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Biological Data Warehousing System for Identifying
Transcriptional Regulatory Sites From Gene
Expressions of Microarray Data
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Meng-Feng Tsai, and Baw-Juine Liu

Abstract—Identification of transcriptional regulatory sites plays
an important role in the investigation of gene regulation. For this
propose, we designed and implemented a data warehouse to in-
tegrate multiple heterogeneous biological data sources with data
types such as text-file, XML, image, MySQL database model, and
Oracle database model. The utility of the biological data ware-
house in predicting transcriptional regulatory sites of coregulated
genes was explored using a synexpression group derived from a
microarray study. Both of the binding sites of known transcription
factors and predicted over-represented (OR) oligonucleotides were
demonstrated for the gene group. The potential biological roles of
both known nucleotides and one OR nucleotide were demonstrated
using bioassays. Therefore, the results from the wet-lab experi-
ments reinforce the power and utility of the data warehouse as an
approach to the genome-wide search for important transcription
regulatory elements that are the key to many complex biological
systems.

Index Terms—Databases, data warehouse, gene expression, gene
regulation, microarray, regulatory sites, synexpression group,
transcription factor.

1. INTRODUCTION

ENE regulation is one of the most challenging and ex-
G citing areas in molecular genetics. Genome-wide gene-
expression data provide a unique set of genes and are used to
decipher the mechanisms that underlie the common regulations
of transcriptional response. The large amount of information
gained from the projects for sequencing and elucidating gene
expression of the human genome enables researchers to use a
computational approach to investigate the mechanism by which
genes are regulated.

A transcription factor (TF), which is a DNA-binding protein,
can regulate gene expressions and bind to specific sites in the
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upstream regions of the gene. A variety of TFs, which recog-
nize the specific sites, cooperatively regulate gene transcription
by interacting with RNA polymerase. Gene transcription mech-
anisms can be deciphered by firstly detecting gene regulatory
sequences recognized by TFs that regulate the activation of the
genes.

Oligo-analysis has been developed to detect over-represented
(OR) oligonucleotides in upstream regions. It is based on a sys-
tematic counting of occurrences of all possible oligonucleotides
in a given sequence [1], [2]. The experimentally identified TF-
binding sites were obtained from TRANSFAC (professional
8.3), which contains 14 406 sites and 5711 factors [3].

Three popular regulatory site prediction programs were in-
tegrated into the system to discover DNA motifs and, thus, to
identify the binding sites in a group of upstream regions. The
Gibbs sampler was used [4] with the option “site sampler.”
One hundred “seeds” or starting points were used; a maximum
of 2000 iterations were performed for each run, and the highest
scores were reported. The MEME algorithm uses an expectation
maximization algorithm for finding patterns in input sequences.
AlignACE [6] is based on a Gibbs sampling algorithm and re-
turns a series of motifs that are OR in the upstream regions of
the genes of interest.

A previous study of regulatory site prediction by Horng
et al. presented a data-mining method to detect the associa-
tions between site occurrences with combinations of known
TF-binding site homologs and OR oligonucleotides [7], [8].
Here, the method is extended to three categories of potentially
regulatory sequences. Accordingly, the implemented algorithm
detects sites that occur concurrently in the upstream regions of
a specified gene group, and also finds the site co-occurrences
that have both a support and a confidence value.

RSA-tools [2] is a website for performing computational anal-
ysis of regulatory sequences. A suite of computer programs
have been developed for the analysis of transcriptional regula-
tory sequences. The TOUCAN system is a Java application for
predicting cis-regulatory elements from a set of coexpressed or
coregulated genes [9]. TOUCAN does not provide detection of
the co-occurrence of regulatory sites.

In this paper, an integrated biological data warehousing sys-
tem for analyzing transcriptional regulatory sites in the human
and mouse genomes was designed and implemented. Users can
input a set of gene-expression levels from microarray data, a
gene group, or a set of upstream sequences, and then work on
the analysis of their transcriptional regulatory sequences in a
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Fig. 1.

