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Spectrum Restoration From Multiscale Auditory
Phase Singularities by Generalized Projections

Taishih Chi, Member, IEEE, and Shihab A. Shamma, Senior Member, IEEE

Abstract—We examine the encoding of acoustic spectra by pa-
rameters derived from singularities found in their multiscale au-
ditory representations. The multiscale representation is a wavelet
transform of an auditory version of the spectrum, formulated
based on findings of perceptual experiments and physiological
research in the auditory cortex. The multiscale representation of
a spectral pattern usually contains well-defined singularities in its
phase function that reflect prominent features of the underlying
spectrum such as its relative peak locations and amplitudes. Prop-
erties (locations and strength) of these singularities are examined
and employed to reconstruct the original spectrum by using an
iterative projection algorithm. Although the singularities form a
nonconvex set, simulations demonstrate that a well-chosen initial
pattern usually converges on a good approximation of the input
spectrum. Perceptually intelligible speech can be resynthesized
from the reconstructed auditory spectrograms, and hence these
singularities can potentially serve as efficient features in speech
compression. Besides, the singularities are very noise-robust which
makes them useful features in various applications such as vowel
recognition and speaker identification.

Index Terms—Auditory model, convex projection, phase singu-
larity, spectrum restoration.

1. INTRODUCTION

IGNAL discontinuities such as edges and peaks, have
S played a key role in the representation and encoding of sig-
nals, especially of audio and images [1]-[4]. The importance of
these features stems primarily from their enhanced detectability
by the human sensory system, and hence their perceptual role
in interpreting scenes and sound [5], [6], and their efficiency
as encoders of perceptually faithful versions of the underlying
signal [7].

To define, detect, and process these features, several multi-
scale representations have been proposed and proven effective
in image texture analysis, measurement of binocular disparity
and image orientation in the field of early biological and compu-
tational visual processing [7]-[12]. These approaches typically
involve the use of Gaussian-like filter banks followed by detec-
tion of the zero crossings of the second derivative to localize the
edges. Much less investigated is the local phase of the filters’ re-
sponses, which has been found moderately useful in binocular
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depth and disparity estimation problems [13]. A common diffi-
culty with utilizing the phase is the existence of singularities in
scale space at which the phase is discontinuous and ill-defined.
While this singularity is usually avoided in applications [14],
[15], it is possible that they may play a role in a robust repre-
sentation of the signal, one akin to that played by the amplitude
discontinuities (edges and peaks).

We examine here this possibility in the context of the audi-
tory processing of complex sounds. Specifically, physiological
and psychophysical evidence suggests that the auditory system
analyzes and extracts a multiresolution representation of their
input sound [16]-[19]. A model of this process has been de-
veloped and exploited in a variety of applications including the
assessment of speech intelligibility and the perception of com-
plex sounds [20]—-[22]. In its simplified version [23], the model
performs an affine wavelet transformation on the auditory spec-
trum of its input sound. As in vision, this representation contains
singularities in scale space that reflect the shape of the input
spectrum. We describe in this paper how these singularities can
be exploited to reconstruct the auditory spectrum that generates
them using iterative projection methods [24]-[26]. Such algo-
rithms can also be used to reconstruct perceptually comparable
sounds from the reconstructed auditory spectrum, but not nec-
essarily the identical original waveforms [17].

This paper is organized as follows. In Section II, we describe
the multiscale auditory representation of the input spectrum and
explain how singularities in scale space are expressed and de-
tected. In Section III, an iterative algorithm is formulated to
reconstruct the original spectra from certain parameters of the
singularities such as their locations, gradients (strength), and
the energies at the scales where they occur. A critical factor in
acceptable reconstructions is the choice of the initial (starting)
spectrum to invert. Consequently, in Section IV we propose pro-
cedures to estimate initial approximations of the signal spectrum
from singularities that contain critical features of the desired
spectrum. In Section V, we demonstrate the robustness of the
singularities by conducting a vowel recognition task. The recog-
nition performance by singularity features is compared with the
performance by the mel-frequency cepstral coefficient (MFCC)
features. We end in Section VI with a summary and brief dis-
cussions of their potential applications.

II. MULTISCALE CORTICAL PROCESSING AND SINGULARITIES

The multiscale model of the auditory cortex integrates findings
from a wide range of physiological and psychoacoustic sources.
The details of these experimental findings and their interpre-
tation in the context of the model are available elsewhere [16],
[18], [19]. Most relevant for our purposes here is the topographic
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Fig. 1.

Representative receptive fields and multiscale representation of the vowel. (a) Two representative RFs. The RF in left panel is tuned to

Q. = 1 cycle/octave and ¢. = 0. RF in right panel is tuned to 2. = 4 cycle/octave and ¢, = 7 /4. (b) A multiscale representation of the vowel [o] (as in
“home”). The abscissa is the tonotopic (log) frequency («) axis. The ordinate is the scale (£2) axis. Several cross-sectional profiles of the magnitude response
are shown at different scales (2 = .25,.5, 1.0, 2.0 and 4.0 cyc/oct). Some of the singularities are marked by an “X” symbol. Their locations are given in the

parenthesis as (frequency in hertz, scale in cyc/oct).

organization of neuron responses in primary auditory cortex (Al)
to various stimulus features [27]. For instance, unit responses
exhibit an organized distribution of their frequency tuning or
“best frequencies” (BF), local symmetry above and below BF,
and the local bandwidth around the BF (see review of these data
in [28], [29]). To capture these organizational principles, the
cortical model assumes that the receptive field (RF) of a neuron
could be characterized by three parameters : best frequency
(BF), bandwidth, and asymmetries. Arrays of neurons tuned to
different BF’s, bandwidths, and asymmetry, would then effec-
tively compute a multiscale representation of the input spectrum.
Therefore, from a mathematical point of view, functions of arrays
of neurons can be modeled by a complex wavelet transform
as performing a multiscale analysis on the input stimulus. A
brief review of this multiscale analysis model of the Al is given
below and much more detailed validation and discussions about
this model can be found in [23]. Furthermore, such multiscale
cortical representation has already been validated by successful
applications in the manipulations of sound percepts [30], [31].

