of Eq. (119), depend-
ing on the support of the initial distribution. Details
of the derivation of the three solutions can be found
for instance in [61]. The first one is the Fréchet dis-
tribution obtained for probability densities that are
unlimited to the right and given by

HF (z) =
{

e−z−α

for z > 0
0 for z ≤ 0

with am = m1/α, bm = 0, (120)

with α > 0. The second solution applies for distribu-
tions that are unlimited to the left and is known as
the Weibull distribution, with

HF (z) =
{

1 for z ≥ 0
e−(−z)α

for z > 0

with am = (1/m)1/α, bm = 0, (121)

with α > 0. Finally, the third solution is the Fisher–
Tippett distribution, given by

HFT(z) = e−e−z

with am = 1, bm = ln m. (122)

In a modern language, the stability Eq. (119)
is the functional equation that determines the fixed
point of an RG flow in the space of distribution func-
tions, as discussed recently in [59]. The main assump-
tion is the existence of such a fixed point.

9. STATISTICS OF ENERGY BARRIERS
AND LOW-TEMPERATURE DYNAMICS

9.1. Energy Barriers for a Pinned String

Consider a pinned string of length L as a neck-
lace of N coherently pinned units or beads of length
Lc (see Fig. 5), with L = NLc . A low-lying fluc-
tuation of one of the ith bead corresponds to its
displacement by a transverse distance ξ over the el-
emental energy barrier Ui, where the Ui

, s are statis-
tically independent random variables with mean Uc .
For an elastic medium with D > 1, the description
as a network of beads is still applicable and useful,

Fig. 5. An elastic string viewed as a sequence of elementary units
of size Lc . The low-lying excitations of the string corresponds to
displacements of one unit by a transverse distance ∼ ξ. The energy
barrier that must be overcome for nucleating one such excitation
from the ground state is a random variable with mean Uc .

even though the network no longer has a simple lin-
ear topology (see [58,65]).

A thermally activated hop of the whole string
between the two neighboring metastable states can
be described as a result of all possible combinations
of all the possible hops (and returns) of the units of
the size Lc to new metastable positions across the
distance ξ and over the energy barrier Ui. Then the
departure of the string segment consisting of, say, n,
subsequent beads from its original will be controlled
by the largest among the fluctuating energy barriers
Ui corresponding to hops of the elemental units. An
important note is in order. Of course, the first hop
which occur at the smallest, barrier Uk of the chosen
segment will renormalize the adjacent barriers due
to elastic coupling. This however does not change
our consideration. Indeed, let us call denote renor-
malized barriers as Ūk−1 and Ūk+1 and include them
into the full set of the barriers {Ui} describing the seg-
ment. Including the results of all the possible elastic
renormalizations into {Ui}, we obtain still the finite
set of barriers, the maximal of which will be control-
ling the departure of the segment from its initial po-
sition. Since for the following decimation procedure
the opportunity to choose the maximal barrier out of
the given set is relevant, we assume that the results
of such an elastic renormalization are already taken
into account. We thus start with a pinned string seg-
ment of length L consisting of a collection of N =
L/Lc units Lc . As discussed earlier, thermal activa-
tion of this segment is controlled by max1≤i≤N{Ui}.
The first step consists in combining n units of size
Lc “in series,” in order to define blocks of size n.
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The string segment can now be thought of as com-
posed of m blocks, each, in turn, consisting of n ≥ 1
elementary units Lc . Each block has size L(1)

n = nLc

and L = mL(1)
n . The thermally activated hop of each

block of size L(1)
n can be described as done above

for the hop of the whole string and will therefore be
controlled by max1≤i≤n{Ui}, for i = 1, 2, . . . , m. We
then repeat this procedure by combining n blocks
into m new blocks of size L(2)

n = nL(1)
n , so that the

string is given by L = mL(2)
n . Again, the thermally ac-

tivated motion of these new blocks is controlled by
the largest among the barriers for each block. This
procedure allows us to account for all configurations
of the pinned segment, by describing it as a topolog-
ically linear collection of blocks of all sizes assem-
bled in random order. Due to the self-similarity of
the block structure it is natural to assume that the
stability postulate will apply at all stages of the renor-
malization procedure. Following Fisher and Tippett,
for large n, the probability distribution of the largest
barrier in a block of the size n will be identical to the
distribution of the largest barrier for the whole string.
Thus, the probability that the largest energy barrier
controlling the hop of a string segment of the length
L is less than U is given by the solution of the func-
tional fixed point Eq. (119), with z = (U/Uc − bn)/an

and all lengths measured in units of Lc .
As discussed in the previous section, the func-

tional equation has three solutions. We now con-
sider the situations with weak and strong pinning and
choose the appropriate solution.