Biological data warehouse overview. The data warehouse integrates multiple heterogeneous biological data sources from data types such as text-file,

XML, image, MySQL database model and Oracle database model. The relational database model is incorporated in the internal database model of the biological
data warehouse. Wrappers and monitors are designed for each type of biological database. The wrappers convert the external data into the internal data model. The
monitors assess the states of the external data sources and update the internal data. All the external data sources shown in white boxes are newly integrated in this
version of RgS-Miner, whereas the data sources in gray boxes were integrated in previous versions.

stepwise manner. The system returns putative regulatory sites,
as well as co-occurrences of sites. The specific aim is to develop
a predictive system that automatically performs the gene up-
stream analysis allowing prediction of transcriptional regulatory
sites. The predictive system facilitates the detection of regula-
tory sites in upstream regions of the genes and makes it possible
to discover co-occurrence of the regulatory sites. The goal in this
work is mainly to establish a biological data warehouse for the
computational analysis of transcriptional regulatory sequences
in gene upstream sequences. The system facilitates a compre-
hensive in silico gene regulation analysis process for correlating
coregulated gene groups from gene-expression profiles, predict-
ing regulatory sites in coregulated gene upstream regions, and
detecting the co-occurrence of putative sites.

II. SYSTEM AND ITS IMPLEMENTATION
A. System

Since the analysis using this system requires multiple biologi-
cal data sources, we designed and implemented a data warehouse
based on a relational database management system (RDBMS)
to integrate and to maintain a variety of heterogeneous biolog-
ical databases, such as GenBank [10], Ensembl [11], TRANS-
FAC [12], and so on. The biological data warehouse enables the
uniform query interface to access the databases and provides
more efficient data management. The data warehousing system
is shown in Fig. 1.

We designed and implemented the data warehouse to integrate
multiple heterogeneous biological data sources. The relational
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database model is incorporated in the internal database model
of the biological data warehouse. Wrappers and monitors were
designed for each type of biological database. The wrappers
convert the external data into the internal data model. The mon-
itors assess the states of the external data sources and update the
internal data.

To integrate the external data sources into the internal
database in the warehousing system, the integrator is responsible
for bringing source data into the data warehouse, propagating
changes in the source relative to the data warehouse, and main-
taining the data extracted in the data warehouse. The wrapper
and monitor for each database were designed and implemented.
The major tasks of the wrapper and monitor are translation and
change detection. The wrapper is responsible for translating
the schema of the information source it is concerned with into
the schema that is used by the data warehousing system. The
monitor module is in charge of detecting any change in the in-
formation source it connects to and reporting those changes to
the component above, the integrator. Any changes in the infor-
mation sources will be propagated to the integrator.

RgS-Miner, as described in [13], is a system to analyze tran-
scriptional regulatory sequences. Users first input a set of genes
or a set of upstream sequences. The preprocessing phase returns
a set of upstream regions. In the subsequent prediction phase,
statistical and computational methods, known site matching, de-
tection of OR oligonucleotides, and DNA motif discovery, are
provided to predict regulatory sites.

The system then groups the redundant motifs and selects
a representative motif for each such group. The annotation
phase involves identifying the co-occurrence of regulatory
sites following the detection of the putative regulatory sites
and motif groups in the prediction phase. For each site found
in a particular group of gene upstream regions, a statistical
measure, based on the cumulative hypergeometric distribution,
is determined to filter out insignificant sites. The putative
regulatory sites and site co-occurrences are presented in both
textual and graphical formats. The system also considers the
evolutionary analyses of transcriptional regulatory sites by
using comparative genomics data.

The data warehousing system proposed here also provides a
uniform query interface for the easy retrieval of the biological
information required in the analysis of the transcriptional reg-
ulatory sites in the system. The system enables the following
functions: 1) extraction of gene information and tailoring the
upstream regions; 2) predicting regulatory sites; 3) detecting
site co-occurrences; 4) tools for the visualization of the synergy
between TFs; and 5) user profiles and history pages. Addition-
ally, our system integrates multiple regulatory site prediction
methodologies and implements an approach to refine the result-
ing regulatory site into nonredundant ones. The system makes
the complicated analyzing processes easier and provides a more
user-friendly interface on the web.

