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An Efficient Binary Motion Estimation Algorithm
and 1ts Architecture for MPEG-4 Shape Encoding
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Abstract—This paper presents a fast binary motion estimation
(BME) algorithm and its architecture for MPEG-4 shape encoding.
The proposed algorithm explores the property of the binary-value
in BME to quickly skip the unnecessary sum of absolute differ-
ences (SAD) computation. When comparing with the full search
algorithm, simulation results show that it can efficiently save in the
search positions to an average —99.58 % of that in the full search
algorithm with the same PSNR quality. Due to the algorithm’s sim-
plicity and regularity, the resulting hardware implementation also
exhibits simple and regular control and data flow. It can achieve
real-time encoding with only 11582 gate count.

Index Terms—Binary motion estimation(BME), MPEG-4, shape
coding, video object plane (VOP).

I. INTRODUCTION

PEG-4 is an object-based video standard that allows the
Mtransmission of arbitrarily shaped video objects [1]. The
purpose of using shape is to achieve better subjective picture
quality, increased coding efficiency as well as the possibilities
for user interaction. In the MPEG-4 shape coding, the binary
motion estimation (BME) has been adopted [1] to exploit the
temporal redundancies inherent within image frames, and thus
gain more compression ratio. However, due to its high com-
putation complexity and huge memory bandwidth, it has been
shown that BME occupies about 91% of computational com-
plexity in MPEG-4 shape encoder, up to 4GOPS [2], [3] and
far from real-time requirement [2]. Therefore, optimization on
BME is essential to remove the bottleneck to achieve real-time
shape encoding. Hence, various fast algorithms and hardware
design were proposed [2]—[6] to reduce the computational com-
plexity.

The fast algorithm approaches use various skipping tech-
niques to speed up the BME. In [3] and [4], they skipped those
search positions which are depart from the contour line of
the object. In [5] it skipped computations of boundary alpha
blocks (BABs) by testing if the motion compensation error
for that BAB is less than a predefined threshold value. In [6],
it generated a mask for the points close enough to the object
boundary, and limited the search process only to those points.
These fast algorithms are usually implemented by software.
However, software implementation of BME on processors is
not efficient since processors are more efficient at the word
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TABLE I
16-CLASSES CLASSIFICATION, SHOWING THE NUMBER OF “1” IN EACH CLASS,
AND THE RANGE OF “1” IN EVERY BAB THAT MATCHES WITH EACH CLASS

classes number # of “1” included # of “1” included in the
in each class matched BAB

class 1 16 1~16

class 2 32 17~32

class 15 240 225~240

class 16 256 241~255

level instead of the bit-level operation as in BME. For hardware
implementation, the data in BME is just a one-bit binary value
(0/1), which can be easily represented by hardware, and achieve
computation speedup by bit parallelism. The hardware design
in [2] presented BME architecture by employing bit parallelism
technique using 1-D systolic array to perform a full search
BME. In all the above approaches, none have explored the
property of binary-value in the BME for the algorithm and
architecture design.

In this paper, we propose a fast BME algorithm and its hard-
ware design that significantly reduces the number of search po-
sitions for the block matching. The proposed algorithm explores
the binary value property in BME to efficiently skip the highly
unlikely search positions. The motivation of our approach is
that, BME only deals with binary values (1 or 0) instead of the
8-bit pixel values in the texture ME. Hence, the block matching
of BME can be regarded as a comparison of number of “1” con-
tained in each candidate block with that of the current block.
Thus, the proposed algorithm classifies each candidate block
according to the number of “1” it contains, and only performs
the block matching between those blocks belonging to the same
class. Furthermore, we also present a hardware design for the
proposed algorithm. Hardware design can make the binary bit-
level processing much easier and faster than the software ap-
proach since traditional processor only deals with word-level
processing. The simplicity and regularity of the proposed algo-
rithm leads to a simple and regular hardware design.

This paper is organized as following. In Section II, an intro-
duction to BME will be presented. Section III will describe the
proposed algorithm. In Section IV, we will present the simu-
lation results of the proposed algorithm. Then, the architecture
for the proposed algorithm will be shown in Section V. Finally
conclusions will be made in Section VI.

II. INTRODUCTION TO BME

BME can remove temporal redundancy by searching in the
reference video object plane (VOP) for a candidate BAB that

1051-8215/$20.00 © 2006 IEEE
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Current BAB classification:
Start by counting the 1's in the
current MB

Candidate BAB classification:
Count the 1's in the 16 adjacent!
overlapped MB in the search window.