A. Multiscale Cortical Model

The input spectral profile to the cortex is extracted in the early
auditory pathway (from cochlea to midbrain) and is referred to
as the “auditory spectrum” in this study [20]. Functions of arrays
of cortical neurons with receptive fields (RF’s) centered at dif-
ferent frequencies along the tonotopic (logarithmic) frequency
axis =, and with a range of bandwidths and asymmetries can
be modeled as performing zero-lag cross-correlations between
RF’s and the input auditory spectrum [23]. Fig. 1(a) illustrates
two examples of such RF’s. The asymmetries of RF’s can be
modeled by sinusoidally interpolating a symmetric seed func-
tion A(-) and its Hilbert transform. Therefore, the RF of neuron
¢ can be formulated as [23]

Rf(.’[’, zc, (Q, ¢c) = h(IE — T Qc) oS P
—h(z —29Q)sing. (1)

where the h(x;)..) is areal, even function (i.e., h(z —2.; Q) =
h(z. — z;2.)) and with . (in cycle/octave) as the bandwidth
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parameter, and ¢, is the characteristic phase (in radians) which
determines the asymmetry of the RF. h denotes the Hilbert trans-
form of the function h (i.e., h is an odd function and h(w -
Ty Q) = —h(:LC x;€)..)). The exact shape of this even func-
tion is not important as long as it can manifest the lateral-in-
hibitory structure, i.e., a central excitatory (positive) band sym-
metrically flanked by inhibitory (negative) side bands. The RF’s
shown in Fig. 1(a) are based on a Gabor function formulation
[23]. The left panel shows an RF tuned to 2. = 1 cycle/octave
and ¢. = 0, while the RF in the right panel is tuned to 2, =
4 cycle/octave and ¢. = /4. The response of the neuron tuned
to (¢, Qe, @) for an auditory spectrum y(x) is computed as the
inner product of the RF and y(z) [23]

7"(51707907@750) y( )772-7:(5175170;0074/)0» 2)

a(xe, Q) cos(P(xe, Q) — de) 3)

where

a(e, Q) = {{y(=), Mwe — 23Q))?
)

+(y(x), b, — o Q)21 @

(e, Qe) = arctan (o), h(z 3)

(
(y(x), h(z

are called the characteristic amplitude and the characteristic
phase of the response, respectively; and (-, -) denotes the inner
product.

The above characteristic amplitude and phase responses of
neuron ¢ can be computed by a complex wavelet transform as
follows. Assume an analytical function h,, is defined as

c — I3 Qc)>
c— G Qr))

B (25 2) = h(z; Q) + jh(z; Q).
Then the linear convolution of input y(z) and function h,, can
be derived as

Z($C7Q(‘,) Zy(l') * hw(x;Qc”m:.rC (6)
=a(x, Q) eV (@) ©)

with the same characteristic amplitude a(z., €).) and the char-
acteristic phase ¥ (z., ) as in (4) and (5). In other words,
the output amplitude and phase responses of neuron c¢ can be
computed by the complex wavelet transform (6) with a mother
wavelet h,,(z) and for different Q..

ha(2;2) = Qehy (Qex).

An example of this multiscale representation is shown in
Fig. 1(b) for the auditory spectrum of the vowel [o] (as in
“home”). The auditory spectrum is depicted at the bottom and
the corresponding multiscale magnitude response (a(z, (2)) is
displayed above it. The superimposed dashed lines are the mag-
nitude (a(z,(2.)) at each of the different scales .. RF’s with
the widest bandwidths (i.e., at the lowest scale of €2, = 0.25)
smooth over the details of the vowel spectrum and hence cap-
ture only its major outlines. Such outlines are referred to as the
“global shape” of the spectrum in this study. Meanwhile, RF’s
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with progressively narrower bandwidths display finer response
features (peaks and valleys). Consequently, the magnitude
responses at different scales simultaneously represent the local
energy of the vowel spectral pattern at various degrees of
resolution.

B. Occurrence of Singularities

The scale space defined by the complex wavelet transform
(6) is analytic with a number of isolated zeros (z(z, ) = 0).
Zeros of the magnitude a(z, ) are marked by an “X” symbol
in Fig. 1(b). The phase response v (z, 2) is also differentiable
except at the zeros of a(z,{2) where the complex response
passes the origin in the complex plane. At these points, phase
discontinuities occur and jump by 7. These points are called
singularities.