9.1.1. Weak Pinning

Let f (U) denote the probability density for each
of the elementary random barriers Ui, with 〈Ui〉 = Uc

and 〈UiUj 〉 = δij U2
c . For the case of weak pinning, we

can model disorder as described by a probability den-
sity with support in [−∞,+∞]. The relevant solu-
tion of Eq. (119) is then the Fisher–Tippett solution
given by Eq. (122). The probability distribution of
the largest energy barriers for a pinned segment of
length L is then,

PL(U) ∼ exp[−e−[U−Uc ln(L/Lc)]/Uc ]

= exp[−(L/Lc)e−U/Uc ]. (123)

and the corresponding probability density is given by

pL(U) = dPL

dU
∼ L

Lc
e−U/Uc exp[−(L/Lc)e−U/Uc ].

(124)

The most probable value of the energy barrier
corresponds to the maximum of the probability den-
sity and therefore scales as U∗ ∼ Uc ln(L/Lc). The
distribution function decays rapidly for large argu-
ments and it is asymmetric about its maximum. The
mean value of the largest barrier is larger than the
most probable value. Finally, the variance of the
distribution of largest energy barriers is independent
of the length of the string segments and proportional
to Uc .

9.1.2. Strong Pinning

Strong disorder, in contrast, may be described
by a probability distribution f (U) with bounded
support, such as f (U) = �(U)�(Um − U), with �(x)
the Heavyside step function. Here Um > 0 is the
maximum energy barrier for a single pinning site.
A single-pinning-site probability distribution in the
form of a step function contains a single energy scale,
as the maximum barrier Um and the mean barrier
Uc are simply proportional. More generally, these
two energy scales are different and it is important
to distinguish them, as the introduction of the new
energy scale Um will have important consequences
below. For the case of a single-site distribution with
finite-support, the relevant solution of Eq. (119) is
the Weibull distribution with α = 1. In terms of the
relevant variables, the asymptotic probability that a
string segment of length L is separated by a neigh-
boring metastable state by a maximum energy barrier
less than U is given by

PL(U) = e−(L/Lc)(Um−U)/Uc , U ≤ Um

= 1, U > Um. (125)

The corresponding probability density is

pL(U) ∼ L
Lc

e−(L/Lc)(Um−U)/Uc�(Um − U). (126)

In this case, the most probable maximum barrier is
trivially the largest barrier Um. The variance of the
distribution of the largest barriers scales as Lc/L. In
other words, the distribution of the largest barriers
becomes sharply peaked about the maximum barrier
Um as the sample size increases.

9.2. Low-Temperature-Driven Dynamics

We now use the above results for description
the finite temperature dynamics of a string driven
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by an external applied force F � FT, with FT the
zero temperature threshold force. To model the dy-
namics in this region, we consider all string segments
of length L < LF , corresponding to energy barriers
U < UF = U(LF ). These segments form a network
of “temporarily pinned” states, while segments of
length L > LF are sliding. The slow dynamics in this
regime will be described as resulting from the ther-
mally activated motion of the pinned segments with
L < L(F). Each of such temporarily pinned segments
of length L can be thought of as a collection of units
of length Lc , as discussed above. Its thermally acti-
vated dynamics over the rough energy landscape will
then be controlled by the largest of the energy bar-
riers controlling the motion of the individual units.
The probability distribution of these largest barriers
is then given by Eq. (123). At the finite-temperature
depinning threshold (F = 0) the pinned string seg-
ments form a network that has the statistical proper-
ties of a percolation cluster near criticality. The clus-
ter size distribution nL is given by nL ∼ (L/Lc)−ν for
large L, where ν = 1 + d/df , with d the dimensional-
ity of the medium and df < d the fractal dimension-
ality of the cluster network [65]. Assuming the same
distribution for the temporarily pinned segments of
length L < LF , the global probability density W(U)
of the largest barriers is obtained by averaging PL(U)
over the cluster-size distribution nL,

W(U) =
∫ ∞

Lc

dL
Lc

nLpL(U). (127)

The upper limit of integration may be taken to in-
finity in Eq. (127) as the integral is in general domi-
nated by small values of L. This reflects the fact that
elementary hops of segments of length Lc greatly
outweigh in number hops of larger string segments
and therefore end up controlling the barrier statis-
tics. It must, however, be kept in mind that W(U)
is the probability density of the largest energy barri-
ers U, for U < UF . The low-temperature dynamics of
the string is then assumed to be dominated by ther-
mally activated hops of the temporarily pinned seg-
ments between neighboring metastable states. These
hops in turn are controlled by the largest energy
barriers, distributed according to Eq. (128). Equiv-
alently, one can define an associated waiting time
τ = τ0 exp(U/T), with τ0 a microscopic time scale.
Later, we obtain the corresponding distribution of
waiting times �(τ), defined by �(τ)dτ = W(U)dU, for
the two relevant cases of weak and strong pinning.