YES

Test if there is any match between the 16
candidate BAB with that of current BAB

Start computing the SAD
and finding the MV

F

NO

-Fetch a new line from the search
window, add the 1's it contains.
- Subtracting the 1's contained in the top

Fig. 1. Flowchart for the proposed algorithm.

is most similar to current BAB. Based on the assumption that
the movement of an object is homogeneous, motion vector of
neighbor BAB or texture block is used as the motion vector
predictor for shape (MVPs). The block matching is performed
around the MVPs to compute the sum of absolute differences
(SAD) by comparing the BAB indicated by the motion vector
and the current BAB. The SAD between the current BAB lo-
cated at (z,y) in the current VOP I.. and a reference BAB lo-
cated at a displacement of (v,,v,) relative to current BAB in
the reference VOP I, is given as
SAD(vy,vy)
15 15
= Z Z [I.(z+m,y +m)—I.(z+v,+m,y+v,+n)|.
m=0n=0
6]

expired line
[y
NO
. End of search
o window?
YES

The motion vector that minimizes the SAD is taken as MVS
and this is further interpreted as motion vector difference for
shape (MVDs), i.e., MVDs = MVS — MVPs.

III. PROPOSED ALGORITHM

Fig. 1 shows the proposed algorithm flowchart. First, we clas-
sify the current BAB according to the number of “1” it contains.
Then, for each search position in the search window, we also
classify the candidate BAB using the same method (counting
“1” contained in the BAB). If both the current BAB and the can-
didate BAB are in the same class (called a match), we start com-
puting SAD for that position. Otherwise, we skip that position
and start testing the next search position. The main concept be-
hind this algorithm is that BME only deals with binary values.
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TABLE II
PERFORMANCE OF THE PROPOSED ALGORITHM AND THE FULL SEARCH METHOD WHEN SEARCH WINDOW IS £16 AND 255 CLASSES WITHOUT OVERLAPPING

Bits/shape # of MB processed ( search positions)
test sequences FS Proposed oy gy FS Proposed i gp
Foreman 311720 328329 5.33 7810280 25918 -99.67
Stefan 236964 248268 4.77 6141676 21812 -99.64
singer-247 239246 275191 15.02 6125008 20941 -99.66
News 298696 336933 12.80 5863564 16956 -99.71
dancer-247 440828 481913 9.32 9623385 36769 -99.62
coastguard 176666 188283 6.58 2062352 11885 -99.42
coastguard_obj 0 401875 433491 7.87 6066320 41951 -99.31
coastguard obj 1 256330 283021 10.41 4134816 19069 -99.54
coastguard obj 2 119925 122755 2.36 2036772 11714 -99.42
coastguard_obj 3 171030 181109 5.89 1949582 11382 -99.42
Total 2653280 2879293  8.52 51813755 218397 -99.58

TABLE III
PERFORMANCE OF THE PROPOSED ALGORITHM AND THE FULL SEARCH METHOD WHEN SEARCH WINDOW IS 416 AND 255 CLASSES WITH 6 CLASSES
OVERLAPPING
Disslape #0f ME processed ( search posifions)
st sequences B Poposed  cps grr B Poposed oG sp
Foreman 311720 3149 105 7810280 705 Al
Stefan 2w 2SS 0 5141676 25952 85T
snger247 pasr.s] 95 026 5125008 230416 9581
HNews 298856 248812 007 5863564 185674 %6583
dancer-247 440528 444523 085 SBL385 431812 9551
coastguard 176666 177752 08l 2062352 4341 -3543
cosstguand_cbj_0 401875 405486 080 BOE30 34255 -0
cowtauard chj 1 256330 298102 047 4134315 7528 88
cowtguard chj 2 119925 12653 03 206772 2475 -9605
cosstguard_chj_3 171030 172147 085 1949582 2580 -9523
Total 253280 B4 0BS 51813755 ZM051% -3548

Thus, we can use the number of “1” contained by the BAB to ap-
proximate the BAB’s data and classify it into different classes.
Hence, we can quickly skip SAD computation between different
classes and only compute the SAD for the same class.