Fig. 2 demonstrates the signal behavior around the singu-
larity at (260 Hz, 0.64 cyc/oct) in Fig. 1(b). The three panels
in Fig. 2(a) illustrate the behavior of z(z,(2) as a function of z
in the complex plane at €2 scales above (left panel), at (middle
panel), and below (right panel) the singularity, respectively.
Fig. 2(b) panels illustrate the derivative of the phase function
((9/0x)¢(x, ), also known as “local frequency”) of z(x, )
at the same three scales as those of Fig. 2(a). It is evident
that away from the singularity, this derivative remains rather
smooth. However, its absolute value increases sharply as the
singularity is approached from the right and left (along the
x-axis). Furthermore, it undergoes a rapid change of sign along
the scale axis. In a continuous representation of this scale-space
plot, (0/0z)4(x, ) tends to oo or —oo as the singularity is
approached. This implies a numerical instability in the neigh-
borhood (along both z and ) axes) of the singularities and is
the rationale of avoiding such regions in measuring binocular
disparity or image velocity [14], [15].

C. Strength of Singularity

Here we define the strength of a singularity and discuss how
it can be used as a measure of its significance. In the following
analysis, we assume a singularity appears at (g, o) in the scale
space. Therefore

R{z(w0, )} =0 ®)
%{Z(ﬂ?o,Qo)} =0 (9)

where R{-} and 3{-} denote the real and imaginary part, re-
spectively.

The real part of the bandpass analytical signal z(z, €2) can
be expressed as [32]

s Lo
g(z) 2 R{z(z,Q)} = ;/ |G(2)] cos(Q + £G(Q))dS

) (10)
where G(2) is the Fourier integral of g(z) and €, §2; are the
cutoff frequencies of the corresponding bandpass filter centered
at 2y. The discrete-time implementation of (10) gives

2

152, <Q:i <Dy

g(n) = a; cos(Qin + ¢;) (11)
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Fig. 2. Cortical response and the phase derivative near a singularity. (a) The evolution of response through a singularity from high scale (2. = 0.68 cyc/oct;
left panel) to low scale (2. = 0.59 cyc/oct; right panel). The center panel is at approximately the scale (2. = 0.64 cyc/oct) where the magnitude response
passes through origin indicating the occurrence of a singularity. The symbol “o” marks points at 90, 120, 160, 214 and 285 Hz along the « axis. Re(Im) indicates
the real (imaginary) part of a complex number. (b) The derivative of the phase functions at three scales as selected in (a) (2. = 0.68,0.64 and 0.59 cyc/oct). The

top (bottom) panel is at the scale right above (below) the scale of singularity.

and

9(n) = 3{z(n, )} =

>

132, <Q; <Qp

a; Sin(Qi’l’L + ([51) (12)

where a; and ¢; are the normalized magnitude and phase of the
ith frequency component at §2;. Accordingly, the singularity ap-
pears at (ng, €2o) in the discrete scale space. To simplify nota-
tion, the constraint 2, < ; < € will be omitted in the fol-
lowing analysis.

Equations (11) and (12) around ng can be approximated as

g(n)  — Z a;; Sin(Qino + </51)(n — no) (13)

g(n) ~ Z a; Qi cos(Q;ng + ¢i)(n — no) (14)

by the first order Taylor series expansions. Therefore, the
local energy F(n), which is defined as E(n) = |z(n, Q)| =
9%2(n) + g%(n), around ng can be derived as

E(n)? =~ (n —mng)?- [Z a?Q?

+ZZ Z aianin COS((Qi - Qj)’no + ((f)z - (,ZSJ)) . (15)

4 #E]

If the bandpass filter is narrow-band (£2; ~ Q; ~ Q)
E(n) = |n —mng|- Qo

\/Z a? + 22 Zaiaj COS((f)i - (ZSJ) (16)

4.3 51#]

Therefore

2
%{E"O) “2'\/;“?Jrzzzaiajcos(@—qu)

6,J i#]
<2- Za%+ZZZaZaJ
i 1, 3i#£]

7)

where A2E(n) £ E(n+1) —2E(n) 4+ FE(n — 1) is the second
order difference of the discrete signal F(n).

The significance (or “strength”) of a singularity is defined by
its scale-normalized second order difference. As shown in (17),
this quantity A2 E(ny) /2 roughly corresponds to the absolute
energy of the spectrum y(z) at scale Q. Intuitively, the second
order difference along the tonotopic (log) frequency axis at the
singularity reflects the depth and steepness of the surrounding
function. However, since singularities at high scales tend to be
steeper than those at low scales due to the broader bandwidths of
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the RFs at these scales, it is necessary to normalize this measure
by the scale(2.

III. RECONSTRUCTION FROM SINGULARITIES

To whatextent can singularities be used to reconstruct the input
spectral profile? Specifically isit possible to have a stable, percep-
tually faithful reconstruction only from such information as the
locations and strength of the most significant singularities?

A. Previous Studies

Numerous insights into the challenges of reconstructing from
singularities can be gleaned from previous extensive studies
of nonlinear inverse problems especially in image processing
applications. For instance, numerous algorithms have been im-
plemented for reconstruction from multiscale edges, especially
within the zero-crossing framework [12], [33], [34]. Although
multiscale zero-crossings have been proven to be complete under
certain conditions (e.g., when the input pattern is a polynomial
function [33], [35] or an irreducible band-limited function [36]),
they cannot characterize a general function uniquely [37]. In-
stead, approximations of the input signals can be recovered with
additional information such as the average values between any
pair of consecutive zero crossings [12] or the gradient along the
zero crossing boundaries [33], [38], [39]. These gradients in fact
are related to the gradients around our singularities (and hence
the strength of a singularity as we shall discuss next).