9.2.1. Weak Pinning

The integral in Eq. (127), with PL(U) given by
Eq. (124), can be easily evaluated asymptotically by
the method of steepest descents, with the result,

W(U) ∼ e−U(ν−1)/Uc . (128)

The distribution �(τ) of waiting times control-
ling the hop of string segments of length L < LF de-
cays then as a power law, with

�(τ) ∼ T(τ0/τ)1+α, (129)

with α = (ν − 1)T/Uc < 1. The power-law decay of
the waiting time distribution applies for values of τ up
to τmax = τ0 exp UF/T. Since α < 1, the mean waiting
time 〈τ〉 is controlled by the upper cutoff τmax, with

〈τ〉 =
∫ τmax

0
dττ�(τ)

≈ τ0e(1−α)UF /T. (130)

Waiting times larger than τmax are excluded by con-
struction in the model, as they correspond to string
segments of length L > LF which are sliding. We
recover therefore the result that the mean waiting
times, which determined the mean drift velocity v ∼
1/〈τ〉, is controlled by the optimal energy barrier
UF ∼ F−µ.

9.2.2. Strong Pinning

The global probability density W(U) is now ob-
tained from Eq. (127), with pL(U) given by Eq. (126).
The cluster-size distribution is again a power-law for
large L, nL ∼ (L/Lc)−s, with 2 < s < 3. This form for
the cluster-size distribution is appropriate for very
small driving forces, when the competition between
drive and disorder is not sufficient to generate topo-
logically defects in the driven string. At larger driv-
ing forces elastic creep of the driven string will be re-
placed by plastic flow. The cluster-size distribution is
expected to become a function of the driving force F ,
yielding additional nonlinearities in the dynamics.

The global probability distribution is given by

W(U) =
∫ ∞

1
dx x1−se−xε�(ε)

= εs−2�(2 − s, ε)�(ε), (131)

where ε = (Um − U)/Uc and �(−a, ε) is the incom-
plete �-function. Using the asymptotic form of the
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�-function,

�(−a, ε) ≈ 1
aεa

, v � 1,

≈ 1
ε1+a

e−ε, v � 1, (132)

we find that W(U) is given by

W(U) ∼ 1
s − 2

�(Um − U), (Um − U)/Uc � 1,

W(U) ∼ 1
ε

e−ε�(Um − U), (Um − U)/Uc � 1.

(133)

In other words, the probability density of the largest
energy barriers is constant for barriers near the max-
imum barrier Um and decays exponentially as U be-
comes smaller than Um.

The corresponding waiting time distribution is
given by

�(τ) = T
τ

[
T

Uc
ln(τm/τ)

]s−2

�(2 − s,
T

Uc
ln(τm/τ))

≈
(τm

τ

)1−α

, (134)

for τ ≤ τm, where τm = τ0 exp Um/T and α ≈ T/Uc .
The last approximate equality in Eq. (134) applies for
τ � τme−Uc/T = τ0c(Um−Uε)/T.

To summarize, we have found that the distribu-
tion function for the relevant activation barriers cor-
responding to a pinned segment of the size L is given
by the extreme value statistics:

PL(E) = exp
[
− L

Lc
e−E/Uc

]
.

Upon summation over all possible pinned segment
sizes with the probability density pL(E) =
dPL(E)/dE, one arrives at the global exponen-
tial distribution of barriers, W(E) ∝ exp(−E/Uc).
Since the waiting time τ(E) for hops between
metastable states separated by energy barriers
E < U(F) is thermally activated, the distribution of
waiting times scales algebraically at large τ

�(τ) ∝ 1
τ1+α

, (135)

with α < 1. This distribution is cut off at τ = τ[U(F)]
corresponding to the maximal barrier U(F), since
at t > τ[U(F)] the dynamics is no longer thermally
activated and string segments of the size L > Lc

slide freely. Finding the average waiting time τ̄, one
recovers the creep motion formula. Therefore, the

glassy dynamics relies on the divergence of the av-
erage waiting times at low temperatures where α <