Table I represents an example for classifying each BAB ac-
cording to the number of “1” it contains, i.e., if a BAB contains
20 pixels marked as ““1”, it will be classified as class 2. Fig. 2(a)
shows a BAB, where the shadowed pixels represent “1” in the
BAB. This BAB is classified as class 3 according to the classifi-
cation in Table I (contains 34 pixels representing “1”). Fig. 2(b)
represents the search window that shows two BABs: one with
almost the same number of “1”, classified as class 3 (contains
35 pixels representing “1”’), while the other classified as class 12
(contains 189 pixels representing “1”). It is clear that the BAB
with almost the same number of “1” is more likely to be a match
to the current BAB rather than the other one with larger number
of “17.

Classification and matching rule will severely affect the
quality of searching results. The matching rule can be gener-
alized from the same-class matching to the adjacent-classes
matching. Thus, a matching could be hold for those belonging
to the same class or adjacent classes. This feature (overlapping

between one or more adjacent classes) gives us the ability to
refine the MVS to be more accurate, which will be presented
later.

IV. SOFTWARE SIMULATION RESULTS AND ANALYSIS

In the following two subsections, we will show the efficiency
of the proposed algorithm by integrating it into the MPEG-4 ver-
ification model V18.0 [7]. All the following test sequences are
in CIF format with 300 VOP and one Video Object (VO). Then
we will show how to explore the flexibility of our algorithm (the
classification and the matching rule) to control both the search
positions and the bit rate to get more refined MVS.

A. Simulation Results

Tables II and III summarize the results compared with the
full search algorithm, where CHG_BIT denotes the change of
bits in percentage, and CHG_SP denotes the change of search
position. Table II assumes £16 search window with nonover-
lapping 255 classes (every two adjacent classes differ only by
one pixel value). Due to the strict nonoverlapping class parti-
tioning, the search positions saving (CHG_SP) is —99.58% (the
negative sign indicates saving, in other words the percentage of
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Search Range Buffer \

Current BAB

Class 3

Reference BAB

Class 3
{a)

Reference BAB
Class 12

(b)

Fig. 2. (a) Current BAB contains certain number of “1” bits and belongs to class 3. (b) Search window showing two BABs, each one from different classes. The
SAD operation will hold only for the left BAB in the search window, since it is more likely to be a match to the Current BAB, and hence belongs to the same class.

10.00

\ e + %bits/shape
v - ~ %total bits
—~ %search points
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[3,]
o
o
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Overlapped number between classes

Fig. 3. Impact of classes overlapping on bits/shape, total encoded bit-stream,
and the number of search positions.

search positions to that of the full search is 0.42%) of that in the
full search algorithm. Such reduction comes with the cost of av-
erage 8.52% increase in the encoded shape bit rate (bits/shape).

Table III shows the effect of overlapping classes with the
same £16 search window. With class overlapping, the increase
in the bits/shape is significantly reduced to 0.65%, but it also
reduces the CHG_SP to —95.68% compared with the nonover-
lapping case. This is because class overlapping will enable more
class matching for BABs with slight difference in number of

“1”. Thus, the increase in the encoded bit stream will be smaller
than the nonoverlapping case at the cost of more search posi-
tions. Without class overlapping, we may skip possible search
positions due to small difference. Fig. 3 shows the effect of over-
lapping on bit rate and search positions, it shows that, the extra
bit rate increase reduced significantly with just two or three pixel
overlapping. On the other hand, the required search positions
are linearly increased as the number of classes overlapped is in-
creased.

Table IV shows the effect of class partitioning. As the number
of classes decreases (that is, count number of “1” in each class
increases), the increase in encoded bit stream will be lower with
the cost of increased search positions. This is because more
BABs in the search window will be classified to be a match. This
increases the required search positions but also reduces the bit
rate due to more accurate motion matching, as shown in Fig. 3.

B. Consideration for the Classification and Matching Methods

The optimum classification of classes and class-overlapping
are highly content dependent. For some test sequences, the prob-
ability of classes are not uniformly distributed (BABs belonging
to a certain class are more probable than others). Fig. 4 shows the
probability distribution for the 255-classes of the test sequence
“container_2_obj”. It is clear that, BABs in which the number
of “1” in the range 1-83 are more probable, among which the
range 57-81 has higher occurrence. Thus, we can divide the in-
tervals for each class according to the probability density such
that, 1-56 to 8-classes (each class differs by 7 bits of “1” from
the neighbor classes), 57-81 to 25-classes (each class differs
by one bit “1” from the neighbor classes), and the remaining
into 4-classes. We ran three tests for the same test sequence,
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Number of "1" in each BAB

Fig. 4. Probability distribution for the 256 classes in the container_2_obj.