B. System Implementation

The biological data warehouse is implemented by using the
MySQL RDBMS version 4.01, which runs on a PC server

TABLE I
DATABASE LINKS IN THE DATA WAREHOUSING SYSTEM
Categories Database sources  Data type Ref.
Nucleic acid GenBank Text-file [10]
sequences Ensembl MySQL database [11]
model
Genes GenBank Text-file [10]
Ensembl MySQL database [11]
model
SWISS_PROT Text-file [14]
PIR XML, [15]
And Oracle
database model
Gene Expression UniGene, dbEST,  Text-file [16],[17]
Profile
Repetitive Sequences RSDB Oracle database  [8]
model
Transcription Factor TRANSFAC, Text-file [3], 18]
and Binding Sites TRANSCompel
CpG Islands HGB Text-file [19]
Promoters Ensembl and MySQL database [11], [20]
Eponine model
Literature Medline Text-file [21]
Gene Homology HomoloGene Text-file [21]
Microarray Gene The Stanford Text-file, and [22]
expression profiles ~ Microarray Database Images
(SMD)
Transcriptional Start DBTSS Text-file [23]

site

under the Linux Red Hat 9.0 operating system. The wrapper
and monitors are written in the C/C++ programming language.
Motivated by the observation that enormous computations are
inevitable when working on oligonucleotide analysis to iden-
tify regulatory sites in the upstream regions of Saccharomyces
cerevisiae [1], [2], a more efficient strategy becomes necessary
when dealing with the larger eukaryotic genome. Here, we con-
struct the human and mouse genomic sequences into a special
computational data structure to reduce the algorithmic com-
plexity when searching for an oligonucleotide in the genomic
sequences. Accordingly, the occurrences of a query oligonu-
cleotide are returned efficiently by querying the suffix-array of
the considered genome.

We construct the suffix-array to support an efficient way of
querying for the occurrences of oligonucleotides whose lengths
range from 4 to 25 bps. In our previous study [25], the con-
structed suffix-array of eukaryotic genome sequence was named
1-Genome.

C. External Data Sources

The external data sources required by the system are listed
in Table I. Each data source is categorized by its biological
meaning and formats. The data types of the external data sources
are text-file, XML, image, MySQL database model, and Oracle
database model. Generally, most of the external data sources
provide data files that can be downloaded freely and directly.
The criteria for selecting the specific data sources depend on the
materials used in the system.

D. Internal Data Model and Query Processor

The data warehouse can convert the various data formats
into the relational database model and store the data into
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Fig. 2. System flow for analyzing transcriptional regulatory sequences. Users first input a set of genes or a set of upstream sequences. In the prediction phase,
statistical and computational methods, known site matching, detection of OR oligonucleotides, and DNA motif discovery, are provided to predict regulatory sites.
The annotation phase for identifying the cooccurrence of regulatory sites follows the detection of the putative regulatory sites and motif groups in the prediction
phase. The results of the analysis can be annotated and the results from different datasets can be compared. The homologous gene databases can be used for the
consideration of evolutionary TF-binding sites. RgS-Miner also links the results of the analysis to literature databases for impact analysis.

the warehouse. The internal database schema is designed to
maintain the required biological information from different
databases. To maintain the user profiles and by analyzing histo-
ries, the RgS-Miner system stores the user input cases and the
results from each step of the analysis in the biological data ware-
house. The reader may refer to [26] and [27] to find out how the
external data sources are integrated under the wrapping rules.

E. Integrator and the Wrapper/Monitor

To integrate the external data sources into the internal
database in the warehousing system, the integrator is respon-
sible for bringing source data into the data warehouse, propa-
gating changes in the source relations to the data warehouse,
and maintaining the data extracted into the data warehouse. The
major tasks of the wrapper/monitor are translation and change
detection.

F. System Flow for Identifying Transcriptional Regulatory Sites

Fig. 2 shows the system flow for analyzing transcriptional
regulatory sequences. In the preprocessing phase, the gene
upstream sequences can be obtained from our database
through a query or from user-submitted sequences if the gene
instances are not found in the database. In the prediction phase,
oligonucleotide analysis, known site matching, and DNA
motif discovery tools are applied [13]. The experimentally
identified TF-binding sites were obtained from TRANSFAC
(professional 8.3).