1. In the high-temperature region above the depin-
ning temperature Tdp, thermal fluctuations renormal-
ize the pinning energy resulting in α = 1, and the dy-
namics is only marginally glassy with the power-law
I − V characteristics [31] ν ∝ F2+µ. For the three-
dimensional vortex lattice, we expect the analogous
effect to occur at the melting temperature of the
pristine lattice (i.e., we expect that α = 1 at the
melting line). Thus, it is the depinning temperature
that separates the replica-symmetric and broken-
replica-symmetry regions. We would like to stress
here that the observation we made is the connec-
tion between the statistics of the barriers controlling
vortex motion and the RSB in disordered GL func-
tional. This indicates that the connection we dis-
cuss reflect not the mathematical properties of a
particular model but rather a very generic physi-
cal property of all the systems containing quenched
disorder.

Since the energy landscape in an elastic disor-
dered system is characterized by a single energy pa-
rameter Uc , one can speculate that the hierarchy
variable x that appears in the GL replica treatment
corresponds to the ratio U/Uc . Accordingly, the dis-
tribution of x corresponds to the distribution of the
relaxation times. Small x correspond to short relax-
ation times, while x → 1 relate to the long times.
The microscopic picture for the glass state presented
above allows to differentiate between the glass (irre-
versibility) line and the order–disorder transition line
(ODO).

10. GENERIC PHASE DIAGRAMS
AND COMPARISON OF THE THEORETICAL
AND EXPERIMENTAL PHASE DIAGRAMS

10.1. Generic Phase Diagrams

Now we turn to physical consequences and dis-
cuss the vortex state phase diagram which exhibits
three major transitions.

(i) The positional order–disorder line. The first-
order ODO transition signals the loss of the
translation and rotation symmetry, and the
intensity of the first Bragg peak can be used
as an order parameter. The unified first-order
ODO line (solid red line in Fig. 3) comprising
the melting- and the “second magnetization
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peak” segments, separates the homogeneous
and the crystalline phases. The broken sym-
metry is not directly related to pinning, how-
ever the location of the line is sensitive to dis-
order [16]. Note the twofold role of thermal
fluctuations which make quenched disorder
destroying the positional order less effective
but, at the same time, they themselves desta-
bilize vortex lattice. The low-temperature seg-
ment of the ODO line, the second peak line,
is disorder dominated and depends weakly on
temperature.

(ii) The glass transition line. The glass transition
line, the blue line in Fig. 3, is the locus of the
RSB continuous phase transition. As the dis-
order strength increases, the line moves to-
wards higher temperatures. We find that in
the crystalline state the glass line is nearly
vertical (as long as we are not in the close
vicinity of Tc) and is qualitatively the same
as the single vortex depinning line depend-
ing little on the crystalline order. This is con-
sistent with the observations of [44] where it
was noticed (in the context of layered mate-
rials and columnar defects) that lateral mod-
ulation makes a very small difference to the
glass line although it is obviously very impor-
tant for the location of the ODO line. Con-
sequently, four distinct phases can be iden-
tified: pinned solid (= Bragg glass), pinned
liquid (= vortex glass, = amorphous solid),
weakly pinned solid with marginal glassy dy-
namics, and unpinned liquid (or simply liq-
uid). We compare the glass line and the ODO
lines of Figs. 6 and 7 with the experimental
phase diagram of a two-dimensional organic
superconductor and YBCO. Shown in the in-
set of Fig. 6 is the magnetization jump at melt-
ing, calculated by methods of [16] and com-
pared with the experiment of [66]. Note that
the melting segment of the theoretical ODO
line is negative as well as the corresponding re-
sult for YBCO presented in [16], which agrees
very well with experiments of [15], while ex-
perimental curvature in the organic supercon-
ductor seems negative. The existence of the
weakly pinned crystalline phase in BSCCO
was firmly established thermodynamically re-
cently [67]. The proposed phase diagram is
also consistent with recent findings in both
YBCO [68] and LaSCO [21].
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Fig. 6. Phase diagram of the organic superconductor Kappa−
(BEDT − TTF)2Cu.N(CN).