TABLE 1V
COMPARISON BETWEEN DIFFERENT CLASSES

Class Bitsineach CHG_BIT CHG_BIT

type class for shape for total bits CHG_SP
16 class 16 1.17 0.24 -93.18
32class 8 2.52 0.53 96.25
64 class 4 4.57 0.99 -98.04
256¢class 1 9.03 1.96 -99.38

TABLE V
RESULTS FOR DIVIDING CLASSES ACCORDING TO THE PROBABILITY OF
CONTAINER_2 TEST SEQUENCE

CHG_BIT  CHG_BIT for total
test for shape bits CHG_SP
case-1 16.45 5.31 95.4
case-2 1.8 0.63 81.7
case-3 3.14 1.09 903

as shown in Table V. For the case-1 without overlapping be-
tween classes, we got a smaller number of search positions but
larger bits/shape. In the case-2, we ran the same test with uni-
form overlapping between classes, and as expected this resulted
in a higher number of search positions with fewer bits/shape.
The case-3 compromises between reduction in search positions
and bits/shape by overlapping only in the range of high prob-
ability, in the range of 57-81. We got lower search positions
than the case-2, and lower bits/shape compared to case-1. By
applying overlapping to those classes with more probable ones
will refine the MVS with a little increase in search positions.
Statistics in Fig. 4 can be calculated at the run time, by
accumulating the occurrence of every class, overlapping those
of high probability, and joining more than one class for those
with less probability. The statistics can be made according to a
“frame window,” such that, for a predefined number of frames
(e.g., ten frames window) we count the statistics and consider

the results for the coming frames. This will be explored in a
future work by dynamic class assignment and overlapping.

V. ARCHITECTURE DESIGN

A. Architecture Design

Fig. 5 shows the block diagram of BME architecture. Due to
the simplicity and regularity of the proposed fast algorithm, the
whole architecture is similar to the full search architecture pre-
sented in [6]. However, instead of full search, we adopt the fast
algorithm but maintain the regularity of full search. The extra
hardware needed is the modification to the accumulator to sup-
port addition and subtraction, and also extra registers to save
the accumulated count for “1” in every BAB. The addressing
and control unit is simple due to regular data flow. In Fig. 5, the
search window buffer (SR buffer) stores partial search window
data that can be reused by PE array to reduce data transfer from
off-chip frame memory. The PE array contains 16 processing el-
ements, and each can compute the SAD of one candidate BAB.
Another function of the PE is to count the “1” within every can-
didate BAB. Thus, a MUX (Multiplexer) will be used to select
the operation for the PE between counting “1”” and computing
the SAD. A compare-and-select (CAS) module compares re-
sults of PE and selects the motion vector of minimal SAD. Con-
trol/Address generation (AG) module generates address for ac-
cessing SR buffer and control signals to other modules. Regis-
ters are used to store the count of “1” for each BAB in the SR,
in which each register is 8-bit (enough to count up to 255).

B. PE Design

Fig. 6 shows the architecture of a single PE, it consists of
an XOR circuit followed by an adder tree, and ended with an
accumulator. The accumulator supports both addition and sub-
traction. For SAD computation, one row of current BAB and
one row of candidate BAB are compared by bit-wise XOR. The
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16
¥ ¥ ' ) 4 Y Y
PE1 PE2 = b PE18
¥
- -
Y
CurrB CAS e MVs

Fig. 5. Architecture block diagram of the proposed algorithm.
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Fig. 6. (a) The SAD architecture, and (b) the tree adder.
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v 2:bit full adder

3-bit full adder

4-bit full adder

resulted row of binary data represents the difference values be-
tween pixels of these two rows. The adder tree will sum up those
binary data as partial SAD. The accumulator sums up 16 rows of
partial SAD to obtain the SAD of one candidate position in SR
(the SAD of one candidate BAB is produced every 16 cycles).
In each PE there are two registers, one to save the partial SAD
for later use as final SAD for that search position (sad_reg). The
other register will hold the count of ““1” pixels of candidate BAB
(count_reg).