Three popular regulatory sites prediction programs—a Gibbs
sampler, MEME, and Align ACE—were integrated to discover
DNA motifs and thus identify the binding sites in a group of
upstream regions. The CompareACE score [6], based on the
Pearson correlation coefficient between the nucleotide base
frequencies of two motif alignments, is used to measure the
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Fig. 3. Web interfaces. A tree-like view to show site combinations.
similarity between pairs of motifs. The occurrence sequences
of a motif are used to compute the CompareACE scores.
The similarities between each pair of motifs are then used to
perform clustering. The K-means clustering method is used to
combine similar motifs into groups. The motif groups are used
to detect the co-occurrences of sites. The motif group nearest to
the centroid of the motif cluster is selected as the representative
motif of the motif group.

In the annotation phase, a previous study of regulatory site
prediction by Horng et al. presented a data-mining method to
mine the associations between site occurrences with combi-
nations of known TF-binding site homologs and OR oligonu-
cleotides [7], [8]. That method is herein extended to three cat-
egories of potentially regulatory sequences. Accordingly, the
implemented algorithm detects sites that occur concurrently in
the upstream regions of the gene group of interest, and give
the site co-occurrences (also called site combinations) that are
found a support value and a confidence value. The cumula-
tive hypergeometric probability distribution has been used to
assess the functional significance of computationally derived
motifs [6], [28], [29]. In particular, the analyzing results can be
further annotated. The results of the analysis of different datasets
in different cases can be compared to find the most significant
specific regulatory sites in each dataset. The homologous gene
databases can be used for the consideration of evolutionary TF-
binding sites. RgS-Miner also links the results of the analysis to
literature databases for impact analysis.

G. Interfaces

The system can present the results of the analysis in various
output formats. It also detects the co-occurrence of putative
regulatory sites including known site homologs, OR oligonu-
cleotides, and DNA motif groups as shown in Fig. 3. The output
page displays significant site combinations with chi-square val-
ues, p-values, support values, confidence values, and the number
of occurrences in the relevant upstream regions. The chi-square
values and p-values (cumulative hypergeometric probability)
are two statistical measurements of the dependencies of the
occurrences of the sites in the left part and those of the sites in
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Fig. 4. Web interfaces. A circular synergy map of site combinations.

the right parts of a combination. The positions of occurrences
of combinations are depicted graphically on the output pages.
As shown in Fig. 4, the circular synergy map shows the syn-
ergism between putative regulatory sites. The circular synergy
map is a dynamic web page.
Fig. 5 gives a map that shows the locations of site
combinations.

III. APPLICATION OF THE BIOLOGICAL DATA WAREHOUSE TO
STUDY TRANSCRIPTION REGULATION
OF SYNEXPRESSION GROUPS DERIVED FROM A
GENE-EXPRESSION MICROARRAY ANALYSIS

The biological data warehouse is capable of predicting tran-
scriptional regulatory sites of a set of genes that are potentially
coregulated. Therefore, it is an ideal tool to study synexpression
groups involved in the complex eukaryotic biological system.
The development of gene-expression microarray technology
for monitoring the transcriptome allows construction of coex-
pressed and potentially coregulated gene groups. Hence, the
gene-expression microarray has been widely used for exploring
and integrating the complex processes in normal physiology
and in pathology [31]-[34]. We tested the application of the
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Fig. 5. Web interfaces. The positions of occurrences of combinations are
depicted graphically on the output pages.

data warehousing system to identify common transcription
regulatory sites in synexpression groups during mouse liver re-
generation. The liver is unique among the mammalian organs in
its ability to regenerate after severe injury and in disease. Liver
regeneration involves three main phases: priming, cell-cycle
progression, and tissue remodeling/termination [35]—[37]. Re-
cent microarray analyses [38], [39] have provided new insights
into the growth regulation of the liver, but a comprehensive
knowledge of the transcription regulation is still lacking.