Another example of a related nonlinear inverse problem is
the phase retrieval problem—restoring original signal from the
magnitude of its Fourier transform [25]. Most applications have
focused on the two-dimensional image restoration problems and
the signal extrapolation problems [26], [40], and several error-
reduction algorithms have been proposed [41], [42] in conjunc-
tion with these algorithms. Nevertheless, mathematical conver-
gence of these algorithms is not generally achievable [43]-[45],
but can be significantly improved by combining different algo-
rithms [42], [46].

Although both types of problems above lack closed-form
solutions, iterative procedures have nevertheless demonstrated
stable reconstruction results. In a similar vein, our recon-
struction algorithm described below is iterative, employing a
generalized projection procedure which was originally used to
solve image restoration problems [24].

B. Reconstruction Algorithm

The iterative algorithm below reconstructs an approximation
of the input spectrum from the positions and gradients of the
singularities. The basic idea is to project an initial pattern be-
tween two domains (spectrum and scale space) while satisfying
constraints applied in each domain.

Let f(x) € L%(R) denote the input spectrum and .J () be the
set of functions which result in the singularities with the same
locations and (magnitude) gradients as the ones from f (). Our
purpose is to find a member in the .J () set to approximate f(x).
Let (27 )¢ z denote the abscissae where singularities from f(z)
occur at scale ;. The singularity constraints at the scale space
for J(z) can be decomposed into two conditions.

1) At each scale §;, the singularities from J(z) located at

(7)) has the same gradients as the ones from f(z).
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2) At each scale (;, the singularities from J(z) are located
at (7).

Condition 1 is not convex due to the fact that the (magnitude)
gradients are calculated from the magnitude which is not
convex. In [7], a similar nonconvex constraint of local maxima
as condition 2 stated above was approximated by a convex
constraint. However, this approach cannot be adopted for the
set of local magnitude minima such as the set of singularities.
Nevertheless, the projection method can still be applied even
to inverse problems with nonconvex constraint sets [24] such
as the signal restoration problems with Fourier transform mag-
nitude constraints [25], [26] or wavelet transform magnitude
constraints [47]. In such case, the convergence of the projection
strongly relies on the initial starting point of the algorithm.

In addition to the location and gradients of each singularity,
the energy (3, E(n;$0)) at the scale €2y where the singularity
occurs is also needed. The proposed reconstruction algorithm
can be summarized as:

1) Estimate an impulse-type initial spectrum based on the lo-
cations and gradients of known singularities by the prop-
erties derived in Section I'V.
2) Calculate the complex multiscale response associated
with the input spectrum by (6).
3) Apply scale space magnitude constraints: condition 1 and
2 stated above and the energies at the scales where singu-
larities occur.
4) Identify the undesired singularities generated at step 2.
5) Calculate the spectrum by the inverse wavelet transform.
6) Apply spectrum domain constraints (smoothing certain
part of the spectrum to eliminate the undesired singular-
ities occurred in the scale space followed by half-wave
rectification).
Repetitive application of steps 2 to 6 defines the algorithm.
An example of a reconstruction of a natural vowel spectrum is
given in Fig. 3. The top panel shows the multiscale representa-
tion of the vowel /o/ as in Fig. 1(b). The locations of the six most
significant singularities of the original spectrum are indicated
by the crosses. Center panel shows the reconstructed spectrum
(solid line) superimposed against the original spectrum (dashed
line). The corresponding multiscale representation of the recon-
structed spectrum is illustrated in the bottom panel. The derived
initial impulse-type pattern (darker solid lines) to start the re-
construction is also shown in the center panel. Note, the recon-
struction errors at high (> 1000 Hz) and low (< 125 Hz) fre-
quency ranges are obviously seen due to the absence or weak-
ness of singularities at those regions. Ideally, the gradients (both
sides) of each singularity implicitly encodes the absolute (see
Section II-C) and relative energy levels of the surrounding har-
monic peaks if the bandwidths of the bandpass cortical filters
are sufficiently narrow with respect to the scale axis. However,
since our cortical filters are relatively broad (with 1 octave 3
dB bandwidth), this information is diluted, and hence including
in addition the energies at the scales where singularities occur
would be necessary to yield a stable reconstruction [48].

Fig. 4 illustrates the original, reconstructed (frame-by-frame
basis) and lowpass filtered (cut-off frequency at about 32 Hz) re-
constructed spectrogram of the word “away” spoken by a male
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Fig. 3. Example of a reconstructed spectrum from phase singularities. The locations and gradients of the six strongest singularities (shown in top panel) combined
with their scale energies are used to reconstruct the original spectrum (dashed line in center panel). The reconstructed spectrum after 150 iterations is indicated
by the solid line in the center panel, and the corresponding multiscale magnitude response of the reconstructed spectrum is shown in the bottom panel. The initial
impulse-type pattern (see Section IV-D) to initiate the reconstruction algorithm is superimposed upon the original and reconstructed spectra in the center panel.

speaker, respectively. In this example, seven strongest singular-
ities per frame are used to reconstruct the spectrogram. Sim-
ilar to the reconstruction shown in Fig. 3, errors are apparent at
the high and low frequency regions and around the peaks with
low peak-to-valley ratio. To resolve such weak peaks, one has
to consider more singularities per frame or include the higher
scale singularities during the reconstruction. The reconstructed
acoustic signals from the auditory spectrograms in Fig. 4 are
available at http://www.isr.umd.edu/CAAR/pubs.html; and the
iterative algorithm used to invert the auditory spectrogram back
to the acoustic signal is described in [17], [48].