C. Data Reuse and Data Flow

Data reuse concept should be explored while reading from
the search window buffer. Data redundancy exists in both di-
rections, horizontally and vertically. The horizontal data redun-
dancy could be due to computing SAD for more than one adja-
cent candidate BABs in the search window buffer. The vertical
data redundancy could be due to counting “1” of adjacent can-
didate BABs. Since PEs in the PE array take responsibility for
adjacent candidate BABs, the input data from search window
for every PE have large redundancy. To reduce the data redun-
dancy, we use the sliding widow scanning along with data dis-
patching to obtain and distribute the data. With data dispatching,
we can achieve better data reuse utilization. As shown in Fig. 5,
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31 pixels 17 pixels

A
\

17 pixels 31 pixels

A
\J

1% pass
Fig. 7. Two passes needed to cover the search window.

data dispatch is implemented by hardwiring the desired refer-
ence data into each PE. Data [31:16] are dispatched to PEI,
and data [30:15] are dispatched to PE2 and so on. The search
window width is 48 pixels [for search range (—16, +15)], while
the data fed into 16 PE are 31 bits, which leaves 17 bits to be
scanned. Thus, only two passes will be needed to cover the en-
tire search window, as shown in Fig. 7. Each pass will cover part
of the search window, supplying the 16 PE with proper data to
do the match. To facilitate the counting of “1”” and SAD compu-
tation, the proposed design adopts the sliding window approach
to read the pixel from the search window by sliding vertically,
as shown in Fig. 8. Sliding down in the search window will keep
tracking of the “1” counting for every adjacent candidate BAB
by adding a new row, and subtracting the top expired row. As
we slide down by one row, we still make use of the remaining
15 rows (the area marked by crossed bars). This will just add an
overhead of 2-clock cycles to keep tracking of the “1” count for
every BAB (2-clock cycles rather than 16-clock cycles to per-
form full SAD computation). We can summarize the procedure
of the architecture operation as follows.

1) Current BAB classification: Count the number of “1” in the
current BAB, and store the result into “CurrMB” register
(this step needs16-clock cycles).

2) Candidate BAB classification: Start counting the number
of “1” for 16 adjacent BABs within the search window,
and store the results into each specified register (Regl ~
Reg16). Each register located inside the PE, as shown in
Fig. 6(a) (this step needs 16 clock cycles).

2" pass

3) Class match and SAD computation: The comparison cir-
cuit will classify the results stored in the registers and de-
termine which one matches the current BAB class. If a
match occurs, start calculating the SAD for that position
only (16-clock cycles when a match occurs to compute the
SAD).

4) Proceeding to new data: If there is no match, we proceed
to the next row by the sliding window approach (2- clock
cycles overhead to count the number of “1” in this way).

5) Repeat steps (4) and (3) to the end of the search window.

D. Experiments Results

Since the architecture consists of 16-PEs working simulta-
neously, it is highly probable that more than one match could
occur (two or more adjacent BAB belong to the same class, as
shown in Fig. 9), and hence performs the SAD computation for
more than one match at the same time. This will save the pro-
cessing time since more than one match to be processed in one
time slot needed to do one match. The whole design has been
implemented in Verilog code and synthesized by Synopysis De-
sign Compiler. The synthesized gate count for the architecture
is 11582 for the total design, using 0.18-pm cell library.

The required cycle count is quite low due to our simple
scheme to skip unlikely search positions. The cycle count to
perform one full search can be calculated as follows; as an
initial step we need to count “1” for the current BAB (16 clock
cycles) and for the first 16 rows in the search window buffer
(16 clock cycles). Then proceeding by adding new row and
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Fig. 8. Sliding window approach: counting the “1” in BABs.

subtracting the top expired row (Fig. 8), this will consume
two clock cycles. Since we can scan the search window in two

TABLE VI
HARDWARE SIMULATION RESULTS FOR DIFFERENT CLASSES OVERLAPPING

passes, so 32 classes 16 classes no
overlapping  overlapping overlapping
test sequences AVE clk * AVE clk * AVE clk *
(2 clocks) x (2 passes) x (32 rows for each pass) foreman 506 443 276
= 128 clock cycles Stefan 635 536 302
are needed to scan the search window. When a match occurs, 16 nger2] 626 27 28
. news 543 474 269
clock cycles are needed to compute SAD for .t}.lat match (i.e., we dancer-247 95 506 976
express the number of matches or search positions by #SP). The -

total clock cycles will be (164 16+ 128+ (# SP) x 16) cycles. coastguard Obj_ L e 220
These cycles are needed to find one BAB MV. °°aS‘{=’” ard O_bj L 993 483 289
Table VI gives the average clock cycles consumed to scan one container_obj 0 340 452 284
search window for different classes overlapping. From Table VI, container_obj 1 353 303 31
the average clock cycles to complete one frame in case of 32 container_obi_2 662 578 302
classes overlapping (worst case) is 563. From which we can cal- container_obj 4 570 475 245
culate the total clock cycles to complete one frame. Assuming Average 563 482 282