In this study, we combined in silico analysis using RgS-Miner
in the data warehouse with wet-lab work to identify the transcrip-
tional regulatory sites in genes coexpressed during the Go/M
phase of the regenerating mouse livers. Previously, we have
demonstrated that Hurp is expressed during the Go/M phase of
mouse liver regeneration [40] but the transcription regulation of
Hurp has not been explored. Both the promoter and cis-element
activities of the Hurp gene were investigated.

IV. EXPERIMENTAL DESIGN
A. High-Density Oligonucleotide Microarray Analysis

Liver regeneration was carried out in C57BL/6J mice as de-
scribed previously [40]. The microarray hybridizations were
performed using total RNA from liver samples of control mice
(mL) and of mice recovered at various hours after partial hep-
atectomy (PHx). The GeneChip Mouse Expression 430A ar-
ray (MOE430A) has 22 690 probesets representing 13 406 Uni-
Genes. Affymetrix MSA 5.0 software was employed to conduct
the global scaling normalization, to monitor specific hybridiza-
tion and gene expression. Both K-means and hierarchical clus-
tering from GeneSpring software version 6.0 (Silicon Genetics,
Redwood City, CA) were used for cluster analysis. The rela-
tive gene-expression level was defined to be the Log, ratio of
hybridization intensities between regenerating mouse liver and
normal control liver. Genes up- or down-regulated by 1.5-fold
at a single or multiple time points were identified. Expression
levels of Ccnb2 Birc5,DIg7 , Cdca8, Tpx2, C10o0rf3, Hmmr, and
mFLJ1090 were verified by RT-PCR. (32-microglobulin was the
internal control.
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Fig. 6. Coexpressed genes at Go/M phase of regenerating mouse liver. Cluster
analysis of differentially expressed genes identified a group of coexpressed
genes during the G2/M phase (PHx 48-72 h) by (a) K -means clustering and
(b) hierarchical grouping using GeneSpring version 6.0. The color scale used to
represent the expression ratios (Log2) is shown at the bottom. (c) Go/M genes
were classified by molecular functions. (d) Confirmation of gene expression by
RT-PCR. The genes tested are Ccnb2, BircS, Hurp/DIg7, Cdca8, Tpx2, C100rf3,
Hmmr and mFLJ10901. 32-Microglobulin is the internal control gene for RT-
PCR.

B. Analysis of Promoters and Cis-Elements

Transcription regulation was analyzed using two Luciferase
reporters, pGL3-Basic (Promega) and pLuc MCS (Strategene).
Genomic DNA fragments surrounding the promoters of Hurp,
and Birc5 were subcloned in pGL3-Basic. Two fragments
(HurpI1 R and Hurp 11_L) of the intron 1 of the Hurp gene
were subcloned in pLuc-MCS for enhancer analysis. Several
deletion constructs of the cis-element, 5’ cagca 3', were gen-
erated using the QuickChange Site-Directed Mutagenesis Kit
(Stratagene). Human 293T cells and HeLa cells were maintained
at 37°C in a 5% CO; incubator and grown in DMEM medium
supplemented with 10% calf serum and 100 pg/ml penicillin-
streptomycin. Calcium phosphate or Metafectene (Biontex) was
used in the DNA transfection experiments. HeLa cells were syn-
chronized at G2/M phase with 50 ng/ml nocodazole treatment
(16 h) or at G; phase with 400 4M mimosine (16 h). The percent-
age of cells at different phases of the cell cycle was determined
with propidium iodide (400 pg/ml) staining by flow cytometry
analysis (FACS analysis, Becton Dickinson FACSort). After 36—
48 h, protein lysates were tested for luciferase enzyme activity
using a Dual-Luciferase Assay System (Promega).