2Br. Comparison of the theoretical
melting line (red) and the glass line (blue) with the experimen-
tal data from [66], denoted by red and blue points, respectively.
Shown in the inset is the calculated magnetization jump at melting
and the corresponding experimental data. The fitting parameters
are Hc2 = 5.5 T, Tc = 12.5 K, κ = 20, r = 0.02, Gi = 0.0000015.
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(iii) Crossover to marginal glass. It has been re-
cently observed [6,20] that inside the liquid
phase the two qualitatively different dynami-
cal regimes take place (sometimes referred to
as liquid I and liquid II). This feature receives
a natural explanation within the developed de-
scription. The line separating two regimes co-
incides with the melting line of the pristine
material, i.e., clean sample without disorder.
At the same time, the analogous effect was ob-
served in the system containing columnar de-
fects: in this case, the transition line falls into
a solid vortex system domain [69,70]. We now
understand that in order for the glassy dynam-
ics to set in, the two conditions are to be satis-
fied: (i) the system has to be in a solid phase
and (ii) replica symmetry should be broken.
The violation of either of this condition drives
the system into the domain of the marginal
dynamics. Point disorder shifts the irre-
versibility line to lower temperatures from the
melting line. However, the effects of disor-
der develop at the large scale of the Larkin
correlation length, while on the smaller scales
the liquid preserves the crystalline structure.
However, since the RSB appears only at the
irreversibility line, the strip between the two
lines exhibit the marginal glassy dynamics.
The role of point disorder in this case is to
expose the onset of the local crystalline or-
der in the liquid. In the system with colum-
nar defects, the loss of the symmetry breaking
property occurs within the solid phase. Thus,
the irreversibility line cuts the solid part of the
phase diagram into two domains: (i) the low-
temperature and low-field domain with glassy
dynamics due to algebraically divergent bar-
riers and (ii) the high-temperature domain of
marginal dynamics with the logarithmically di-
vergent barriers.

10.2. Comparison with Experiment

These lines are compared to the glass transi-
tion lines derived from transport experimental data
for the two-dimensional organic superconductor and
three-dimensional high Tc superconductor YBCO
data in Figs. 6 and 7. At this line, the magnetiza-
tion M has a cusp, and its slope dM/dT experiences
a jump. Similar behavior was recently observed also
in BSCCO [67].

The crossover line separating the two homoge-
neous states is the continuation of the pristine melt-
ing line and is marked by a dash-dotted (pink) “Hx

line” in Figs. 4 and 6. In Fig. 6, it is compared to the
experiment by [6].

11. SUMMARY

To summarize, we considered the effects of both
thermal fluctuations and disorder in the framework
of the GL approach using the replica formalism. Flux
line lattice in type II superconductors undergoes
a transition into three “disordered” phases: vortex
liquid (not pinned), homogeneous vortex glass (the
pinned liquid or the vortex glass), and the Bragg
glass (pinned solid) due to both thermal fluctuations
and random quenched disorder. We show that the
disordered GL (valid not very far from Hc2) in
which only the coefficient of a term quadratic in
order parameter ψ is random, first considered by
Dorsey, Fisher and Huang, leads to a state with
nonzero EA order parameter, but this state is still
replica symmetric. Namely there is no ergodicity
breaking and no multiple time scales in dynamics
are expected. However, when the coefficient of the
quartic term in ψ in the GL free energy also has a
random component, RSB effects appear (with ergod-
icity breaking). The location of the glass transition
line in three-dimensional materials is determined
and compared to experiments. The line is clearly
different from both the melting line and the second
peak line describing the translational and rotational
symmetry breaking at high temperature and low
temperature, respectively. The phase diagram is
therefore separated by two lines into four phases
mentioned above. In principle, we could obtain
the RSB solution near the phase transition line by
expanding the equations around the phase transition
line as in the spin glass theory, see, for example [46],
and we found that the RSB is continuous. Thus,
RSB states involve multiple time scales in relaxation
phenomena.

It is observed that the glass (irreversibility) line
crosses the “order–disorder” line not very far from
its Kauzmann point. The Kauzmann point is a point
in which the magnetization and the entropy differ-
ence between solid and liquid phases changes sign.
In this region, the positive slope disorder domi-
nated second peak segment joins the thermal fluc-
tuations dominated negative slope melting segment.
This is the region in which effects of disorder and
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of the thermal fluctuation are roughly of the same
strength. We thus we expect that the two GT lines
(on both liquid side and solid side) have to cross
right at the Kauzmann point. It would be interest-
ing to test this idea using some simple solvable toy
model.

The RSB solution we have presented can be
used to calculate the detailed properties inside the
glass state. This, however, would require generaliza-
tion of the theory to include dynamics, since most of
irreversible phenomena are time dependent. In par-
ticular, it would be interesting to estimate the time
scales associated with quenched disorder. This is left
for a future work. Also we have considered only the
three dimensional GL model here. It can be applied
to superconductors with rather small anisotropy. It
would be interesting to generalize the calculation to
the Lawrence–Doniach model and to the two dimen-
sional case describing thermal fluctuations and disor-
der in more anisotropic layered superconductors and
thin films.
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