* Average clock cycles needed to finish one search window.

the percentage of BABs to be 50% of the total alpha blocks (e.g.,
for CIF 352 x 288, the BABs will be 198), we need 563 x 198 =

111,474 clock cycle to complete one frame. From the above
calculations, the overhead of our algorithm will be as follows:
16 clock cycles to count the “1” of the current BAB, another
16 clock cycles to count “1” for the first search position in the
search window, the latter will be repeated twice, since we scan
the search window twice, 2 clock cycles for every search po-
sition to add and subtract one row of pixels. Theoretically, the
clock cycles needed to perform one full search window using
one PE would be (31 x 31 x 16 = 15376), and for 16-PE would
be (2 x 31 x 16 = 992) clock cycles, while the worst case in
our design is 563 clock cycles.

E. Comparison

Tables VII and VIII show the comparison results between
our proposed algorithm, and other fast algorithms. The pro-
posed algorithm can achieve lower search positions and still
has lower bit rate increase. Moreover, the flexibility of our pro-
posed algorithm which lies in the classification of classes, and
overlapping between classes, according to run time statistics,
will benefit in tradeoff between reduction in search points and
bits/shape. The comparisons are based on bits/shape and reduc-
tion in search positions. Bits/shape presented by [4] is based on
WSAD (weighted SAD) which gives lower bit rate and different
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Fig. 9. Adjacent BABs belong to the same class, and match the same class of CurrMB. SAD calculation will be held at the same time in hardware implementation.

TABLE VII
CHG_SP FOR VARIOUS SEARCH ALGORITHMS RELATIVE TO THE FULL
SEARCH ALGORITHM

proposed
Sequence  Ref[6] Ref. [5] Ref [4] +16 with6 +16 without
overlapping  overlapping
- - - _ 0, _ o,
news 46.04%  99.12% 96.74% 009% 99.71%
- - - _ 0, _ 0,
foreman 43.94% 82.78%  96.85% 96.49% 99.67%
TABLE VIII

AVERAGE BIT-RATE FOR VARIOUS SEARCH ALGORITHMS. ALL ARE RELATIVE
TO THE FULL SEARCH ALGORITHM

proposed
Sequence  Ref[6] Ref. [5] Ref. [4]*  £16 with 6  £16 without
overlapping  overlapping
news 100.00%  99.26% 100.19% 100.07% 112.8%
foreman 100.00%  100.47%  99.65% 101.05% 105.33%
* Weighted SAD

values than normal SAD implemented by MPEG-4 VM, even
for full search algorithm. Besides, they employed the diamond
search algorithm to minimize the number of search positions
that is not regular and is not suitable for hardware design. The
average reduction in search positions achieved by our proposed
algorithm is larger compared to others. The average search po-
sition reduction in [5] is —90.95%, and that for [4] is —96.78 %,
while it varies from —96.59% to —99.69% for our proposed al-
gorithm. The minor increase in bits/shape produced by the pro-
posed algorithm is not much deviating apart from other fast al-
gorithms. The software implementation of the proposed algo-
rithm has comparable performance to the algorithm presented

in [5] which is a software approach. Thus, our proposed algo-
rithm is suitable for software and hardware implementation.
For hardware design comparison, the proposed algorithm is
simple to be implemented in hardware and similar to the full
search scheme. No special computation circuitry is needed,
which can make it switched to a full search without disabling
any extra hardware. Control circuit and address generator is
simple. For portable devices where the power is critical, when a
match occurs, we can disable those PEs which are not a match
to save power. BME architecture presented in [2] employs a full
search algorithm, and needs a gate count of 9666 while operated
at 7.29 MHz for core profile at level two. In comparison, our
implementation needs slightly larger gate count of 11582 but
needs fewer cycle count and lower frequency, only 3.34 MHz.

VI. CONCLUSION

In this paper, fast binary motion estimation for shape coding
is proposed to save the required search positions to —99.58% of
that in the full search algorithm. Due to its simplicity and reg-
ularity, we also propose a hardware implementation that only
requires 11582 gate-counts with low computational cycle. The
flexibility of this algorithm could be further explored through
choosing the number of classes, and overlapping between
classes to compromise between computational complexity and
bit stream length.
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