V. RESULTS AND DISCUSSION

A. Coexpressed Genes at Go/M Phase of Mouse Liver
Regeneration

As shown in Fig. 6, a group of 80 genes showed a distinct
coexpression pattern at Go/M phase (PHx 48—72 h) either by the
K-means method [Fig. 6(a)] or by hierarchical cluster analysis
[Fig. 6(b)]. The majority of the genes belong to cell-cycle regu-
lators (10%), nucleic-acid-binding proteins (28%), or enzymes
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TABLE II
PARTIAL KNOWN TF BINDING SITES FOUND BY OUR SYSTEM IN G2/M PHASE
Oligonucleotide ~ z-Score ~ p-Value  Descriptions
1 AAGTGA 64.65 0.000239 HS$IFNB_02/ R00917/ T00422/IRF-1/mouse
2 AGCCAA 7336 0.000186 MOUSE$NCAM 08/ R01681/ T00537/NF-1/mouse
3 AGGAAA 51.1  0.000383 MOUSE$UPA_01/R02095/ T00684/PEA3/mouse
4  AGTTCT 59.63  0.000281 MOUSE$RAS1_02/R01313/ T00335/GR/mouse
5 ATGGGA 63.25 0.000250 MOUSE$AAMY_07/ R01835/ T00701/PTF1-beta/rat
6 ATTGG 4834  0.000428 MOUSE$M2EAK 08/ R01081/ T00613/NF-Y/mouse
7 CACCC 63.1 0.000251 RATS$TOA_02/R01474/ T00077/CACCC- factor/human
8 CAGAG 50.8 0.000388 RAT$POMC 03/R01813/ T00333/GR/rat
9 CAGCAA 62.13  0.000259 MOUSE$THY1_06/ R03046
10 CATTA 3936 0.000646 HS$GMCSF_03/R00603/ T00915/YY 1/human
(a) S TABLE III
:';ML‘)’ He"a(’g{')ms'"e HeLa'('é"z‘;:Ad)amle PARTIAL OVER-REPRESENTED REPEAT ELEMENTS DISCOVERED
§ Marker % Gated 'S Marker % Gated § Marker % Galed BY OUR SYSTEM IN G2/M PHASE
g —a i00| 8 — A iow| § TAT 10000 |
Sub-G1 049 Sub-G1 047 o " N
28 soa0 gE 8 |2y Oligonucleotide z-Score p-Value Expect SD
g no| 88 om sss | 8 8 I aaccg 936 0011418 405 636
8 2 8 2 agegg 21.43 0.002178 409 6.40
° ° S 3 caccg 10.92 0.008384 482 6.94
o 200 4ooFL2-iou 800 1000 o 200 4ooFL2iw 800 1000 o 200 400FL2_sAoo 800 1000 4 cagea 343 0.084838 4938 22.20
® . PGL3-BircS P pGL3-Hurp_P 5 ccaate 335 0.088998 592  7.69
g 2 6  coggg 2152 0.002159 63.1 7.94
= > 7 ccgte 14.15 0.004994 374 6.12
3 g 8  ctecg 18.01 0.003084 57.0 7.55
g 8 9  ctgegg 13.69 0.005334 14.6 3.82
£ £ 10 gaccg 13.18  0.005759 29.5  5.43
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Fig. 7. Hurp promoter is Go/M regulated. (a) HeLa cells were synchronized
with mimosine for G ; enrichment (75% versus 56% in untreated cells) and with
nocodazole for Go/M enrichment (95% versus 24% in untreated cells). Cell-
cycle phase distribution of cells grown in complete medium (CM) served as a
control. (b) HeLa cells were transfected with the promoter constructs of Birc5
(pGL3-Birc5_P) or Hurp (pGL3-Hurp_P) before synchronization with mimosine
or nocodazole. Relative luciferase activities, expressed as fold difference, were
obtained by normalization with the luciferase activity of the vector control
(pGL3-Basic), which is marked with a “1.” The promoter of both Birc5 and
Hurp are highly induced in Go/M-enriched HeLa cells.

(29%) [Fig. 6(c)] of Go/M genes, such as Ccnb2, Birc5 [42],
Hurp/Dlg [40], Cdca8 [43], Tpx2 [44] as well as for genes previ-
ously unknown to have a Go/M phase induction such as C10orf3,
Hmmr [45], and mFLJ10901 [Fig. 6(d)]. RT-PCR analysis
demonstrated a good agreement with the microarray analysis.