The quality of the reconstructed phrase was estimated using
the “Perceptual Evaluation of Speech Quality” package (PESQ)
[49] as an indicator of the Mean Opinion Score (MOS) of the
signal in Fig. 4. The PESQ scores of the three reconstructed sig-
nals (from top to bottom) are 4.26 (toll quality), 2.81 (synthetic
quality) and 3.00 (professional quality) [50].

IV. DETERMINING THE INITIAL APPROXIMATE SPECTRUM

For the reconstruction procedure to converge to stable and ac-
curate patterns, it is essential that its initial spectral pattern be
broadly consistent with the location and strengths of singulari-
ties. In this section, we discuss in more detail what properties of

the initial pattern can be gleaned from the singularities, and how
to generate such a pattern for the reconstruction. These insights
and properties are readily evident from a cursory inspection of
the singularities in Fig. 1(b). For instance, (1) singularities ap-
pear between adjacent peaks of the spectrum, and (2) their lo-
cations depend on the spacing between peaks and their relative
amplitudes. To elaborate on this relationship, we analyze in de-
tail the singularities associated with a simple abstract pattern
consisting of two impulses located along the = axis and sep-
arated by a distance d as shown in Fig. 5(a). In the following
deterministic analysis, the function h(z) is implemented by the
second derivative of a Gaussian function (—e=*"/2). The even
function h(z) = (1 — 1:2)6_““2/2 and odd function h(z) are
shown in Fig. 5(b).

A. Spacing Between Peaks
Let the input spectrum I () in Fig. 5(a) be expressed as
I(z)=6(x —a)+ 6(x—D)
where b — a = d. Hence, the output z can be written as
2(x, Q) = I(x) * hy(2; )

=hw(z — a; Q) + hy(z — b; Q). (18)
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Fig.4. Reconstruction of the spectrogram of the word “away” extracted from TIMIT corpus. (Top panel)—Original spectrogram. (Center panel)—Reconstructed
spectrogram. (Bottom panel)—Smoothed (lowpass filtered at 32 Hz) reconstructed spectrogram. The reconstructed acoustic signals of these spectrograms are
available at http://www.isr.umd.edu/CAAR/pubs.html.
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Fig. 5. Impulse-type stimulus and the shape of mother wavelet. (a) The two-impulse stimulus with spacing d and unity amplitude. (b) The real (h(x), an even
function) and imaginary part ((), an odd function) of the complex mother wavelet are shown in top and bottom panels, respectively.
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Assume a singularity emerges at location (zg,$g) for input
I(z), then the real and imaginary parts of z(zg,$2y) should
equal to zero simultaneously
h(zo — a; ) + h(wo — b;€20) =0
il(xo —a; Q) + il(xo —b; Q) =0.

19)
(20)

Since the / is an odd function, 2o = (¢ +b)/2 = a+ d/2 is an
obvious solution for (20). Substituting this solution in (19), and
combining the fact that h(z) is an even function, the solution
for 2y should satisfy the following equation:

d d
(L) n(-fa) <o

A nontrivial solution for (21)—d equals to the width of the
excitatory (positive) band of function h—can then be deduced
by observing h(x) in Fig. 5(b).

In summary, for a pattern with two impulses spaced d apart,
the singularity occurs at the center of the two peaks (zg = (a +
b)/2) and at the scale whose excitatory band width equals to
d. Note, if the input is only a single impulse (a special case
with condition d = 0), the singularity is defined to occur at the
location of the impulse and at infinite scale.
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B. Relative Amplitude of Peaks

In this section, we consider the case of unequal amplitudes.
Let the amplitudes be 1 and (1 + Ac), where Ac > 0 param-
eterizes the relative amplitude of the two impulses. Therefore,
(19) and (20) can be restated as

h(il?(] — a; Qo) + (1 + AC) . h(d?o —b; Qo) =0
iL(:EO —a; Qo)+ (14 Ac) - iz(xo —b;Qp) =0.

(22)
(23)

The solution to (23) is of the form zo = (a + b)/2 + Az,
where Az is due to the effect of Ac. Substituting it into (22),
we get

h<g+Am>+(1+Ac)-h<—g+Aa¢> 0 @4

at scale Q. Derive the Taylor series expansions of function h(z)
about two points z = (d/2), —(d/2) up to second order and
substitute the expansions into (24), we get

1 (d
Ag — h (Z)Ac
wr(4) [1+ 5]

where h'(d/2) = —h'(-d/2) < 0 and h"(d/2) =
h''(—=d/2) > 0. This solution should be verified to satisfy
(23) as well, but this verification can be omitted based on one
of Logan’s theorems [51] (see discussions in Section VI-A for
details).