B. Promoter of Hurp Is Cell-Cycle Regulated

Genomic fragments of Hurp were subcloned in pGL3-Basic
and promoter activity was assayed in 293T cells. To determine
whether these promoters are regulated in a cell-cycle-dependent
manner, HeLa cells synchronized at G; or Go/M. In this study,
Birc5 promoter was used as a positive control. As shown in
Fig. 7(a), mimosine and nocodazole achieved 75% and 95%
synchronization, respectively. The fact that promoters of both
Birc5 and Hurp are more active in Go/M-enriched cells than
in G;-enriched HeLa cells [Fig. 7(b)] suggested that the Hurp
promoter is cell-cycle regulated.

C. Characterization of the cis-Element of the Hurp Gene

We further examined the architecture of cis-elements in
G2/M genes. We submitted 3-Kb sequences upstream of the

data warehousing system. Data prediction for both known
TF-binding sites (Table II) and OR oligonucleotides (Table III)
was collected. Partial known TF-binding sites found by our
system and partial OR elements discovered by the system
are shown in Tables II and III, respectively. Multiple putative
TF-binding sites and OR were identified. TF-binding sites
common to 80%—-95% of the Go/M genes included Sp1, CREB,
CDE/CHR, and NF-Y (data not shown). Multiple copies (five
or more) of one specific OR repeat, 5’ cagca 3’, was found in 79
of 80 G2/M genes. The occurrence of cagca within the 4000 bp
upstream of the first ATG of Go/M genes is significantly higher
than in the whole genome (z score = 3.43,p = 0.0848) and is
also higher than within the 4000-bp upstream regions of genes
up-regulated at 96 h after partial hepatectomy (z score = 0.62
versus PHx 96 h genes). This 5-bp OR seems to be selective for
the genes up-regulated during G2/M phase. We named this 5-bp
nucleotide the Y-like element. The Hurp gene has five copies
of the Y-like element on both strands of intron 1 [Fig. 8(a)].
To determine the biological roles of these cis-elements in the
G2/M genes, an enhancer reporter assay was performed using
the Hurp gene as the example. Deletion of the core sequence of
NF-Y (ccaat) resulted in a reduction of transcription activation
by threefold [upper panel, Fig. 8(b)]. NF-Y is a key TF for
cell-cycle genes and acts by pre-setting the promoter architec-
ture for other regulatory proteins [46]. Our data also support its
critical role as an enhancer for Go/M genes. Deletion of Y-2 and
Y-4 resulted in an almost complete loss of enhancer activity by
the Hurp gene [Fig. 8(b)]. While the Y-like element (cagca) is a
predicted OR, it has to be demonstrated if it binds a specific TF.

Computational methods and the data warehousing system
provide a high-throughput means to allow construction of
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Fig. 8. Detection of cis-element activities in intron 1 of Hurp gene. (a) Di-
agram of the Hurp gene with the ORF starting in exon 2. Hurp_P harbors the
promoter activity as shown in Fig. 3(b). Hurp_I1-L and Hurp_I1-R are frag-
ments encompassing a portion of exon 1 and the entire intron 1. The predicted
binding site sequences are marked for intron 1 region: 5’ ccaat 3’ for NF-Y and
5’ cagca 3’ for Y-like element. Four Y-like elements (Y-1, Y-3, Y-4, Y-5) are
on the sense strand while one Y-like element (Y-2) and the NF-Y site are on
the antisense strand. (b) The activity of the cis-elements was detected by the
Luciferase reporter assay. Deletion of the core sequence of NF-Y, Y-2, or Y-4
resulted in a severe reduction in enhancer activity while deletion of Y-1, Y-3, or
Y-5 did not affect the enhancer activity. Relative luciferase activities, expressed
as fold difference, were obtained by normalization with the luciferase activity
of the vector control (pGL3-Basic) (pLuc-MCS).

regulatory modules for coexpressed genes. Incorporation
of comprehensive microarray datasets will further facilitate
deciphering the regulatory control mechanisms that govern
synexpression groups and their associated molecular pathways
critical to complex biological systems.
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