If Ae € 1,

(25)

Az _ 1 (5)

ae ()

<0 (26)

which indicates Az is inversely proportional to Ac when Ac
is small. In other words, the singularity moves toward the peak
with the smaller amplitude when the amplitudes of the two
peaks are slightly different. Fig. 6 shows the displacement of
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Fig. 6. Displacement of singularity along the tonotopic (log) frequency ()
axis as a function of the relative amplitude of two peaks. The solid line depicts
the simulation result while the dashed line denotes the approximation for small
Ac. The displacement Az is normalized to the case of d = 1 octave.

singularity (Az) as a function of the discrepancy between
peaks’ amplitudes (Ac). The solid line demonstrates the actual
result while the dashed line shows the approximation by (26).
Although (26) is derived for Ac < 1, this approximation holds
well even for Ac ~ 0.6 as shown in Fig. 6.

C. Width of Peaks

We discuss next the effect of having broader peaks on the
location of singularity. A more realistic model of the spectral
peaks would be an impulse function (6(z)) convolved with a
Gaussian function (e=7""). Therefore, the input spectrum of
two peaks I, (x) becomes

Iw(fl?) = [(5(."17 — a) + 5(33 _ b)] " e_qmz
and the output is
A@, Q) = 1(x) % €71 5 oy (2 Q) 27)

which is equivalent to the output associated with the impulse-
type input I(x) but filtered by a modified filterbank A, (x; €2)
where

ho (25 2) = e b (23 Q).

Therefore, the real part of the mother wavelet of this modified
filterbank can be derived as

D e
d

= w[e""’?2 * —e_p””z]

d ™ 2
= |- e~ ((0)/(P+a))= 28
dz? [ Vrp+aqg ¢ 28

by the usage of the following definite integral

/OO emeJ:Q:I:nmdx — ﬁ . en2/4m2 [’ITL > 0]
oo m

where p = 1/2 (our original filterbank). Equation (28) also de-
picts the fact that convolution of two Gaussian functions is still a
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Displacement of singularity along the scale (€2) axis as a function of the width of the surrounding two peaks. (a) The singularity moves along the scale

axis due to the change of the surrounding peaks’ width. The three panels from top to bottom depict the slight upward move of the singularity (from 0.45, 0.47 to 0.5
cyc/oct) with the increasing width of the peaks (parameter ¢ from oo, 50 to 15). The artificial spectra (solid lines) are superimposed on the multiscale magnitude
responses in each panel. (b) The scale of the singularity varies as a function of the width of the peaks, which is characterized by parameter ¢.

Gaussian function. Since p > ((p-q)/(p+¢q)), the modified fil-
terbank has a wider excitatory band than our original filterbank.
In other words, the width of the excitatory band of the modified
filterbank at scale €2 is now wider than the spacing d between
the two peaks. Hence, the singularity will occur at higher scale
than € in the scale space defined by the modified filterbank.

In general, the width of the peaks in which we are interested
is smaller than the spacing between the two peaks, i.e., ¢ > p.
In such a case, the mother wavelet of the modified filterbank can
be approximated by

d )
Rihn(2)} = -0 [_ T } (29)

which has the same decay factor p as the original filterbank.
This approximation implies that the scale of the singularity is
not affected much by widening the harmonic peaks as shown in
Fig. 1(b). Fig. 7(a) demonstrates the slight shifts as the width
of the peaks increase. Fig. 7(b) shows the scale of singularity
as a function of the width parameter q. As expected, the singu-
larity occurs almost at the same scale even for significantly wide
peaks.

D. Constructing the Initial Pattern

The above analysis focuses on the location of the singularity
and the factors which move the singularity along both = and 2
axes. In addition, while the location of the singularity due to two
narrow peaks signifies the spacing d between the two peaks re-
gardless of their absolute amplitudes, the quantity A% E(ng)/Qo
in (17) (defined as the “strength” of singularity) serves to indi-
cate the energy in the spectrum at these peaks, and hence the
significance of these peaks. This quantity is a crucial indicator
which helps to weed out numerous spurious peaks due to var-
ious noise sources.

As indicated in Section III-B, the reconstruction result
strongly relies on the initial pattern for the projection between
nonconvex sets. Procedures to estimate an initial impulse-type
pattern based on the locations and gradients of the singularities
can be summarized as follows.

1) Determine the spacing d between two impulses which sur-
round the singularity at highest scale by the property de-
rived in Section IV-A.

2) Adjust the relative amplitudes of these two impulses ac-
cording to the gradients of that singularity.
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Low scale singularities under noisy conditions. The five strongest singularities below 1.8 cyc/oct are plotted for spectra at different signal-to-noise ratios.

The auditory spectra (solid lines) are superimposed on the multiscale magnitude responses in each panel.

3) Determine the exact locations of these two impulses by
the property derived in Section IV-B.

4) Determine the location (Section IV-A) and amplitude
(Section IV-B) of the next impulse from the location of
the next closest singularity to the resolved singularities.

Step 4 is repeatedly applied until all singularities are consid-
ered. The constructed initial impulse pattern for the reconstruc-
tion example in Fig. 3 is generated using this procedure. As is
evident, the locations and amplitudes of the peaks of the original
spectrum between 500 and 1000 Hz are well estimated from the
most significant singularities.

V. ROBUSTNESS OF SINGULARITIES

The representation of spectra by their singularities has several
applications that we plan to pursue in the future. One example
is the de-noising and robust representation of spectral patterns
in noisy environments. This is illustrated in Fig. 8, which de-
picts the singularities of the vowel [a] under clean and various
SNRs. As shown in Fig. 8, the strongest singularities of the clean
vowel, e.g., those two occurring at low and medium scales near
z = 1060 and 790 Hz (top panel), do not move much over
a wide range of SNR’s. Specifically, the strongest singularity

(z = 1060 Hz) captures information about the global shape of
the auditory spectrum at 0.48 cyc/oct, which reflects the spacing
between the first and second formants and their relative am-
plitudes, and remains near the same location down to SNR’s
of —6 dB. Another strong singularity at 790 Hz, which occurs
at a median scale (~ 1.5 cyc/oct) and encodes the prominent
harmonic peaks with highest peak-to-valley ratios, moves only
slightly with increasing noise level. By contrast, the small and
closely-spaced peaks due to the additive white noise generate
many weak singularities (white spots) at high scales. In de-
noising applications, these singularities can be separated from
those of the clean vowel spectrum in scale space by thresholding
both the scales and strength of singularities.

To demonstrate the efficiency and robustness of the strong
singularities in encoding spectral shapes, we compared their
performance in an automatic vowel classification task to that of
the widely-used mel-frequency cepstral coefficients (MFCCs)
under different SNR’s. Both of these sets parameterize the
overall spectral shape, a feature that has been shown to be
better correlated with vowel identity than formant frequencies
[52]. In the experiment described below, a database of clean
vowels (subdivided into a training and test sets) was encoded
by their corresponding MFCC’s and low-scale singularities.
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TABLE 1
NUMBERS OF VOWELS FROM ALL DIALECT REGIONS OF THE TRAIN AND
TEST SET OF THE TIMIT CORPUS (MALE SPEAKERS)

IPA Symbol | Typical Word | Training Set | Test Set
a (hot) 1488 547
® (bat) 2500 842
A (but) 1089 419
) (bought) 1051 366
€ (bet) 1940 739
0 (ago) 1203 460
1 (bit) 1812 624
i (beet) 2247 977

(foot) 169 83
u (boot) 222 82

A Bayes classifier was then trained using the training set, and
the performance of the two feature sets was then tested and
compared under progressively worse SNR’s using the test set.

A. Database and Vowel Parameters

The speech material used in this study is a subset (male
speakers) of the TIMIT corpus (additional information may be
found in the printed documentation from National Institute of
Standards and Technology NIST# PB91-100354). Unlike the
isolated-CVC(Consonant-Vowel-Consonant)-word  databases
used in vowel recognition tests [52], [53], TIMIT is a con-
tinuous speech corpus which is closer to a conversational
speech corpus. All ten American English vowels (> 64 ms)
by male speakers were extracted (viz., [a], [&], [A], [D], [€],
[0], ], [2], [U], and [u]) for the recognition task regardless of
their quality, context, speakers’ dialect regions, and probable
mislabeling (vowels are extracted from 4380 sentences by
438 male speakers from 8 major dialect regions of the United
States). However, only vowels having singularities between
250 and 1500 Hz and below 1 cyc/oct are actually used in
training and testing. This constraint was based on the typical
formant frequencies (F; and F5) for the vowels shown in [54].
The numbers of vowels extracted from the training and test set
of TIMIT corpus are listed in Table I. Since the population of
vowels [U] and [u] was much smaller than the populations of
other vowels, they were dropped from this study.

The extracted vowel signal was first pre-emphasized with
transfer function (1 — 0.92~1) and windowed with a 16 ms Han-
ning window with 8 ms overlap between frames. The magnitude
spectrum was then processed by a mel-scale filter-bank, and the
resulting log-energy profile was cosine transformed to produce
the mel-frequency cepstral coefficients [55]. The MFCC feature
vector consisted of the coefficients averaged over the entire signal
duration of the vowel (except for the first set of coefficients).

Similarly, the singularity features were computed from the
auditory spectrograms of the same preemphasized signals [20].
Then the singularities of the multiscale representation of the
averaged spectrum were detected. Here, the location and the gra-
dients of the single strongest singularity between 250 and 1500
Hz and below 1 cyc/oct were extracted as the singularity feature
vector. Note that this feature vector only consisted of 4 parameters
(frequency, scale of the singularity and gradients at both sides).
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Fig. 9. Identification rate of vowels for singularity and MFCC feature sets at

different SNRs.

B. Classifier

Since the main purpose of this experiment is to compare the
robustness of the singularities and MFCC’s in encoding noisy
vowel spectra, we adopted a particularly simple uni-modal mul-
tivariate Gaussian (instead of a multi-modal) classifier to pro-
vide as direct and straightforward comparison between the two
feature sets as possible. This choice is partly the reason why
only one singularity (strongest) is utilized since the distribu-
tions of two or more singularities are poorly approximated by
a uni-modal distribution.

Therefore, all feature sets for vowel 7 (i = 1-8) were as-
sumed to be multivariate Gaussian distributed with mean p;
and covariance matrix ;. The a priori probability for vowel
i (Prob(i)) was estimated as

N;

8
> Ni
1=1

where NV; is the number of vowel ¢ in the training set (see
Table I). The classifier used in this experiment was the Bayes
classifier which minimizes the probability of error. The decision
rule for the test feature vector p was given by

Prob(i) =

i =arg min D;(p) (30)

where 7 is the assigned label for the test vector p and distance
function D;(p) is [52]
Di(p) = (p—p:) T " (p—pi)+In |[Zi|-21n Prob(i). (31)

C. Results and Discussion

White Gaussian noise was added to simulate different SNR
conditions for comparison. The correct identification rate was
defined as

%identification rate
_ # of correctly identified vowels

100.
total # of vowels X

The results are plotted in Fig. 9 as a function of SNR levels both
for the MFCC (13 and 4 coefficients) and singularity (4 param-
eters) feature sets. Basically, the performance of the strongest
singularity and the MFCC(13) features are about equal down
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to low SNR’s (—6 dB), and both are consistently and signif-
icantly better than the truncated MFCC(4) set. We note, how-
ever, that the overall absolute performance level at high SNR’s
(= 50%) is low compared to published identification rates [52],
[53]. This is partly due to the use of a simple uni-modal classi-
fier,! and partly due to the relative complexity and variability of
the TIMIT database. Finally, it is likely that significantly better
robustness can be achieved with more singularities, although it
is essential then to “include” in the assessment some knowledge
of the relative locations of these singularities in the structure of
the classifier (e.g., a multimodal formulation).

VI. SUMMARY AND DISCUSSION

We have described singularities in the scale space generated
by a multiscale model of the auditory cortex. The singularities
are parameterized by their location and significance (in terms
of their local gradients), and are shown to be sufficient to recon-
struct the original input spectral pattern that gave rise to them
when combined with the energies at the scales where they occur.
Also presented is a method to estimate an initial spectral pattern
which yields stable results upon convergence of the reconstruc-
tion algorithm. In this section, we discuss further some proper-
ties of the singularities and their potential applications.

A. Completeness of the Set of Multiscale Singularities

As stated in Section III-A, the zero crossings in scale space
only form a complete representation for certain restricted
classes of signal. For instance, Logan defined the free zeros
as the zeros shared by the function itself and its Hilbert trans-
form and showed a bandpass signal whose bandwidth is less
than 1 octave and has no free zeros can be determined by the
multiscale zero crossings within a constant multiplier [51].
According to its definition, a free zero of a bandpass signal
becomes a singularity in this study when the analytical form
of the bandpass signal is considered. In addition, our cortical
filters have bandwidth broader than 1 octave. Therefore, no
conclusions can be drawn from Logan’s theorems regarding the
completeness of the set of multiscale singularities. Another one
of Logan’s theorems is relevant to the analysis in Section IV-B
about the movement of the singularities along the x axis. It
states that moving a free zero (real part of a singularity) of a
bandlimited signal moves the corresponding zero of its Hilbert
transform (imaginary part of the singularity) in the same way
[51]. That is, the movement Az in (25) should satisfy both
conditions in (22) and (23) simultaneously.

In summary, the set of multiscale zero crossings does not in
general provide a complete representation of the signal. There-
fore, the set of singularities (which is a small subset of the set of
all zero crossings) would not be complete either. In other words,
a mathematically identical spectral reconstruction from the sin-
gularity set is not possible. By adding gradients of singulari-
ties and the energies at the scales where singularities occur, a
perceptually adequate reconstruction is potentially achievable
as demonstrated in Section III-B.

1Tt has been shown that a classifier based on a multi-modal Gaussian mixture

model (GMM) achieves 25% more correct identifications over the uni-modal
Gaussian classifier for a speaker identification task [56].
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B. Future Work

All the properties discussed in Section I'V are based on the re-
lationship between a pair of spectral peaks and the resulting sin-
gularity. Specifically, a singularity carry the essential informa-
tion about those surrounding peaks including amplitude (char-
acterized by the strength and location of the singularity along
the log frequency x axis) and spacing (characterized by the scale
where singularity occurs). A more accurate estimate of the ini-
tial pattern, which takes into account the effects of all peaks on a
singularity (and not just the two surrounding ones), shall yield a
better reconstruction result. For instance, using an impulse-type
spectrum but now composed of impulses at the actual locations
with actual amplitudes of the desired spectral peaks, exhibited
faster convergence and lower mean squared error. Therefore, to
have better reconstruction, the effects of other spectral peaks
on the singularity in addition to the surrounding peaks must be
investigated and incorporated in the future in generating better
initial spectral estimates.

To obtain a satisfactory reconstruction, we have used addi-
tional information about the singularity, specifically, its local
gradients (or strength). It is, however, possible that other pa-
rameters may also suffice to give acceptable reconstruction. For
example, the low minima of the envelope (i.e., the singularities)
of narrow-band signals are approximately hyperbolic in shape
[57]. Hence, the neighborhood of each singularity can be param-
eterized by two local quantities: the location of the focus and its
eccentricity. In such a case, the location of the focus and the
slopes of the asymptotes of the hyperbola can serve as efficient
features in spectral analysis.

We have shown in Section V that the low-scale singularity
preserves the overall shape of the vowel spectrum (including
formant locations and relative amplitudes). Since such param-
eters are highly correlated with vocal tract shape and length,
the lower scale singularities might be good at parameterizing
a simple vocal tract model (e.g., as in [58]). By contrast,
median-scale singularities (~ 1.5 cyc/oct) capture well infor-
mation about the harmonics, i.e., the pitch in speech or music
and aspects of the voice quality, which have proven valuable
in speaker identification problems. For instance, analogous
parameters of pitch (e.g., pitch value, averaged pitch, pitch
contours and jitter) have been successfully used in speaker
identification tasks [59]-[62]. Furthermore, recent efforts at
combining pitch and MFCC’s have yielded promising improve-
ments in performance of speaker identification systems [63].
Therefore, contours of median-scale singularities combined
with low-scale singularities could similarly be used to identify
speakers.
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